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Abstract
In this paper, we study sums of finite products of Chebyshev polynomials of the third
and fourth kinds and obtain Fourier series expansions of functions associated with
them. Then from these Fourier series expansions we will be able to express those
sums of finite products as linear combinations of Bernoulli polynomials and to have
some identities from those expressions.
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1 Introduction and preliminaries
The Chebyshev polynomials Tn(x), Un(x), Vn(x), and Wn(x) of the first, second, third,
and fourth kinds are respectively defined by the recurrence relations as follows (see
[2, 6, 7, 12, 14]):

Tn+2(x) = 2xTn+1(x) – Tn(x) (n ≥ 0), T0(x) = 1, T1(x) = x, (1.1)

Un+2(x) = 2xUn+1(x) – Un(x) (n ≥ 0), U0(x) = 1, U1(x) = 2x, (1.2)

Vn+2(x) = 2xVn+1(x) – Vn(x) (n ≥ 0), V0(x) = 1, V1(x) = 2x – 1, (1.3)

Wn+2(x) = 2xWn+1(x) – Wn(x) (n ≥ 0), W0(x) = 1, W1(x) = 2x + 1. (1.4)

It can be easily seen from (1.1), (1.2), (1.3), and (1.4) that the generating functions for
Tn(x), Un(x), Vn(x), and Wn(x) are respectively given by (see [6, 7, 12])

1 – xt
1 – 2xt + t2 =

∞∑

n=0

Tn(x)tn, (1.5)

1
1 – 2xt + t2 =

∞∑

n=0

U(x)tn, (1.6)

F(t, x) =
1 – t

1 – 2xt + t2 =
∞∑

n=0

Vn(x)tn, (1.7)

G(t, x) =
1 + t

1 – 2xt + t2 =
∞∑

n=0

Wn(x)tn. (1.8)
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The Bernoulli polynomials Bm(x) are given by the generating function

t
et – 1

ext =
∞∑

m=0

Bm(x)
tm

m!
. (1.9)

For any real number x, we let

〈x〉 = x – [x] ∈ [0, 1) (1.10)

denote the fractional part of x, where [x] indicates the greatest integer ≤ x.
We also recall here that
(a) for m ≥ 2,

Bm
(〈x〉) = –m!

∞∑

n=–∞,n�=0

e2π inx

(2π in)m ; (1.11)

(b) for m = 1,

–
∞∑

n=–∞,n�=0

e2π inx

2π in
=

⎧
⎨

⎩
B1(〈x〉), for x ∈R – Z,

0, for x ∈ Z.
(1.12)

For any integers m, r with m, r ≥ 1, we set

αm,r(x) =
m∑

l=0

∑

c1+c2+···+cr+1=l

(
r – 1 + m – l

r – 1

)
Vc1 (x) · · ·Vcr+1 (x), (1.13)

where the inner sum runs over all nonnegative integers c1, c2, . . . , cr+1 with c1 + c2 + · · · +
cr+1 = l.

Then we will consider the function αm,r(〈x〉) and derive its Fourier series expansions.
As an immediate corollary to these Fourier series expansions, we will be able to express
αm,r(x) as a linear combination of Bernoulli polynomials Bm(x). We state our result here
as Theorem 1.1.

Theorem 1.1 For any integers m, r with m, r ≥ 1, we let

�m,r =
1
r!

m∑

k=1

(–1)k+1
(

m + 2r + k
2r + 2k

)
(k + r)r2k .

Then we have the identity

m∑

l=0

∑

c1+c2+···+cr+1=l

(
r – 1 + m – l

r – 1

)
Vc1 (x) · · ·Vcr+1 (x)

=
1
2r

m∑

j=0

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj(x). (1.14)

Here (x)r = x(x – 1) · · · (x – r + 1), for r ≥ 1, and (x)0 = 1.
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Also, for any integers m, r with m, r ≥ 1, we put

βm,r(x) =
m∑

l=0

∑

c1+c2+···+cr+1=l

(–1)m–l
(

r – 1 + m – l
r – 1

)
Wc1 (x) · · ·Wcr+1 (x), (1.15)

where the inner sum is over all nonnegative integers c1, c2, . . . , cr+1 with c1 +c2 + · · ·+cr+1 = l.
Then we will consider the function βm,r(〈x〉) and derive its Fourier series expansions.

Again, as a corollary to these, we can express βm,r(x) in terms of Bernoulli polynomials.
Indeed, our result here is as follows.

Theorem 1.2 For any integers m, r with m, r ≥ 1, we let

�m,r =
2m + 2r + 1

r!

m∑

k=1

(–1)k+1 2k

2k + 2r + 1

(
m + 2r + k

2k + 2r

)
(k + r)r .

