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Abstract
In this paper, we investigate the existence of at least one positive solution to a second
order p-Laplacian discrete system. As applications, we characterize the eigenvalue
intervals for one typical n-dimensional system. The proof is based on a well-known
fixed point theorem in cones.
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1 Introduction
In this paper, we investigate the existence of at least one positive solution for the second
order p-Laplacian discrete boundary value system

⎧
⎨

⎩

�(φ(�ui(k – 1))) + f i(k, u(k)) = 0, k ∈ N ,

u(0) = 0, u(T + 1) = 0, i = 1, 2, . . . , n,
(1)

where u = (u1, u2, . . . , un), φ(s) = |s|p–2s (p > 1), N = {1, 2, . . . , T}, T ≥ 1 is a fixed positive
integer and �u(k) = u(k + 1) – u(k) is the forward difference operator.

The discrete boundary value problems arise in different fields of research. For instance,
they are widely used in discrete optimization, computer science, population genetics, and
so on. Therefore, different types of discrete boundary value problems have been studied
in the past three decades, here we refer the reader to [1, 2, 4, 5, 7, 8, 15, 19]. Among those,
the existence of positive solutions for the discrete p-Laplacian system has attracted special
attention [4, 7, 19]. Some classical and well-known tools, such as the variational methods
[3, 17], the approach of upper and lower solutions [10, 11], and some fixed point theorems
[5, 9], have been widely used.

This paper is mainly motivated by previous paper [6], in which Chu et al. [5, 6] stated and
showed that, under adequate assumptions on the nonlinear term f , the discrete boundary
value problems have at least one positive solution. In this paper, we will choose another
adequate cone to prove the main results, which will improve and generalize those results
obtained in [6].
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As applications of our new results, we characterize the eigenvalue intervals for the n-
dimensional system

⎧
⎨

⎩

�(φ(�ui(k – 1))) + λhi(k)gi(u(k)) = 0, k ∈ N ,

u(0) = 0, u(T + 1) = 0, i = 1, 2, . . . , n,
(2)

where λ > 0 is a positive parameter. We prove that system (2) has at least one positive
solution for each λ in an explicit eigenvalue interval. Recently, several eigenvalue charac-
terizations for different kinds of boundary value problems have appeared, and we refer the
reader to [5, 12, 14, 16, 18].

The rest of this paper is organized as follows. In Sect. 2, we introduce some preliminaries
which are used to prove the main results. Some results on the existence of at least one
positive solution to system (1) are established in Sect. 3. Finally, in Sect. 4 we study the
existence of positive solutions for the following discrete system:

⎧
⎨

⎩

�(φ(�ui(k – 1))) + hi(k)gi(u(k)) = 0, k ∈ N ,

u(0) = 0, u(T + 1) = 0, i = 1, 2, . . . , n,
(3)

and characterize the eigenvalue intervals for system (2).

2 Preliminaries
First let us introduce some notation. For abbreviation, let R be the set of real numbers,
R+ = [0,∞), Rn

+ =
∏n

i=1 R+, and N+ = {0, 1, . . . , T + 1}. We will denote by C(N+,R) the
set of all continuous functions on N+ (discrete topology) with supremum norm ‖u‖ =
maxk∈N+ |u(k)|. Then C(N+,R) is a Banach space. Given u, v ∈ R

N , the usual inner prod-
uct formula is denoted by

〈v, u〉 =
N∑

i=1

viui.

Take X = C(N+,R) × · · · × C(N+,R) (n copies). For any u = (u1, . . . , uN ) ∈ X, we define the
v-norm by

|u|v =
N∑

i=1

vi‖ui‖ =
N∑

i=1

vi · max
k∈N+

∣
∣ui(k)

∣
∣,

where v ∈ R
N
+ is a fixed vector. It is easy to see that X is a Banach space.

Next we present some well-known tools which will be used throughout the paper.

Lemma 2.1 ([1]) Assume that there exists a function y ∈ C(N+,R) with y(k) ≥ 0 for all
k ∈ N+. If u ∈ C(N+,R) satisfies

⎧
⎨

⎩

�2u(k – 1) + y(k) = 0, k ∈ N ,

u(0) = 0, u(T + 1) = 0,
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then u(k) ≥ q(k)‖u‖ for all k ∈ N+, where

q(k) = min

{
T + 1 – k

T + 1
,

k
T

}

. (4)

Remark 2.2 From (4), it is easy to see that q(k) ≥ 1
T+1 for any k ∈ N .

Lemma 2.3 ([9]) If u ∈ C(N+,R) satisfies

⎧
⎨

⎩

�(φ(�u(k – 1))) ≤ 0, k ∈ N ,

u(0) = 0, u(T + 1) = 0,

then u(k) ≥ q(k)‖u‖ for k ∈ N+.

