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Abstract
This paper deals with the minimal wave speed of delayed lattice dynamical systems.
We obtain the minimal wave speed by presenting the existence and nonexistence of
traveling wave solutions, which completes the earlier results. In particular, when the
wave speed equals the minimal wave speed, traveling wave solutions do not
exponentially decay.
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1 Introduction
Lattice dynamical systems are spatially discrete evolutionary models, which could more
reasonably reflect many important facts of natural phenomena than the continuous cases.
For example, these systems successfully characterized the propagation failure of excitable
cells [17]. In literature, there are some results on general theory of lattice dynamical sys-
tems, see Chow [10], Mallet-Paret [26–28]. In particular, one important topic in these
works is the traveling wave solution. We refer to [1, 3–9, 13, 14, 31, 33, 40, 42–44] for
some models and results on wave propagation of lattice dynamical systems.

Because time delay is universal in natural phenomena, much attention has been paid
to traveling wave solutions of lattice dynamical systems with delayed effect, see [15, 16,
18, 21, 23–25, 32, 35–39, 41]. When the propagation dynamics are concerned, there are
some important thresholds modeling crucial features, and one is the minimal wave speed
of traveling wave solution in the sense that wave speed larger (smaller) than the thresh-
old or equivalent to the threshold implies the existence (nonexistence) of traveling wave
solutions, see some results in the above works.

It should be noted that the comparison principle appealing to monotone semiflows plays
an important role, and some results are sharp in the works mentioned above. However,
when the noncooperative systems are concerned, there are some open problems. In this
paper, we consider the following lattice dynamical system [20]:

⎧
⎨

⎩

dun(t)
dt = [D1u]n(x) + r1un(t)[1 – un(t) – b1vn(t – τ1)],

dvn(t)
dt = [D2v]n(x) + r2vn(t)[1 – b2un(t – τ2) – vn(t)]

(1.1)
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with

[D1u]n(x) = d1
[
un+1(t) – 2un(t) + un–1(t)

]
,

[D2v]n(x) = d2
[
vn+1(t) – 2vn(t) + vn–1(t)

]
,

where n ∈ Z, t > 0, d1, d2, r1, r2 are positive and b1, b2, τ1, τ2 are nonnegative.
In Lin and Li [20], if b1, b2 ∈ [0, 1), then (1.1) has a positive equilibrium K = (k1, k2), where

k1 =
1 – b1

1 – b1b2
> 0, k2 =

1 – b2

1 – b1b2
> 0.

They proved the existence of traveling wave solutions connecting (0, 0) with (k1, k2) when
the wave speed is larger than a threshold c∗, which will be clarified in the subsequent
section. But it remains open on the existence/nonexistence of traveling wave solutions
when the wave speed is not large. To answer this question when b1, b2 ∈ [0, 1) is the main
purpose of this paper.

In this paper, we shall confirm the existence or nonexistence of traveling wave solutions
with smaller wave speed, which will complete the conclusions in Lin and Li [20]. More
precisely, by Schauder’s fixed point theorem, we obtain a sufficient condition on the ex-
istence of nontrivial traveling wave solutions. We then confirm the existence of traveling
wave solutions by constructing upper and lower solutions if the wave speed is c∗. To ob-
tain the asymptotic behavior of traveling wave solutions, we use the theory of asymptotic
spreading. Moreover, we also confirm the nonexistence of traveling wave solutions if the
wave speed is smaller than c∗, which is investigated by constructing auxiliary equations
and utilizing the theory of asymptotic spreading.

In Sect. 2, we shall give some preliminaries, which implies that the existence of traveling
wave solutions can be obtained by the existence of proper upper and lower solutions. In
Sect. 3, we give our conclusions including the existence and nonexistence of traveling wave
solutions.