Then we have the identity

m∑

l=0

∑

c1+c2+···+cr+1=l

(–1)m–l
(

r – 1 + m – l
r – 1

)
Wc1 (x) · · ·Wcr+1 (x)

=
1
2r

m∑

j=0

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj(x). (1.16)

Here we cannot go without saying that neither Vn(x) nor Wn(x) is an Appell polynomial,
whereas all our related results have been only about Appell polynomials (see [1, 8–11]).

We mentioned in the above that, using the Fourier series expansions of αm,r(〈x〉) and
βm,r(〈x〉), we can express αm,r(x) and βm,r(x) as linear combinations of Bernoulli polyno-
mials as stated in Theorem 1.1 and Theorem 1.2.

In addition, we will express αm,r(x) and βm,r(x) as linear combinations of Euler polyno-
mials by using a simple formula (see (4.1), (4.3)).

Finally, as an application of our results, we will derive some interesting identities from
Theorem 1.1 and Theorem 1.2 together with some well-known identities connecting the
four kinds of Chebyshev polynomials (see (5.1)–(5.3)).

It was mentioned in [11] that studying these kinds of sums of finite products of special
polynomials can be well justified by the following example. Let us put

γm(x) =
m–1∑

k=1

1
k(m – k)

Bk(x)Bm–k(x) (m ≥ 2). (1.17)

Then just as in [14] and [16] we can express γm(x) in terms of Bernoulli polynomials
from the Fourier series expansions of γm(〈x〉). Further, some simple modification of this
gives the famous Faber–Pandharipande–Zagier identity (see [4]) and a slightly different
variant of Miki’s identity (see [3, 5, 13, 15]).

Our methods here are simple, whereas others are quite involved. Indeed, Dunne and
Schubert in [3] use the asymptotic expansions of some special polynomials coming from
quantum field theory computations, the work of Gessel in [5] is based on two different
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expressions for the Stirling numbers of the second kind, Miki in [13] utilizes a formula for
the Fermat quotient ap–a

p modulo p2, and Shiratani and Yokoyama in [15] employ p-adic
analysis.

The reader may refer to the papers [1, 8–11] for some related recent results.

2 Fourier series expansions for functions associated with the Chebyshev
polynomials of the third kind

The following lemma, which expresses the sums of products in (1.13) neatly, will play a
crucial role in this section. The corresponding ones for Chebyshev polynomials of the
second kind and of Fibonacci polynomials are respectively stated in [16] and [17].

Lemma 2.1 Let n, r be integers with n ≥ 0, r ≥ 1. Then we have the identity

n∑

l=0

∑

c1+c2+···+cr+1=l

(
r – 1 + n – l

r – 1

)
Vc1 (x) · · ·Vcr+1 (x) =

1
2rr!

V (r)
n+r(x),

where the inner sum runs over all nonnegative integers c1, c2, . . . , cr+1 with c1 + c2 + · · · +
cr+1 = l.

Proof By differentiating (1.7) r times, we have

∂rF(t, x)
∂xr =

(2t)rr!(1 – t)
(1 – 2xt + t2)r+1 , (2.1)

∂rF(t, x)
∂xr =

∞∑

n=r
V (r)

n (x)tn =
∞∑

n=0

V (r)
n+r(x)tn+r . (2.2)

Equating (2.1) and (2.2) gives

2rr!(1 – t)
(1 – 2xt + t2)r+1 =

∞∑

n=0

V (r)
n+r(x)tn. (2.3)

On the other hand, using (1.7)and (2.3) we note that

∞∑

n=0

( ∑

c1+c2+···+cr+1=n
Vc1 (x) · · ·Vcr+1 (x)

)
tn

=

( ∞∑

n=0

Vn(x)tn

)r+1

=
(1 – t)r+1

(1 – 2xt + t2)r+1

=
1

2rr!
(1 – t)r

∞∑

n=0

V (r)
n+r(x)tn. (2.4)
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From (2.4), we obtain

1
2rr!

∞∑

n=0

V (r)
n+r(x)tn

= (1 – t)–r
∞∑

m=0

( ∑

c1+c2+···+cr+1=m
Vc1 (x) · · ·Vcr+1 (x)

)
tm

=
∞∑

m=0

(
r + m – 1

r – 1

)
tm

∞∑

l=0

( ∑

c1+c2+···+cr+1=l

Vc1 (x) · · ·Vcr+1 (x)
)

tl

=
∞∑

n=0

( n∑

l=0

∑

c1+c2+···+cr+1=l

(
r + n – l – 1

r – 1

)
Vc1 (x) · · ·Vcr+1 (x)

)
tn, (2.5)

from which our result follows. �

It is well known that the Chebyshev polynomials of the third kind Vn(x) are given by
(see [6])

Vn(x) = 2F1

(
–n, n + 1;

1
2

;
1 – x

2

)

=
n∑

k=0

(
n + k

2k

)
2k(x – 1)k , (2.6)

where 2F1(a, b; c; z) is the hypergeometric function.
The rth derivative of (2.6) is given by

V (r)
n (x) =

n∑

k=r

(
n + k

2k

)
2k(k)r(x – 1)k–r (0 ≤ r ≤ n). (2.7)

Combining (2.1) and (2.7), we obtain the following lemma.