Lemma 2.4 ([9]) If u, y ∈ C(N+,R) satisfies

⎧
⎨

⎩

�(φ(�u(k – 1))) ≤ �(φ(�y(k – 1))), k ∈ N ,

u(0) ≥ y(0), u(T + 1) ≥ y(T + 1),

then u(k) ≥ y(k) for k ∈ N+.

Our main tool is a well-known fixed point theorem in cones established in [13], which
we recall here for the convenience of the readers. If D is a subset of X, we write DK = D∩K
and ∂K D = (∂D) ∩ K .

Theorem 2.5 Let X be a Banach space, and let K be a cone in X. Assume that �1, �2 are
open bounded subsets of X with �1

K 
= ∅, �1K ⊂ �2
K . Let

T : �2K → K

be a continuous and completely continuous operator such that
(i) u 
= λTu for λ ∈ [0, 1) and u ∈ ∂K�1, and

(ii) there exists e ∈ K \ {0} such that u 
= Tu + λe for all u ∈ ∂K�2 and all λ > 0.
Then T has a fixed point in �2K \ �1

K .

3 Main results
In this section, we establish an existence result to the discrete p-Laplacian system (1).
Define a cone K in X by

K =
{

u = (u1, u2, . . . , un) ∈ X : min
k∈N

〈
v, u(k)

〉 ≥ q(k)|u|v
}

. (5)

In addition, the operator S : K → X is defined by S = (S1, S2, . . . , Sn) and

Siu(k) =

⎧
⎨

⎩

0, k = 0 or T + 1,
∑T

s=k φ–1(τi +
∑s

r=1 f i(r, u(r))), k ∈ N ,
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where τi is a solution of the equation

φ–1(τi) +
T∑

s=k

φ–1

(

τi +
s∑

r=1

f i(r, u(r)
)
)

= 0. (6)

Lemma 3.1 Suppose that f i : N+ × R
n
+ → R+ is continuous for each i = 1, 2, . . . , n. Then

the operator S is continuous and completely continuous. Furthermore, S : K → K is well
defined.

Proof Since φ–1 is a continuous, strictly increasing function on R and φ–1(R) = R, then
τi is a unique solution of equation (6). Therefore, the operator S is well defined. It follows
from [6, Lemma 6.1] that S : K → X is continuous and completely continuous. Next, we
show that S maps K into K .

Since f i(k, u(k)) ≥ 0 for k ∈ N , by Lemma 2.3, it is clear that

Siu(k) ≥ q(k)‖Siu‖ for all u ∈ K .

Therefore

〈
v, Su(k)

〉 ≥ q(k)
〈
v,

∥
∥Su(k)

∥
∥
〉

= q(k)
∣
∣Su(k)

∣
∣
v,

which shows that S(K) ⊂ K . �

In order to apply Theorem 2.5, we need to select adequate open sets. Define

�r =
{

u ∈ X : min
k∈N

〈
v, u(k)

〉
<

r
T + 1

}

and Br =
{

u ∈ X : |u|v < r
}

.

Lemma 3.2 �r , Br defined above have the following properties:
(a) �r

K , Br
K are open relative to K .

(b) Br/T+1
K ⊂ �r

K ⊂ Br
K .

(c) u ∈ ∂K�r if and only if u ∈ K and mink∈N 〈v, u(k)〉 = r
T+1 .

(d) If u ∈ ∂K�r , then r
T+1 ≤ 〈v, u(k)〉 ≤ r for k ∈ N and |u|v ≤ r.

Proof Since mink∈N 〈v, u(k)〉 is continuous (discrete topology), we check at once that (a) is
true. (c) is clear since, for each u ∈ K , we have

min
k∈N

〈
v, u(k)

〉 ≥ q(k)|u|v ≥ 1
T + 1

|u|v.

Now let us prove (d). From (c), we have

1
T + 1

|u|v ≤ q(k)|u|v ≤ min
k∈N

〈
v, u(k)

〉
=

r
T + 1

for u ∈ ∂K�r .

Thus |u|v ≤ r and r
T+1 ≤ 〈v, u(k)〉 ≤ r for k ∈ N .

Next we prove (b). Let u ∈ Br/T+1
K , then we have |u|v < r

T+1 , so mink∈N 〈v, u(k)〉 < r
T+1

and u ∈ �r
K . Since u ∈ �r

K , for all k ∈ N , we have mink∈N 〈v, u(k)〉 < r
T+1 and 〈v, u(k)〉 ≥

q(k)|u|v ≥ 1
T+1 |u|v. Hence |u|v < r, that is, �r

K ⊂ Br
K . �
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It follows from the above properties that, for each δ > r,

�r
K =

(
�r ∩ Bδ

)

K and �rK =
(
�r ∩ Bδ

)

K .