2 Preliminaries
In this paper, we use the standard partial ordering in R

2. That is, for u = (u1, u2) and v =
(v1, v2), we denote u ≤ v if ui ≤ vi, i = 1, 2, and u < v if u ≤ v but u �= v. Let C(R,R2) be a set
of bounded and uniform continuous functions from R to R

2. Define

‖x‖ = max
1≤i≤2

{
sup
ξ∈R

∣
∣xi(ξ )

∣
∣
}

, x = (x1, x2) ∈ C
(
R,R2),

then C(R,R2) is a Banach space with supremum norm ‖ · ‖.
A traveling wave solution of (1.1) is a special translation invariant solution of the form

un(t) = φ(ξ ), vn(t) = ψ(ξ ), ξ = n + ct,

where φ,ψ ∈ C1(R,R) are the so-called wave profiles propagating through the one-
dimensional spatial lattice at a constant velocity c > 0. Thus, φ, ψ , and c satisfy the fol-
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lowing mixed functional differential equations:

⎧
⎨

⎩

cφ′(ξ ) = [D1φ](ξ ) + r1φ(ξ )[1 – φ(ξ ) – b1ψ(ξ – cτ1)],

cψ ′(ξ ) = [D2ψ](ξ ) + r2ψ(ξ )[1 – ψ(ξ ) – b2φ(ξ – cτ2)]
(2.1)

with

[D1φ](ξ ) = d1
[
φ(ξ + 1) + φ(ξ – 1) – 2φ(ξ )

]
,

[D2ψ](ξ ) = d2
[
ψ(ξ + 1) + ψ(ξ – 1) – 2ψ(ξ )

]
.

Because we are interested in the invasion process of two competitive invaders [20], then
φ, ψ satisfy the following asymptotic boundary conditions:

lim
ξ→–∞

(
φ(ξ ),ψ(ξ )

)
= 0, lim

ξ→+∞
(
φ(ξ ),ψ(ξ )

)
= K . (2.2)

For λ > 0, c > 0, we further define

c∗
1 = infλ>0

d1[eλ+e–λ–2]+r1
λ

,

c∗
2 = infλ>0

d2[eλ+e–λ–2]+r2
λ

,

⎫
⎬

⎭
c∗ = max

{
c∗

1, c∗
2
}

,

and

�1(λ, c) = d1
[
eλ + e–λ – 2

]
– cλ + r1,

�2(λ, c) = d2
[
eλ + e–λ – 2

]
– cλ + r2.

By the convexity, we have the following conclusion.

Lemma 2.1 Assume that c∗, �1(λ, c), �2(λ, c) are defined as the above.
(1) c∗

i > 0 holds and �i(λ, c) = 0 has two distinct positive roots λc
i < λc

i+2 for any c > c∗
i and

each i = 1, 2. Moreover, if c > c∗
i and λi ∈ (λc

i ,λc
i+2), then �i(λi, c) < 0, i = 1, 2.

(2) If c ∈ (0, c∗
i ), then �i(λ, c) > 0 for any λ > 0 and i = 1, 2.

(3) If c = c∗
i , then �i(λ, c∗) ≥ 0 for any λ > 0 and �i(λ, c∗) = 0 has a unique positive root

λ∗
i , where i = 1, 2.

On the existence of (2.1), we have the following conclusion.

Lemma 2.2 If (φ(ξ ),ψ(ξ )), (φ(ξ ),ψ(ξ )) ∈ C(R,R2) satisfy

(0, 0) ≤ (
φ(ξ ),ψ(ξ )

) ≤ (
φ(ξ ),ψ(ξ )

) ≤ (1, 1), ξ ∈R.

Moreover, except several points, they are differentiable such that

c∗φ′(ξ ) ≥ [D1φ](ξ ) + r1φ(ξ )
[
1 – φ(ξ ) – b1ψ

(
ξ – c∗τ1

)]
, (2.3)

c∗ψ ′(ξ ) ≥ [D2ψ](ξ ) + r2ψ(ξ )
[
1 – ψ(ξ ) – b2φ

(
ξ – c∗τ2

)]
, (2.4)
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c∗φ′(ξ ) ≤ [D1φ](ξ ) + r1φ(ξ )
[
1 – φ(ξ ) – b1ψ

(
ξ – c∗τ1

)]
, (2.5)

c∗ψ ′(ξ ) ≤ [D2ψ](ξ ) + r2ψ(ξ )
[
1 – ψ(ξ ) – b2φ

(
ξ – c∗τ2

)]
. (2.6)

Then (2.1) with c = c∗ has a positive solution (φ(ξ ),ψ(ξ )) such that

(
φ(ξ ),ψ(ξ )

) ≤ (
φ(ξ ),ψ(ξ )

) ≤ (
φ(ξ ),ψ(ξ )

)
, ξ ∈R.