Lemma 2.2 For integers n, r, with n ≥ 0, r ≥ 1, we have the following identity:

n∑

l=0

∑

c1+c2+···+cr+1=l

(
r – 1 + n – l

r – 1

)
Vc1 (x) · · ·Vcr+1 (x)

=
1
r!

n∑

k=0

(
n + 2r + k

2r + 2k

)
2k(k + r)r(x – 1)k . (2.8)

For integers m, r with m, r ≥ 1, as in (1.13), we let

αm,r(x) =
m∑

l=0

∑

c1+c2+···+cr+1=l

(
r – 1 + m – l

r – 1

)
Vc1 (x) · · ·Vcr+1 (x). (2.9)

Then we will consider the function

αm,r
(〈x〉) =

m∑

l=0

∑

c1+c2+···+cr+1=l

(
r – 1 + m – l

r – 1

)
Vc1

(〈x〉) · · ·Vcr+1

(〈x〉), (2.10)

defined on R, which is periodic with period 1.
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The Fourier series of αm,r(〈x〉) is

∞∑

n=–∞
A(m,r)

n e2π inx, (2.11)

where

A(m,r)
n =

∫ 1

0
αm,r

(〈x〉)e–2π inx dx =
∫ 1

0
αm,r(x)e–2π inx dx. (2.12)

For m, r ≥ 1, we let

�m,r = αm,r(1) – αm,r(0)

=
m∑

l=0

∑

c1+c2+···+cr+1=l

(
r – 1 + m – l

r – 1

)

× (
Vc1 (1) · · ·Vcr+1 (1) – Vc1 (0) · · ·Vcr+1 (0)

)
. (2.13)

Then, from (2.8) and (2.13), we see that

�m,r =
1
r!

m∑

k=1

(–1)k+1
(

m + 2r + k
2r + 2k

)
2k(k + r)r , (2.14)

where we observe that

αm,r(1) =
(

m + 2r
2r

)
. (2.15)

Now, from (2.1), we note the following:

d
dx

αm,r(x) =
d

dx

(
1

2rr!
V (r)

m+r(x)
)

=
1

2rr!
V (r+1)

m+r (x)

= 2(r + 1)αm–1,r+1(x). (2.16)

Thus we have shown that

d
dx

αm,r(x) = 2(r + 1)αm–1,r+1(x). (2.17)

Replacing m by m + 1, r by r – 1, from (2.17) we obtain

d
dx

(
αm+1,r–1(x)

2r

)
= αm,r(x), (2.18)

∫ 1

0
αm,r(x) dx =

1
2r

�m+1,r–1, (2.19)

αm,r(0) = αm,r(1) ⇐⇒ �m,r = 0. (2.20)
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We are now going to determine the Fourier coefficients A(m,r)
n .

Case 1: n �= 0.

A(m,r)
n =

∫ 1

0
αm,r(x)e–2π inx dx

= –
1

2π in
[
αm,r(x)e–2π inx]1

0 +
1

2π in

∫ 1

0

(
d

dx
αm,r(x)

)
e–2π inx dx

= –
1

2π in
(
αm,r(1) – αm,r(0)

)
+

2(r + 1)
2π in

∫ 1

0
αm–1,r+1(x)e–2π inx dx

=
2(r + 1)

2π in
A(m–1,r+1)

n –
1

2π in
�m,r

=
2(r + 1)

2π in

(
2(r + 2)

2π in
A(m–2,r+2)

n –
1

2π in
�m–1,r+1

)
–

1
2π in

�m,r

=
22(r + 2)2

(2π in)2 A(m–2,r+2)
n –

2∑

j=1

2j–1(r + j – 1)j–1

(2π in)j �m–j+1,r+j–1

= · · ·

=
2m(r + m)m

(2π in)m A(0,r+m)
n –

m∑

j=1

2j–1(r + j – 1)j–1

(2π in)j �m–j+1,r+j–1

= –
m∑

j=1

2j–1(r + j – 1)j–1

(2π in)j �m–j+1,r+j–1

= –
1
2r

m∑

j=1

2j(r + j – 1)j

(2π in)j �m–j+1,r+j–1. (2.21)

Case 2: n = 0.

