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Abstract
Discrete N-fold Darboux transformation (DT) is used to derive new bright and dark
multi-soliton solutions of two higher-order Toda lattice equations. Propagation and
elastic interaction structures of such soliton solutions are shown graphically. The
details of their evolutions are studied via numerical simulations. Numerical results
show the accuracy of our numerical scheme and the stable evolutions of such bright
and dark multi-solitons without a noise. To compare the numerical evolution results
with the classical Toda lattice equation, we also investigate the dynamical behaviors
of the multi-soliton solutions for Toda lattice equation via numerical simulations, and
we find that the multi-soliton solutions of Toda lattice equation have better stability
and are more robust against a big noise than its two corresponding higher-order
equations. The same small noise has different effect on the evolutions of the
multi-soliton solutions for three different equations in the same hierarchy. The
possible reason is that the higher-order nonlinear terms of the higher-order equation
cause the instability of the wave propagation. The discrete generalized (n,N – n)-fold
DTs are constructed and used to derive some discrete rational solutions of three
equations, and a few mathematical features for such rational solutions are also
discussed. Results might be helpful for understanding the propagation of nonlinear
waves in soliton theory.
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1 Introduction
Recently, the nonlinear lattice equations (NLEs) [1–4], treated as the spatially discrete ana-
logues of the nonlinear partial differential equations (NPDEs) [5–9], have received certain
attention [10–14]. Dynamical behaviors of solitons in the continuous and discrete cases
are described by the NPDEs and NLEs [10], respectively. The NLEs [15–17] can be taken
as the models of some physical phenomena and may be used to describe many physical
situations. For example, the Toda lattice equation is a simple model for a one-dimensional
crystal in solid state physics [11, 12]; the self-dual network equations describe the prop-
agation of electrical signals in a cascade of four-terminal nonlinear LC self-dual circuits
or the wave propagation in a nonlinear, lumped, self-dual ladder type network [13]; the
Ablowitz–Ladik lattice equation can describe the interaction and propagation of optical
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pulses in a nonlinear waveguide array [14]; the Volterra lattice system is in connection
with the spectrum of Langmuir wave in plasma dynamics [10]. Searching for explicit ex-
act solutions of NLEs is a very significant work. Exact solutions can make people under-
stand deeply the physical mechanism of the natural phenomena described by NLEs. Some
methods for constructing explicit exact solutions of NLEs, such as the inverse scattering
method [1–4, 18, 19], Hirota method [13, 20], Bäcklund transformation [21–23], and Dar-
boux transformation (DT) [24–41], have been developed. Among them, the DT based on
the Lax pair is an algebraic method which is an effective tool to solve the Lax integrable
NLEs. The main idea of the DT method is to keep the linear eigenvalue problems of the in-
tegrable NLEs invariant. In fact, the Darboux transformation exhibits different forms such
as a general dressing procedure (see, e.g., Ref. [26]), the iterated DT with the iteration op-
erator form (see, e.g., Ref. [24, 25]), the iterated DT with the iterated Darboux matrix (see,
e.g., Refs. [27–30]), the DT with the first-order Darboux matrix (see, e.g., Refs. [31–33]),
and the DT with the N-order Darboux matrix whose elements are the polynomials of the
spectral parameters (see, e.g., Refs. [34–41]), etc. Theoretically, the solution obtained by
a single DT (i.e., 1-fold DT which is the N-fold DT when N = 1) can be taken as the new
starting point from which to derive another solution by making a DT again, hence a se-
ries of explicit solutions can be generated by iteration step by step [35–37]. However, it is
very difficult to carry out the iterative process. Compared with the iterated DT, the N-fold
DT technique with the N-order Darboux matrix is an effective tool to solve the Lax inte-
grable NLEs and its main advantage is to give multi-soliton solutions without complicated
iterative process [35–39].

For the NLEs, Toda lattice equation is one of the well-known Lax integrable NLEs which
well describes the soliton physical phenomena such as nonlinear wave propagation and
nonergodic phenomena in Fermi–Pasta–Ulam recurrence [11, 12]. The main aim of the
present paper is a detailed study of bright and dark multi-soliton solutions and their dy-
namical behaviors of two higher-order NLEs associated with the following Toda lattice
equation [42]:

⎧
⎨

⎩

un,t = vn+1 – vn,

vn,t = vn(un – un–1),
(1)

where un = u(n, t), vn = v(n, t) are the functions of a discrete variable n and the time variable
t and un,t = dun

dt , vn,t = dvn
dt . Equation (1) is an important discrete Lax integrable NLE and it

is connected with the following discrete linear spectral problem [42]:

Eψn = Mnψn, Mn =

(
0 0
0 1

)

λ +

(
0 1

–vn –un

)

, (2)

ψn,t = Unψn, Un =

(
–1 0
0 0

)

λ +

(
un–1 + 1 1

–vn 1

)