Proof Let β > 0 be a constant such that

H1(φ,ψ)(ξ ) = [D1φ](ξ ) + βφ(ξ ) + r1φ(ξ )
[
1 – φ(ξ ) – b1ψ

(
ξ – c∗τ1

)]
,

H2(φ,ψ)(ξ ) = [D2ψ](ξ ) + βψ(ξ ) + r2ψ(ξ )
[
1 – ψ(ξ ) – b2φ

(
ξ – c∗τ2

)]

are monotone in

0 ≤ φ(ξ ),ψ(ξ ) ≤ 1, ξ ∈R.

Define

2μ =
β

c∗ .

Equip C(R,R2) with the norm | · |μ defined by

|	|μ = sup
ξ∈R

{∥
∥	(ξ )

∥
∥e–μ|ξ |}, 	(ξ ) ∈ C

(
R,R2),

and define

Bμ

(
R,R2) =

{
	 ∈ C

(
R,R2) : sup

ξ∈R

∣
∣	(ξ )

∣
∣e–μ|ξ | < ∞

}
.

Then we obtain a Banach space (Bμ(R,R2), | · |μ). Let 
 be a subset of Bμ(R,R2) such that
(φ(ξ ),ψ(ξ )) ∈ 
 implies

(
φ(ξ ),ψ(ξ )

) ≤ (
φ(ξ ),ψ(ξ )

) ≤ (
φ(ξ ),ψ(ξ )

)
, ξ ∈R.

Then 
 is bounded and closed with respect to the norm | · |μ, and it is a nonempty and
convex subset of Bμ(R,R2).

For (φ(ξ ),ψ(ξ )) ∈ 
, we define F = (F1, F2) by

F1(φ,ψ)(ξ ) =
1
c∗

∫ ξ

–∞
e– β(ξ–s)

c∗ H1(φ,ψ)(s) ds,

F2(φ,ψ)(ξ ) =
1
c∗

∫ ξ

–∞
e– β(ξ–s)

c∗ H2(φ,ψ)(s) ds.

Then, by direct calculations, we can prove that F : 
 → 
 and the mapping is complete
continuous in the sense of | · |μ, which is similar to that in Huang et al. [16]. Due to
Schauder’s fixed point theorem, the proof is complete. �
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We also consider the following initial value problem:

⎧
⎨

⎩

dun(t)
dt = [Du]n(x) + run(t)[1 – un(t)], n ∈ Z, t > 0,

un(0) = ψ(n), n ∈ Z,
(2.7)

where r > 0, d > 0 and

[Du]n(x) = d
[
un+1(t) + un–1(t) – 2un(t)

]
.

By Ma et al. [23] and Weng et al. [35], we have the following conclusions.

Lemma 2.3 If 0 ≤ ψ(n) ≤ 1, n ∈ Z, then (2.7) has a solution un(t) for all n ∈ Z, t > 0. If
wn(t), n ∈ Z, t > 0, satisfies

⎧
⎨

⎩

dwn(t)
dt ≥ (≤) [Dw]n(t) + rwn(t)[1 – wn(t)],

wn(0) ≥ (≤) ψ(n),

then wn(t) ≥ (≤) un(t) for all n ∈ Z, t > 0. In particular, wn(x) is called an upper (a lower)
solution of (2.7).

Lemma 2.4 Define c1 =: infλ>0
D(eλ+e–λ–2)+h(0)

λ
> 0. If ψ(n) ≥ 0, n ∈ Z such that ψn(0) > 0 for

some n ∈ Z, then

lim inf
t→∞ inf|n|<ct

un(t) = 1

for any given c < c1.