A(m,r)
0 =

∫ 1

0
αm,r(x) dx =

1
2r

�m+1,r–1. (2.22)

From (1.11), (1.12), (2.21), and (2.22), we get the Fourier series of αm,r(〈x〉) as follows:

1
2r

�m+1,r–1 –
∞∑

n=–∞,n�=0

(
1
2r

m∑

j=1

2j(r + j – 1)j

(2π in)j �m–j+1,r+j–1

)
e2π inx

=
1
2r

�m+1,r–1 +
1
2r

m∑

j=1

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1

×
(

–j!
∞∑

n=–∞,n�=0

e2π inx

(2π in)j

)

=
1
2r

�m+1,r–1 +
1
2r

m∑

j=2

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(〈x〉)

+ �m,r ×
⎧
⎨

⎩
B1(〈x〉), for x ∈ R – Z,

0, for x ∈ Z
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=
1
2r

m∑

j=0,j �=1

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(〈x〉)

+ �m,r ×
⎧
⎨

⎩
B1(〈x〉), for x ∈ R – Z,

0, for x ∈ Z.
(2.23)

αm,r(〈x〉) (m, r ≥ 1) is piecewise C∞. Moreover, αm,r(〈x〉) is continuous for those positive
integers m, r with �m,r = 0, and discontinuous with jump discontinuities at integers for
those positive integers m, r with �m,r �= 0. Thus, for �m,r = 0, the Fourier series of αm,r(〈x〉)
converges uniformly to αm,r(〈x〉). Whereas, for �m,r �= 0, the Fourier series of αm,r(〈x〉)
converges pointwise to αm,r(〈x〉), for x ∈ R – Z, and converges to

1
2
(
αm,r(0) + αm,r(1)

)
= αm,r(1) –

1
2
�m,r

=
(

m + 2r
2r

)
–

1
2
�m,r , for x ∈ Z (see (2.15)). (2.24)

From these observations, together with (2.23) and (2.24), we obtain the next two theo-
rems.

Theorem 2.3 For any integers m, r with m, r ≥ 1, we let

�m,r =
1
r!

m∑

k=1

(–1)k+1
(

m + 2r + k
2r + 2k

)
2k(k + r)r .

Assume that �m,r = 0 for some positive integers m, r. Then we have the following.
(a)

∑m
l=0

∑
c1+c2+···+cr+1=l

(r–1+m–l
r–1

)
Vc1 (〈x〉) · · ·Vcr+1 (〈x〉) has the Fourier series expansion

m∑

l=0

∑

c1+c2+···+cr+1=l

(
r – 1 + m – l

r – 1

)
Vc1

(〈x〉) · · ·Vcr+1

(〈x〉)

=
1
2r

�m+1,r–1 –
∞∑

n=–∞,n�=0

(
1
2r

m∑

j=1

2j(r + j – 1)j

(2π in)j �m–j+1,r+j–1

)
e2π inx, (2.25)

for all x ∈R, where the convergence is uniform.
(b)

m∑

l=0

∑

c1+c2+···+cr+1=l

(
r – 1 + m – l

r – 1

)
Vc1

(〈x〉) · · ·Vcr+1

(〈x〉)

=
1
2r

m∑

j=0,j �=1

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(〈x〉) (2.26)

for all x in R.

Theorem 2.4 For any integers m, r with m, r ≥ 1, we let

�m,r =
1
r!

m∑

k=1

(–1)k+1
(

m + 2r + k
2r + 2k

)
2k(k + r)r .
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Assume that �m,r �= 0 for some positive integers m, r. Then we have the following.
(a)

1
2r

�m+1,r–1 –
∞∑

n=–∞,n�=0

(
1
2r

m∑

j=1

2j(r + j – 1)j

(2π in)j �m–j+1,r+j–1

)
e2π inx

=

⎧
⎨

⎩

∑m
l=0

∑
c1+c2+···+cr+1=l

(r–1+m–l
r–1

)
Vc1 (〈x〉) · · ·Vcr+1 (〈x〉), for x /∈ Z,

(m+2r
2r

)
– 1

2�m,r , for x ∈ Z.
(2.27)

(b)

1
2r

m∑

j=0

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(〈x〉)

=
m∑

l=0

∑

c1+c2+···+cr+1=l

(
r – 1 + m – l

r – 1

)
Vc1

(〈x〉) · · ·Vcr+1

(〈x〉),

for x ∈R – Z;

1
2r

m∑

j=0,j �=1

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(〈x〉)

=
(

m + 2r
2r

)
–

1
2
�m,r , for x ∈ Z.

(2.28)

Finally, we observe that, from Theorems 2.3 and 2.4, we immediately obtain the result
in Theorem 1.1 expressing αm,r(x) in terms of Bernoulli polynomials.

3 Fourier series expansions for functions associated with the Chebyshev
polynomials of the fourth kind

Here we will omit the details for the results in this section, as all of them can be obtained
analogously to the previous section. We start with the following important lemma.

Lemma 3.1 Let n, r be integers with n ≥ 0, r ≥ 1. Then we have the following identity:

n∑

l=0

∑

c1+c2+···+cr+1=l

(–1)n–l
(

r – 1 + n – l
r – 1

)
Wc1 (x) · · ·Wcr+1 (x) =

1
2rr!