Theorem 3.3 Suppose that f i : N+ × R
n
+ → R+ is continuous. Moreover, suppose further

that there exist α,β > 0 such that
(D1) For each i = 1, 2, . . . , n, there exists a continuous function ψi : N → (0,∞) such that

f i(j, u) ≥ φ

(
1

T + 1
α

)

ψi(j), for all j ∈ N ,
α

T + 1
≤ 〈

v, u(j)
〉 ≤ α

and

min
k∈N

〈
v, P(k)

〉 ≥ 1,

where P(k) = (P1(k), P2(k), . . . , Pn(k)) is the unique solution of

⎧
⎨

⎩

�(φ(�P(k – 1))) + ψ(k) = 0, k ∈N,

P(0) = 0, P(T + 1) = 0
(7)

with ψ = (ψ1,ψ2, . . . ,ψn).
(D2) For each i = 1, 2, . . . , n, there exists a continuous function χi : N → (0,∞) such that

f i(j, u)〉 ≤ φ(β)χi(j), for all j ∈ N , 0 <
〈
v, u(j)

〉 ≤ β

and

max
k∈N

〈
v, Q(k)

〉 ≤ 1,

where Q(k) = (Q1(k), Q2(k), . . . , Qn(k)) is the unique solution of

⎧
⎨

⎩

�(φ(�Q(k – 1))) + χ (k) = 0, k ∈N,

Q(0) = 0, Q(T + 1) = 0
(8)

with χ = (χ1,χ2, . . . ,χn).
Then the following results hold:

(a) If β < α
T+1 , then system (1) has at least one positive solution u with

β ≤ |u|v ≤ α;

(b) If α < β , then system (1) has at least one positive solution u with

α

T + 1
≤ |u|v ≤ β .

Proof To obtain the desired result, we claim that
(i) u 
= λSu for λ ∈ [0, 1) and u ∈ ∂K Bβ , and

(ii) there exists e ∈ K \ {0} such that u 
= Su + λe for each u ∈ ∂K�α and all λ > 0.
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We start with (i). Suppose that there exist u ∈ ∂K Bβ and λ ∈ [0, 1) such that u = λSu. Since
u ∈ ∂K Bβ , we have 1

T+1β ≤ 〈v, u(k)〉 ≤ β for all k ∈ N and 〈v, u(k∗)〉 = β for some k∗ ∈ N .
From (D2) we get

�
(
φ
(
�Siu(k – 1)

))
= –f i(k, u(k)

) ≥ –φ(β)χi(k) = �
(
φ
(
�βQi(k – 1)

))
.

By Lemma 2.4, we obtain

β =
〈
v, u

(
k∗)〉 =

〈
v,λSu

(
k∗)〉 ≤ λβ

〈
v, Q

(
k∗)〉 ≤ λβ max

k∗∈N

〈
v, Q

(
k∗)〉 < β ,

which is a contradiction. Then (i) is proved.
Next we consider claim (ii). Let e(t) ≡ 1. Then e ∈ K \ {0}. Suppose, contrary to our

claim, that there exist u ∈ ∂K�α and λ > 0 such that u = Su + λe. By Lemma 3.2(d), for any
u ∈ ∂K�α , we have 1

T+1α ≤ 〈v, u(k)〉 ≤ α for k ∈ N .
It follows from (D1) that

�
(
φ
(
�Siu(k – 1)

))
= –f i(k, u(k)

) ≤ –φ

(
α

T + 1

)

ψi(k) = �

(

φ

(

�
α

T + 1
Pi(k – 1)

))

.

We conclude from Lemma 2.4 that

〈
v, u(k)

〉
=

〈
v, Su(k) + λe

〉
=

〈
v, Su(k)

〉
+ 〈v,λe〉

≥ α

T + 1
〈
v, P(k)

〉
+ 〈v,λe〉

≥ α

T + 1
min
k∈N

〈
v, P(k)

〉
+ 〈v,λe〉 >

α

T + 1
,

hence that mink∈N 〈v, u(k)〉 > α
T+1 , and finally that this is a contradiction to Lemma 3.2(c).

According to Lemma 3.2, if β < α
T+1 , one has BβK ⊂ Bα/T+1

K ⊂ �α
K . Now Theorem 2.5

guarantees the existence of at least one fixed point u ∈ �αK \ Bβ

K of S, so we have |u|v ≥
β and 1

T+1β ≤ mink∈N 〈v, u(k)〉 ≤ 1
T+1α. Moreover, 1

T+1 |u|v ≤ mink∈N 〈v, u(k)〉 ≤ 1
T+1α. We

thus get |u|v ≤ α.
On the other hand, if α < β , one has �αK ⊂ Bβ

K . Similarly, we can obtain that S has at
least one fixed point u ∈ BβK \ �α

K by Theorem 2.5, which implies that 1
T+1α ≤ |u|v ≤ β .