3 Main results
Our main conclusion of this paper is given as follows.

Theorem 3.1 If c < c∗, then (2.1) does not admit a positive solution satisfying (2.2). If c = c∗,
then (2.1) with c = c∗ has a strict positive solution satisfying (2.2) and

(1) limξ→–∞ φ(ξ )
–ξeλ∗

1ξ
, limξ→–∞ ψ(ξ )

eλc∗
2 ξ

are positive if c = c∗ = c∗
1 > c∗

2 ;

(2) limξ→–∞ φ(ξ )

eλc∗
1 ξ

, limξ→–∞ ψ(ξ )
–ξeλ∗

2ξ
are positive if c = c∗ = c∗

2 > c∗
1 ;

(3) limξ→–∞ φ(ξ )
–ξeλ∗

1ξ
, limξ→–∞ ψ(ξ )

–ξeλ∗
2ξ

are positive if c = c∗ = c∗
2 = c∗

1 .

The above result will be proved by several lemmas, the first one is the following.

Lemma 3.2 Assume that c∗
1 > c∗

2. Then (2.1) with c = c∗ = c∗
1 > c∗

2 has a positive solution
(φ(ξ ),ψ(ξ )) and limξ→–∞ φ(ξ )

–ξeλ∗
1ξ

, limξ→–∞ ψ(ξ )

eλc∗
2 ξ

are positive.

Proof Note that �1(λ, c∗) ≥ 0 and �1(λ, c∗) arrives at its minimal when λ = λ∗
1, then

∂�1(λ,c∗)
∂λ

|λ=λ∗
1

= 0 or

d1
[
eλ∗

1 – e–λ∗
1
]

= c∗.
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Consider the continuous function –Lξeλ∗
1ξ , ξ < 0, where L > 0 is a constant. Clearly, if

L > 1 is large, then

max
ξ<0

{
–Lξeλ∗

1ξ
}

> 1, ξ ′
1 – ξ1 ≥ 1, (3.1)

where ξ1, ξ ′
1 with ξ ′

1 – ξ1 > 0 are two roots of –Lξeλ∗
1ξ = 1. We now fix L and define

φ(ξ ) =

⎧
⎨

⎩

1, ξ ≥ ξ1,

–Lξeλ∗
1ξ , ξ < ξ1.

Moreover, let q1 > L such that

–Lξeλ∗
1ξ ≥ (–Lξ – q1

√
–ξ )eλ∗

1ξ > 0, ξ < –q2
1/L2 < ξ1.

At the same time, there exists q2 > q1 such that

–Lξeλ∗
1ξ < eλ∗

1ξ /2, ξ ≤ –q2
2/L2.

Further select

λ′ = min
{
λ∗

1/2,λc∗
2

}
,

and

q3 = sup
ξ<–1

8r1L(1 + b1)eλ′ξ

d1[eλ∗
1 – e–λ∗

1 ]
√

–ξ
,

q4 =
r2 + r2b2

–�2(c∗,ηλc∗
2 )

+ 1,

where η ∈ (1, 2) is a fixed constant such that

ηλc∗
2 < min

{

λc∗
2 +

λ∗
1

2
,λc∗

4

}

.

Now, we define

q = max{q1, q2, q3, q4}.

By the above constants, define

φ(ξ ) =

⎧
⎨

⎩

(–Lξ – q
√

–ξ )eλ∗
1ξ , ξ < ξ2 := –q2/L2,

0, ξ ≥ ξ2,

and

ψ(ξ ) = min
{

eλc∗
2 ξ , 1

}
, ψ(ξ ) = max

{
eλc∗

2 ξ – qeηλc∗
2 ξ , 0

}
.
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We now show that these continuous functions satisfy (2.3)–(2.6) if they are differen-
tiable.