W (r)
n+r(x),

where the inner sum runs over all nonnegative integers c1, c2, . . . , cr+1 with c1 + c2 + · · · +
cr+1 = l.

As is well known, the Chebyshev polynomials of the fourth kind Wn(x) are explicitly
given by (see [6])

Wn(x) = (2n + 1)2F1

(
–n, n + 1;

3
2

;
1 – x

2

)

= (2n + 1)
n∑

k=0

2k

2k + 1

(
n + k

2k

)
(x – 1)k , (3.1)

where 2F1(a, b; c; z) is the hypergeometric function.
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The rth derivative of (3.1) is given by

W (r)
n (x) = (2n + 1)

n∑

k=r

2k

2k + 1

(
n + k

2k

)
(k)r(x – 1)k–r (0 ≤ r ≤ n). (3.2)

Combining (3.1) and (3.2) yields the following lemma.

Lemma 3.2 For integers n, r with n, r ≥ 1, we have the following identity:

n∑

l=0

∑

c1+c2+···+cr+1=l

(–1)n–l
(

r – 1 + n – l
r – 1

)
Wc1 (x) · · ·Wcr+1 (x)

=
1
r!

(2n + 2r + 1)
n∑

k=0

2k

2k + 2r + 1

(
n + 2r + k

2k + 2r

)
(k + r)r(x – 1)k . (3.3)

As in (1.15), for m, r ≥ 1, we let

βm,r(x) =
m∑

l=0

∑

c1+c2+···+cr+1=l

(–1)m–l
(

r – 1 + m – l
r – 1

)
Wc1 (x) · · ·Wcr+1 (x). (3.4)

Then the Fourier series of βm,r(〈x〉) is

∞∑

n=–∞
B(m,r)

n e2π inx, (3.5)

where

B(m,r)
n =

∫ 1

0
βm,r

(〈x〉)e–2π inx dx =
∫ 1

0
βm,r(x)e–2π inx dx. (3.6)

For m, r ≥ 1, we put

�m,r = βm,r(1) – βm,r(0)

=
m∑

l=0

∑

c1+c2+···+cr+1=l

(–1)m–l
(

r – 1 + m – l
r – 1

)

× (
Wc1 (1) · · ·Wcr+1 (1) – Wc1 (0) · · ·Wcr+1 (0)

)
. (3.7)

Then, from (3.3) and (3.7), we have

�m,r =
2m + 2r + 1

r!

m∑

k=1

(–1)k+1 2k

2k + 2r + 1

(
m + 2r + k

2k + 2r

)
(k + r)r , (3.8)

where we note that

βm,r(1) =
2m + 2r + 1

2r + 1

(
m + 2r

2r

)
. (3.9)
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From (3.1), we can deduce the following:

d
dx

βm,r(x) = 2(r + 1)βm–1,r+1(x), (3.10)

d
dx

(
βm+1,r–1(x)

2r

)
= βm,r(x), (3.11)

∫ 1

0
βm,r(x) dx =

1
2r

�m+1,r–1, (3.12)

βm,r(0) = βm,r(1) ⇐⇒ �m,r = 0. (3.13)

The Fourier series expansion of βm,r(〈x〉) is as follows:

1
2r

�m+1,r–1 –
∞∑

n=–∞,n�=0

(
1
2r

m∑

j=1

2j(r + j – 1)j

(2π in)j �m–j+1,r+j–1

)
e2π inx

=
1
2r

m∑

j=0,j �=1

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(〈x〉)

+ �m,r ×
⎧
⎨

⎩
B1(〈x〉), for x ∈R – Z,

0, for x ∈ Z.
(3.14)

We also observe that

1
2
(
βm,r(0) + βm,r(1)

)
= βm,r(1) –

1
2
�m,r

=
2m + 2r + 1

2r + 1

(
m + 2r

2r

)
–

1
2
�m,r . (3.15)

Now, the next two theorems follow from (3.14) and (3.15).

Theorem 3.3 For any integers m, r with m, r ≥ 1, we let

�m,r =
2m + 2r + 1

r!

m∑

k=1

(–1)k+1 2k

2k + 2r + 1

(
m + 2r + k

2k + 2r

)
(k + r)r .