�

Remark 3.4 Take p = 2 and the original system (1) is transformed into a common second
order discrete boundary value system

⎧
⎨

⎩

�2ui(k – 1) + f i(k, u(k)) = 0, k ∈ N ,

u(0) = 0, u(T + 1) = 0, i = 1, 2, . . . , n,
(9)

then system (9) has at least one positive solution.

4 Eigenvalue intervals of (2)
In this section, we employ Theorem 3.3 to establish one existence result for system (3),
and then characterize the eigenvalue intervals of system (2). First we assume that
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(H1) gi: Rn
+ →R+ is continuous with gi(u) > 0 for |u|v > 0;

(H2) H̃(k) > 0 for k ∈ N , where H̃(k) = (H̃1(k), H̃2(k), . . . , H̃n(k)) is the unique solution of

⎧
⎨

⎩

�(φ(�u(k – 1))) + h(k) = 0, k ∈N,

u(0) = 0, u(T + 1) = 0,

with h(k) = (h1(k), h2(k), . . . , hn(k)).

Theorem 4.1 Assume that (H1) and (H2) hold. If one of the following conditions holds,
then system (3) has at least one positive solution u satisfying 〈v, u(k)〉 
= 0 for k ∈ N .

(h1) 0 ≤ gi
0 < ( 1

M )p–1 and ( 1
m )p–1 < gi∞ ≤ ∞, i = 1, 2, . . . , n;

(h2) 0 ≤ gi∞ < ( 1
M )p–1 and ( 1

m )p–1 < gi
0 ≤ ∞, i = 1, 2, . . . , n;

where gi
0 = limu→0+

gi(u)
up–1 , gi∞ = limu→∞ gi(u)

up–1 , and

M = max
k∈N

〈
v, H̃(k)

〉
, m = min

k∈N

〈
v, H̃(k)

〉
.

Proof For this purpose, we set f i(k, u) = hi(k)gi(u), i = 1, 2, . . . , n, and suppose that (h1)
holds. In addition, the case when (h2) holds is similar.

From the first part of (h1), there exists β > 0 such that gi(u) ≤ ( 1
M )p–1βp–1 for 0 < |u|v ≤ β .

Take χi(k) = ( 1
M )p–1hi(k). When 0 < 〈v, u(k)〉 ≤ β , then

f i(k, u) = hi(k)gi(u) ≤
(

1
M

)p–1

βp–1hi(k) = βp–1χi(k) for k ∈ N ,

and

〈
v, Q(k)

〉
=

〈
v, M–1H̃(k)

〉 ≤ M–1 max
k∈N

〈
v, H̃(k)

〉
= 1.

Hence (D2) holds.
From the second part of (h1), there exists α > 0 such that 1

T+1α > β and gi(u) ≥
( 1

m )p–1( 1
T+1α)p–1 for |u|v ≥ 1

T+1α. Take ψi(k) = ( 1
m )p–1hi(k). When 1

T+1α ≤ 〈v, u(k)〉 ≤ α, we
have, for k ∈ N , that

f i(k, u) = hi(k)gi(u) ≥
(

1
m

)p–1( 1
T + 1

α

)p–1

hi(k) =
(

1
T + 1

α

)p–1

ψi(k),

and

〈
v, P(k)

〉
=

〈
v, m–1H̃(k)

〉 ≥ m–1 min
k∈N

〈
v, H̃(k)

〉
= 1.

This implies that (D1) holds. Now the rest of the proof runs as Theorem 3.3. �

Next we employ Theorem 4.1 to characterize the eigenvalue intervals for system (2). As
it is easy to prove, we only present the results here.
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Theorem 4.2 Assume that (H1) and (H2) hold. If 1
mp–1 mini=1,2,...,n{gi∞} < 1

Mp–1 maxi=1,2,...,n{gi
0} , then

system (2) has at least one positive solution for each

λ ∈
(

1
mp–1 mini=1,2,...,n{gi∞} ,

1
Mp–1 maxi=1,2,...,n{gi

0}
)

.

If 1
mp–1 mini=1,2,...,n{gi

0} < 1
Mp–1 maxi=1,2,...,n{gi∞} , the same result remains valid for each

λ ∈
(

1
mp–1 mini=1,2,...,n{gi

0}
,

1
Mp–1 maxi=1,2,...,n{gi∞}

)

.

5 Conclusions
In this paper, we established the existence of positive solutions for the second order p-
Laplacian discrete system by a well-known fixed point theorem in cones. In this paper,
we will choose another adequate cone to prove the main results, which will improve and
generalize those results obtained in [6]. Moreover, we take advantage of a new cone to
characterize the eigenvalue intervals in a simple way.
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