(1) Equation (2.3) is clear when ξ > ξ1. If ξ < ξ1, then φ(ξ ) = –Lξeλ∗
1ξ such that

c∗φ′(ξ ) = –c∗L
[
λ∗

1ξ + 1
]
eλ∗

1ξ

and

d1
[
φ(ξ + 1) + φ(ξ – 1) – 2φ(ξ )

]
+ r1φ(ξ )

[
1 – φ(ξ ) – b1ψ

(
ξ – c∗τ1

)]

≤ d1
[
φ(ξ + 1) + φ(ξ – 1) – 2φ(ξ )

]
+ r1φ(ξ )

≤ –Leλ∗
1ξ

{
d1

[
(ξ + 1)eλ∗

1 + (ξ – 1)e–λ∗
1 – 2ξ

]
+ r1ξ

}
.

Thus (2.3) is true if

–c∗[λ∗
1ξ + 1

] ≥ –
{

d1
[
(ξ + 1)eλ∗

1 + (ξ – 1)e–λ∗
1 – 2ξ

]
+ r1ξ

}

= –ξ
{

d1
[
eλ∗

1 + e–λ∗
1 – 2

]
+ r1

}
– d1

[
eλ∗

1 – e–λ∗
1
]
,

which is evident by �1. This completes the verification of (2.3).
(2) If ξ > 0 such that φ(ξ ) = 1, then (2.4) is clear. When ξ < 0, it suffices to show

c∗ψ ′(ξ ) = c∗λc∗
2 eλc∗

2 ξ ≥ [D2ψ](ξ ) + r2ψ(ξ ),

which is clear by the definition of λc∗
2 . We obtain (2.4) when ξ �= 0.

(3) On φ(ξ ), we shall prove (2.5) when φ(ξ ) is differentiable, and it is clear if ξ > ξ2. If
ξ < ξ2 and φ(ξ ) = (–Lξ – q

√
–ξ )eλ∗

1ξ , then

d1
[
φ(ξ + 1) + φ(ξ – 1) – 2φ(ξ )

]

≥ d1eλ∗
1ξ

[(
–L(ξ + 1) – q

√
–(ξ + 1)

)
eλ∗

1

+
(
–L(ξ – 1) – q

√
–(ξ – 1)

)
e–λ∗

1 – 2(–Lξ – q
√

–ξ )
]

= –Ld1eλ∗
1ξ

[
(ξ + 1)eλ∗

1 + (ξ – 1)e–λ∗
1 – 2ξ

]

– qd1eλ∗
1ξ

[√
–(ξ + 1)eλ∗

1 +
√

–(ξ – 1)e–λ∗
1 – 2

√
–ξ

]
.

Since λ′ = min{λ∗
1/2,λc∗

2 }, then

φ(ξ ) + b1ψ(ξ – cτ1)

≤ φ(ξ ) + b1ψ(ξ – cτ1)

≤ (1 + b1)eλ′ξ ,

and so

r1φ(ξ )
[
1 – φ(ξ ) – b1ψ(ξ – cτ1)

]

≥ r1(–Lξ – q
√

–ξ )eλ∗
1ξ – r1(–Lξ – q

√
–ξ )eλ∗

1ξ (1 + b1)eλ′ξ

≥ r1(–Lξ – q
√

–ξ )eλ∗
1ξ + r1L(1 + b1)ξeλ∗

1ξ eλ′ξ .
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Then it suffices to verify

c∗φ′(ξ ) = c∗eλ∗
1ξ

[

λ∗
1(–Lξ – q

√
–ξ ) – L +

q
2
√

–ξ

]

≤ –Ld1eλ∗
1ξ

[
(ξ + 1)eλ∗

1 + (ξ – 1)e–λ∗
1 – 2ξ

]

– qd1eλ∗
1ξ

[√
–(ξ + 1)eλ∗

1 +
√

–(ξ – 1)e–λ∗
1 – 2

√
–ξ

]

+ r1(–Lξ – q
√

–ξ )eλ∗
1ξ + r1Lξeλ∗

1ξ (1 + b1)eλ′ξ

or

c∗
[

λ∗
1(–Lξ – q

√
–ξ ) – L +

q
2
√

–ξ

]

≤ –Ld1
[
(ξ + 1)eλ∗

1 + (ξ – 1)e–λ∗
1 – 2ξ

]

– qd1
[√

–(ξ + 1)eλ∗
1 +

√
–(ξ – 1)e–λ∗

1 – 2
√

–ξ
]

+ r1(–Lξ – q
√

–ξ ) + r1L(1 + b1)ξeλ′ξ .