Assume that �m,r = 0 for some positive integers m, r. Then we have the following.
(a)

∑m
l=0

∑
c1+c2+···+cr+1=l(–1)m–l(r–1+m–l

r–1
)
Wc1 (〈x〉) · · ·Wcr+1 (〈x〉) has the Fourier series

expansion

m∑

l=0

∑

c1+c2+···+cr+1=l

(–1)m–l
(

r – 1 + m – l
r – 1

)
Wc1

(〈x〉) · · ·Wcr+1

(〈x〉)

=
1
2r

�m+1,r–1 –
∞∑

n=–∞,n�=0

(
1
2r

m∑

j=1

2j(r + j – 1)j

(2π in)j �m–j+1,r+j–1

)
e2π inx, (3.16)

for all x ∈R, where the convergence is uniform.
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(b)

m∑

l=0

∑

c1+c2+···+cr+1=l

(–1)m–l
(

r – 1 + m – l
r – 1

)
Wc1

(〈x〉) · · ·Wcr+1

(〈x〉)

=
1
2r

m∑

j=0,j �=1

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(〈x〉) (3.17)

for all x in R.

Theorem 3.4 For any integers m, r with m, r ≥ 1, we let

�m,r =
2m + 2r + 1

r!

m∑

k=1

(–1)k+1 2k

2k + 2r + 1

(
m + 2r + k

2k + 2r

)
(k + r)r .

Assume that �m,r �= 0 for some positive integers m, r. Then we have the following:
(a)

1
2r

�m+1,r–1 –
∞∑

n=–∞,n�=0

(
1
2r

m∑

j=1

2j(r + j – 1)j

(2π in)j �m–j+1,r+j–1

)
e2π inx

=

⎧
⎪⎪⎨

⎪⎪⎩

∑m
l=0

∑
c1+c2+···+cr+1=l(–1)m–l(r–1+m–l

r–1
)
Wc1 (〈x〉) · · ·Wcr+1 (〈x〉),

for x ∈R – Z,
2m+2r+1

2r+1
(m+2r

2r
)

– 1
2�m,r , for x ∈ Z.

(3.18)

(b)

1
2r

m∑

j=0

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(〈x〉)

=
m∑

l=0

∑

c1+c2+···+cr+1=l

(–1)m–l
(

r – 1 + m – l
r – 1

)
Wc1

(〈x〉) · · ·Wcr+1

(〈x〉),

for x ∈R – Z; (3.19)

1
2r

m∑

j=0,j �=1

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(〈x〉)

=
2m + 2r + 1

2r + 1

(
m + 2r

2r

)
–

1
2
�m,r , for x ∈ Z.

Now, as an immediate corollary to Theorems 3.3 and 3.4, we get the stated result in
Theorem 1.2 expressing βm,r(x) in terms of Bernoulli polynomials.

4 Expressions in terms of Euler polynomials
Let p(x) ∈C[x] be a polynomial of degree m. Then it is known that

p(x) =
m∑

k=0

bkEk(x), (4.1)
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where Ek(x) are the Euler polynomials given by

2
et + 1

ext =
∞∑

k=0

Ek(x)
tk

k!
, (4.2)

and

bk =
1

2k!
(
p(k)(1) + p(k)(0)

)
, k = 0, 1, . . . , m. (4.3)

Applying (4.1) and (4.3) to p(x) = αm,r(x), from (2.17) we have

α(k)
m,r(x) = 2k(r + k)kαm–k,r+k(x). (4.4)

Hence, from (4.4) we see that

bk =
1

2k!
(
α(k)

m,r(1) + α(k)
m,r(0)

)

= 2k–1
(

r + k
r

)(
αm–k,r+k(1) + αm–k,r+k(0)

)

= 2k–1
(

r + k
r

)(
2αm–k,r+k(1) – �m–k,r+k

)
. (4.5)

Now, we note from (2.15) that

αm–k,r+k(1) =
(

m + 2r + k
2r + 2k

)
. (4.6)

Combining (4.5) and (4.6), we finally obtain

bk = 2k–1
(

r + k
r

)(
2
(

m + 2r + k
2r + 2k

)
– �m–k,r+k

)
. (4.7)

Thus we have the following theorem from (4.1) and (4.7).

Theorem 4.1 For any integers m, r with m, r ≥ 1, we have the following:

m∑

l=0

∑

c1+c2+···+cr+1=l

(
r – 1 + m – l

r – 1

)
Vc1 (x) · · ·Vcr+1 (x)

=
m∑

k=0

2k–1
(

r + k
r

)(
2
(

m + 2r + k
2r + 2k

)
– �m–k,r+k

)
Ek(x), (4.8)

where �m,r is given by (2.14).

The next theorem follows analogously to the previous discussion and hence the details
will be left to the reader.
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Theorem 4.2 For any integers m, r with m, r ≥ 1, we have the following:

m∑

l=0

∑

c1+c2+···+cr+1=l

(–1)m–l
(

r – 1 + m – l
r – 1

)
Wc1 (x) · · ·Wcr+1 (x)

=
m∑

k=0

2k–1
(

r + k
r

)(
2(2m + 2r + 1)

2r + 2k + 1

(
m + 2r + k

2r + 2k

)
– �m–k,r+k

)
Ek(x), (4.9)

where �m,r is given by (3.8).