By the properties of �1(λ, c), the above is true if

c∗
[

q
2
√

–ξ

]

≤ –qd1
[(√

–(ξ + 1) –
√

–ξ
)
eλ∗

1 +
(√

–(ξ – 1) –
√

–ξ
)
e–λ∗

1
]

+ r1Lξ (1 + b1)eλ′ξ

or

q
[

c∗

2
√

–ξ
+ d1

[(√
–(ξ + 1) –

√
–ξ

)
eλ∗

1 +
(√

–(ξ – 1) –
√

–ξ
)
e–λ∗

1
]
]

≤ r1L(1 + b1)ξeλ′ξ .

Since

c∗

2
√

–ξ
+ d1

[(√
–(ξ + 1) –

√
–ξ

)
eλ∗

1 +
(√

–(ξ – 1) –
√

–ξ
)
e–λ∗

1
]

=
c∗

2
√

–ξ
+ d1

[
–1

√
–(ξ + 1) +

√
–ξ

eλ∗
1 +

1
√

–(ξ – 1) +
√

–ξ
e–λ∗

1

]

=
c∗

2
√

–ξ
+ d1

[
–1

2
√

–ξ
eλ∗

1 +
1

2
√

–ξ
e–λ∗

1

]

+ d1

[
–1

√
–(ξ + 1) +

√
–ξ

+
1

2
√

–ξ

]

eλ∗
1 + d1

[
1

√
–(ξ – 1) +

√
–ξ

–
1

2
√

–ξ

]

e–λ∗
1

= d1

[
–1

√
–(ξ + 1) +

√
–ξ

+
1

2
√

–ξ

]

eλ∗
1 + d1

[
1

√
–(ξ – 1) +

√
–ξ

–
1

2
√

–ξ

]

e–λ∗
1

= d1

[ √
–(ξ + 1) –

√
–ξ

2
√

–ξ [
√

–(ξ + 1) +
√

–ξ ]

]

eλ∗
1 + d1

[ √
–ξ –

√
–(ξ – 1)

2
√

–ξ [
√

–(ξ – 1) +
√

–ξ ]

]

e–λ∗
1

=
d1e–λ∗

1

2
√

–ξ [
√

–(ξ – 1) +
√

–ξ ]2
–

d1eλ∗
1

2
√

–ξ [
√

–(ξ + 1) +
√

–ξ ]2

≤ d1[e–λ∗
1 – eλ∗

1 ]
8

(–ξ )–3/2,
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then (2.5) is true if

qd1[eλ∗
1 – e–λ∗

1 ]
8

√
–ξ ≥ r1L(1 + b1)eλ′ξ .

Note that ξ2 < –1, then

q ≥ q3 = sup
ξ<–1

8r1L(1 + b1)eλ′ξ

d1[eλ∗
1 – e–λ∗

1 ]
√

–ξ

implies what we wanted.
(4) When eλc∗

2 ξ – qeηλc∗
2 ξ < 0, (2.6) is clear. If ψ(ξ ) > 0, then

r2ψ(ξ )
[
1 – ψ(ξ ) – b2φ

(
ξ – c∗τ2

)]

= r2ψ(ξ ) – r2ψ(ξ )ψ(ξ ) – r2b2ψ(ξ )φ
(
ξ – c∗τ2

)

≥ r2
(
eλc∗

2 ξ – qeηλc∗
2 ξ

)
– r2e2λ2ξ – r2b2eλ∗

1ξ /2+λc∗
2 ξ .