5 Applications
Let Tn(x), Un(x) (n ≥ 0) be the Chebyshev polynomials of the first kind and of the second
kind respectively given by (1.1) or (1.5), and (1.2) or (1.6). The statement in the following
lemma is from equations (1.2) and (1.3) of [12].

Lemma 5.1 Let u = [ 1
2 (1 + x)] 1

2 . Then we have the following identities:

Wn(x) = (–1)nVn(–x), (5.1)

Vn(x) = u–1T2n+1(u), (5.2)

Wn(x) = U2n(u). (5.3)

From (1.14) and (5.2) and with u as in Lemma 5.1, we have

m∑

l=0

∑

c1+c2+···+cr+1=l

(
r – 1 + m – l

r – 1

)
T2c1+1(u) · · ·T2cr+1+1(u)

=
1
2r

ur+1
m∑

j=0

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj(x). (5.4)

In particular, for x = 0, (5.4) yields

m∑

l=0

∑

c1+c2+···+cr+1=l

(
r – 1 + m – l

r – 1

)
T2c1+1

(
1√
2

)
· · ·T2cr+1+1

(
1√
2

)

=
1

2 r+3
2 r

m∑

j=0

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj. (5.5)

On the other hand, from (1.16) and (5.3) and with u as in Lemma 5.1, we get

m∑

l=0

∑

c1+c2+···+cr+1=l

(–1)m–1
(

r – 1 + m – l
r – 1

)
U2c1 (u) · · ·U2cr+1 (u)

=
1
2r

m∑

j=1

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj(x). (5.6)
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Now, letting x = 0 in (5.6) gives

m∑

l=0

∑

c1+c2+···+cr+1=l

(–1)m–1
(

r – 1 + m – l
r – 1

)
U2c1

(
1√
2

)
· · ·U2cr+1

(
1√
2

)

=
1
2r

m∑

j=1

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj. (5.7)

Finally, from (1.14), (1.16), and (5.1), we obtain

m∑

l=0

∑

c1+c2+···+cr+1=l

(–1)l
(

r – 1 + m – l
r – 1

)
Wc1 (x) · · ·Wcr+1 (x)

=
1
2r

m∑

j=0

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj(–x)

=
1
2r

(–1)m
m∑

j=0

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj(x). (5.8)

In particular, when x = 0, (5.8) gives

m∑

j=0

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

= (–1)m
m∑

j=0

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj. (5.9)

In addition, from (5.8) and using the well-known fact that Bj(–x) = (–1)j(Bj(x) + jxj–1),
we have

m∑

j=1

(–2)jj
(

r + j – 1
r – 1

)
�m–j+1,r+j–1xj–1

= (–1)m
m–1∑

j=0

2j
(

r + j – 1
r – 1

)(
�m–j+1,r+j–1 + (–1)m–j+1�m–j+1,r+j–1

)
Bj(x), (5.10)

where we observed that

�1,r+m–1 – �1,r+m–1 = 0. (5.11)

6 Results and discussion
Let αm,r(x), βm,r(x) denote the following sums of finite products given by

αm,r(x) =
m∑

l=0

∑

c1+c2+···+cr+1=l

(
r – 1 + m – l

r – 1

)
Vc1 (x) · · ·Vcr+1 (x),

βm,r(x) =
m∑

l=0

∑

c1+c2+···+cr+1=l

(–1)m–l
(

r – 1 + m – l
r – 1

)
Wc1 (x) · · ·Wcr+1 (x),

(6.1)
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where Vn(x), Wn(x) (n ≥ 0) are respectively the Chebyshev polynomials of the third kind
and of the fourth kind. Then we considered the functions αm,r(〈x〉), βm,r(〈x〉) which are
obtained by extending by periodicity 1 from αm,r(x), βm,r(x) on [0, 1). We obtained the
Fourier series expansions of αm,r(〈x〉), βm,r(〈x〉), and expressed αm,r(x), βm,r(x) as linear
combinations of the usual Bernoulli polynomials. Moreover, we expressed αm,r(x), βm,r(x)
in terms of the usual Euler polynomials and derived several identities involving the four
kinds of Chebyshev polynomials. We expect that we can get similar results for some other
orthogonal polynomials.

7 Conclusion
In this paper, we studied sums of finite products of Chebyshev polynomials of the third
kind and of the fourth kind. In recent years, we have obtained similar results for many
other special polynomials. However, all of them have been the Appell polynomials,
whereas Chebyshev polynomials are the classical orthogonal polynomials. Studying these
kinds of sums of finite products of special polynomials can be well justified by the follow-
ing example. Let us put

γm(x) =
m–1∑

k=1

1
k(m – k)

Bk(x)Bm–k(x) (m ≥ 2). (7.1)

Then we can express γm(x) in terms of Bernoulli polynomials from the Fourier series ex-
pansions of γm(〈x〉), just as we did these for αm,r(x), βm,r(x). Further, some simple modi-
fication of this gives us the famous Faber–Pandharipande–Zagier identity and a slightly
different variant of Miki’s identity. We note here that all the other known derivations of
Faber–Pandharipande–Zagier identity and Miki’s identity are quite involved. But our ap-
proach to (7.1) via Fourier series is elementary but powerful enough to get many results.
We expect that we can get similar results for some other orthogonal polynomials.

Acknowledgements
The authors would like to express their sincere gratitude to the editor and referees, who gave us valuable comments to
improve this paper. The first author’s work in this paper was conducted during the sabbatical year of Kwangwoon
University in 2018.

Funding
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government
(MEST) (No. 2017R1E1A1A03070882).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Author details
1Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin, China. 2Department of
Mathematics, Kwangwoon University, Seoul, Republic of Korea. 3Department of Mathematics, Sogang University, Seoul,
Republic of Korea. 4Hanrimwon, Kwangwoon University, Seoul, Republic of Korea. 5Department of Mathematics
Education and ERI, Gyeongsang National University, Jinju, Republic of Korea.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 May 2018 Accepted: 31 July 2018



Kim et al. Advances in Difference Equations  (2018) 2018:283 Page 17 of 17

References
1. Agarwal, R.P., Kim, D.S., Kim, T., Kwon, J.: Sums of finite products of Bernoulli functions. Adv. Differ. Equ. 2017, 237

(2017)
2. Doha, E.H., Abd-Elhameed, W.M., Alsuyuti, M.M.: On using third and fourth kinds Chebyshev polynomials for solving

the integrated forms of high odd-order linear boundary value problems. J. Egypt. Math. Soc. 23, 397–405 (2015)
3. Dunne, G.V., Schubert, C.: Bernoulli number identities from quantum field theory and topological string theory.

Commun. Number Theory Phys. 7(2), 225–249 (2013)
4. Faber, C., Pandharipande, R.: Hodge integrals and Gromov–Witten theory. Invent. Math. 139(1), 173–199 (2000)
5. Gessel, I.M.: On Miki’s identity for Bernoulli numbers. J. Number Theory 110(1), 75–82 (2005)
6. Kim, D.S., Dolgy, D.V., Kim, T., Rim, S.-H.: Identities involving Bernoulli and Euler polynomials arising from Chebyshev

polynomials. Proc. Jangjeon Math. Soc. 15(4), 361–370 (2012)
7. Kim, D.S., Kim, T., Lee, S.-H.: Some identities for Bernoulli polynomials involving Chebyshev polynomials. J. Comput.

Anal. Appl. 16(1), 172–180 (2014)
8. Kim, T., Kim, D.S., Jang, G.-W., Kwon, J.: Sums of finite products of Euler functions. In: Advances in Real and Complex

Analysis with Applications. Trends in Mathematics, pp. 243–260. Springer, Berlin (2017)
9. Kim, T., Kim, D.S., Jang, G.-W., Kwon, J.: Fourier series of finite products of Bernoulli and Genocchi functions. J. Inequal.

Appl. 2017, 157 (2017)
10. Kim, T., Kim, D.S., Jang, L.-C., Jang, G.-W.: Sums of finite products of Genocchi functions. Adv. Differ. Equ. 2017, 268

(2017)
11. Kim, T., Kim, D.S., Jang, L.-C., Jang, G.-W.: Fourier series of sums of products of Bernoulli functions and their

applications. J. Nonlinear Sci. Appl. 10, 2798–2815 (2017)
12. Mason, J.C.: Chebyshev polynomials of the second, third and fourth kinds in approximation, indefinite integration,

and integral transforms. J. Comput. Appl. Math. 49, 169–178 (1993)
13. Miki, H.: A relation between Bernoulli numbers. J. Number Theory 10(3), 297–302 (1978)
14. Prodinger, H.: Representing derivatives of Chebyshev polynomials by Chebyshev polynomials and related questions.

Open Math. 15, 1156–1160 (2017)
15. Shiratani, K., Yokoyama, S.: An application of p-adic convolutions. Mem. Fac. Sci., Kyushu Univ., Ser. A, Math. 36(1),

73–83 (1982)
16. Yuan, Y., Zhang, W.: Some identities involving the Fibonacci polynomials. Fibonacci Q. 40, 314–318 (2002)
17. Zhang, W.: Some identities involving the Fibonacci numbers and Lucas numbers. Fibonacci Q. 42, 149–154 (2004)


	Sums of ﬁnite products of Chebyshev polynomials of the third and fourth kinds
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Fourier series expansions for functions associated with the Chebyshev polynomials of the third kind
	Fourier series expansions for functions associated with the Chebyshev polynomials of the fourth kind
	Expressions in terms of Euler polynomials
	Applications
	Results and discussion
	Conclusion
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