Then it suffices to verify that

c∗ψ ′(ξ ) = c∗(λc∗
2 eλc∗

2 ξ – qηλ2eηλc∗
2 ξ

)

≤ d2
[
ψ(ξ + 1) + ψ(ξ – 1) – 2ψ(ξ )

]

+ r2
(
eλc∗

2 ξ – qeηλc∗
2 ξ

)
– r2e2λ2ξ – r2b2eλ∗

1ξ /2+λc∗
2 ξ

≤ d2
{[

eλc∗
2 (ξ+1) – qeηλc∗

2 (ξ+1)] +
[
eλc∗

2 (ξ–1) – qeηλc∗
2 (ξ–1)] – 2

(
eλc∗

2 ξ – qeηλc∗
2 ξ

)}

+ r2
(
eλc∗

2 ξ – qeηλc∗
2 ξ

)
– r2e2λ2ξ – r2b2eλ∗

1ξ /2+λc∗
2 ξ ,

which is equivalent to

–q�2
(
c∗,ηλc∗

2
)
eηλc∗

2 ξ ≥ r2e2λ2ξ + r2b2eλ∗
1ξ /2+λc∗

2 ξ .

Clearly, the above is true if

q > q4 =
r2 + r2b2

–�2(c∗,ηλc∗
2 )

+ 1.

Summarizing what we have done, we obtain (2.3)–(2.6) except several points. From
Lemma 2.2, the proof is complete. �

Similar to the proof of Lemma 3.2, we have the following result.

Lemma 3.3 Assume that c∗
1 < c∗

2. Then (2.1) with c = c∗ = c∗
2 has a positive solution

(φ(ξ ),ψ(ξ )) such that limξ→–∞ φ(ξ )

eλc∗
1 ξ

, limξ→–∞ ψ(ξ )
–ξeλ∗

2ξ
are positive.

Further, combining the recipes in Lemmas 3.2–3.3, we obtain the following conclusion.

Lemma 3.4 Assume that c∗
1 = c∗

2. Then (2.1) with c = c∗ has a positive solution (φ(ξ ),ψ(ξ ))
such that limξ→–∞ φ(ξ )

–ξeλ∗
1ξ

, limξ→–∞ ψ(ξ )
–ξeλ∗

2ξ
are positive.
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Lemma 3.5 Assume that (φ(ξ ),ψ(ξ )) is given by one of Lemmas 3.2–3.3. Then it is strictly
positive and satisfies (2.2).

Proof Assume that φ(ξ0) = 0 for some ξ0 ∈R. Then

[D1φ](ξ ) + βφ(ξ ) + r1φ(ξ )
[
1 – φ(ξ ) – b1ψ

(
ξ – c∗τ1

)]
= 0, ξ < ξ0,

and so

φ(ξ ) = 0, ξ < ξ0

by the definition of F , which implies a contradiction since φ(ξ ) ≥ φ(ξ ) > 0 if –ξ is large. By
a similar discussion on ψ(ξ ), we see that

φ(ξ ) > 0, ψ(ξ ) > 0, ξ ∈ R.

By the definition of traveling wave solutions, φ(ξ ) = un(t) satisfies

⎧
⎨

⎩

dun(t)
dt ≥ [D1u]n(x) + r1un(t)[1 – un(t) – b1],

un(0) = φ(n) > 0.
(3.2)

By Lemmas 2.3–2.4,

lim inf
t→∞ u0(t) ≥ 1 – b1 > 0,

which implies that

lim inf
t→∞ u0(t) = lim inf

t→∞ φ
(
c∗t

)
= lim inf

ξ→∞ φ(ξ ) ≥ 1 – b1 > 0.

Similarly, we obtain

lim inf
ξ→∞ ψ(ξ ) ≥ 1 – b2 > 0.

Define

lim inf
ξ→∞ φ(ξ ) = φ∗, lim inf

ξ→∞ ψ(ξ ) = ψ∗,

lim sup
ξ→∞

φ(ξ ) = φ∗, lim sup
ξ→∞

ψ(ξ ) = ψ∗,

then

φ∗ ≤ φ∗, ψ∗ ≤ ψ∗

and

φ∗,ψ∗,φ∗,ψ∗ ∈ (0, 1].
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Applying the dominated convergence theorem in F , the monotonicity implies

1 – φ∗ – b1ψ
∗ ≤ 0,

1 – ψ∗ – b2φ
∗ ≤ 0,

1 – φ∗ – b1ψ∗ ≥ 0,

1 – ψ∗ – b2φ
∗ ≥ 0,

which indicates

(
φ∗ – φ∗

)
+

(
ψ∗ – ψ∗

) ≤ b2
(
φ∗ – φ∗

)
+ b1

(
ψ∗ – ψ∗

)
,

and so

φ∗ = φ∗ = k1,ψ∗ = ψ∗ = k2

by b1, b2 ∈ [0, 1). The proof is complete. �

By what we have done, we have proven the existence of traveling wave solutions. We
now consider the nonexistence of traveling wave solutions.

Lemma 3.6 If c < c∗, then (2.1) does not admit a positive solution satisfying (2.2).

Proof Without loss of generality, we assume that c∗ = c∗
1. Were the statement false, then

for some fixed c < c∗, (2.1) has a positive solution (φ(ξ ),ψ(ξ )) satisfying (2.2). It is evident
that

φ(ξ ) > 0, ψ(ξ ) > 0, ξ ∈ R.

Select ε > 0 such that

inf
λ>0

d1[eλ + e–λ – 2] + r1(1 – 2ε)
λ

> c.

Let ξ ′ such that

φ(ξ ) + b1ψ(ξ – cτ1) < ε, ξ ≤ ξ ′,

where ξ ′ is admissible since

lim
ξ→–∞

(
φ(ξ ),ψ(ξ )

)
= (0, 0).

Define

	 = inf
ξ>ξ ′ φ(ξ ),

then 	 > 0 by the positivity of φ(ξ ) and (2.2).
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Therefore, φ(ξ ) satisfies

cφ′(ξ ) ≥ [D1φ](ξ ) + r1φ(ξ )
[
1 – ε – Mφ(ξ )

]

with

M = sup
ξ>ξ ′

φ(ξ ) + b1ψ(ξ – cτ2)
	

≤ 1 + b1

	
.

By the definition of φ(ξ ) = un(t), we see that

⎧
⎨

⎩

dun(t)
dt ≥ [D1u]n(x) + r1un(t)[1 – ε – Mun(t)],

un(0) = φ(n) > 0.

From Lemma 2.4, we have

lim inf
t→∞ inf

|n|≤c′t
un(t) ≥ 1 – ε

M
(3.3)

for

c′ = inf
λ>0

d1[eλ + e–λ – 2] + r1(1 – 3ε/2)
λ

.

Let –2n = (c + c′)t, then n → –∞ implies

n + ct → –∞

and limn→∞ un(t) = limξ→–∞ φ(ξ ) = 0, a contradiction occurs between the above and (3.3).
The proof is complete. �

4 Conclusion and discussion
Minimal wave speed of traveling wave solution of evolutionary systems is very visual in
characterizing some natural phenomena, e.g., modeling the diffusion of epidemic [11, 12].
In Lin and Li [20], the authors proved the existence of positive solutions of (2.1)–(2.2) if
the wave speed is larger than c∗. In this paper, we obtain the existence and nonexistence
of (2.1)–(2.2) if c ≤ c∗, which implies that c∗ is the minimal wave speed and completes
the earlier results. In particular, when the wave speed equals the minimal wave speed,
traveling wave solutions do not exponentially decay, which is different from that in Lin
and Li [20].

Besides the minimal wave speed, spreading speed [2] is also an important threshold. In
some monotone systems, it has been proven that the spreading speed equals the minimal
wave speed [18, 22, 34]. Even for the predator-prey system, a similar conclusion is obtained
[19, 30]. On nonnomotone lattice differential equations, we also obtain a result in Pan [29].
But for coupled systems, it seems to be more difficult, and we shall consider the spreading
speed of such a competitive system in forthcoming papers.
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