. (3)

Equation (1) can be taken as the discrete approximation of the Korteweg–de Vries (KdV)
equation in fluids and also has served as a useful guide in the studies on nonlinear waves
[10, 43]. Under the transformations un = –Qn,t , vn = eQn–1–Qn , Eq. (1) can be transformed
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to our familiar classic form

Qn,tt = eQn–1–Qn – eQn–Qn+1 , (4)

where Qn = Q(n, t) is the displacement of the nth particle from its equilibrium position
[12]. To understand many nonlinear, nonergodic phenomena such as Fermi–Pasta–Ulam
recurrence, Toda proposed a one-dimensional nonlinear lattice model with neighboring
particles interacting through an exponential potential function, and the single soliton so-
lution and the two-soliton solution have been obtained [12, 44]. In Ref. [19], the general
N-soliton formula is derived by use of an inverse-scattering method, and constants of the
motion are expressed in terms of the scattering data. In Ref. [21], Bäcklund transforma-
tion, superposition formula, and multi-soliton solutions have been constructed for Eq. (4)
with some discussion of its generalizations. In Refs. [33, 35], one-soliton solution and the
even-order soliton solutions for Eq. (1) have been obtained via a single DT and N-fold
DT, respectively. In Ref. [45], the existence of motion integrals is proved by a different
method which shows the Toda lattice equation to be a finite-dimensional analog of the
Korteweg–de Vries partial differential equation. In Ref. [46], some new kinds of soliton-
like solutions have been given by a detailed study of limits of N-soliton solutions of the
Toda lattice as N tends to infinity. In Ref. [47], an explicit solution formula in terms of
determinants for Eq. (4) has been derived with operator methods. In Ref. [48], some new
generalized soliton solutions for the Toda lattice equations based on the invariance of Gib-
bon and Tabor’s equation under the fractional linear transformation have been given. In
Ref. [49], some quasi-periodic and periodic solutions in terms of hyperelliptic σ functions
for arbitrary genus have been given by Toda’s original approach. In Ref. [50], the soliton
solution in the Wronskian form for Eq. (4) has been obtained. In Ref. [51], some approxi-
mate soliton solutions around an exact soliton solution of Eq. (4) have been given. In Refs.
[52, 53], some complexiton solutions and rational solutions in Casoratian form of Eq. (4)
have been given. In Ref. [54], a kind of explicit quasi-periodic solution and its limit have
been derived. In Ref. [42], a Toda lattice hierarchy has been put forward from a discrete
matrix spectral problem, in which Eq. (1) is the first member of this hierarchy, while the
second and third equations in this hierarchy are listed as follows [42]:

⎧
⎨

⎩

un,t = vn+1(un + un+1) – vn(un + un–1),

vn,t = vn(u2
n – u2

n–1 – vn–1 + vn+1),
(5)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un,t = vn(vn–1 + vn + u2
n–1 + unun–1 + u2

n)

– vn+1(vn+1 + vn+2 + u2
n+1 + unun+1 + u2

n),

vn,t = vn(u3
n–1 + un–1vn + 2un–1vn–1 + un–2vn–1

– un+1vn+1 – 2unvn+1 – unvn – u3
n),

(6)

where un = u(n, t) and vn = v(n, t) are the functions of the discrete variable n and time
variable t, un,t = dun

dt , vn,t = dvn
dt . Here, we call Eqs. (5) and (6) the higher-order Toda lattice

equations relative to Toda lattice equation. Just like the higher-order equations of KdV
hierarchy can also describe the motion of nonlinear shallow water waves [55], we believe
that Eqs. (5) and (6) may be used to describe some physical phenomena for nonlinear
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waves because they belong to the same hierarchy of Toda lattice equation. According to
Refs. [42, 43], Eqs. (5) and (6) have the same space part of the discrete linear spectral
problem (i.e., Lax pair) as Eq. (1), and their corresponding time parts are listed as follows:

ψn,t = Wnψn,

Wn =

(
–1 0
0 0

)

λ2 +

(
1 1

–vnλ 1

)

λ +

(
u2

n–1 + vn–1 un–1

–unvn vn

)

,
(7)

ψn,t = Vnψn,

Vn =

(
1
2 0
0 – 1

2

)

λ3 +

(
0 –1
vn 0

)

λ2 +

(
vn –un–1

unvn –vn

)

λ

+

(
–un–1vn – 2un–1vn–1 – un–2vn–1 – u3

n–1 –vn–1 – vn – u2
n–1

v2
n + vnvn+1 + u2

nvn –un–1vn – unvn

)

.

(8)

The compatibility conditions between (2) and (7) (i.e., Mn,t + MnWn – Wn+1Mn = 0) and
between (2) and (8) (i.e., Mn,t + MnVn – Vn+1Mn = 0) lead to Eqs. (5) and (6), respectively.
In Ref. [42], the Hamiltonian structures of the hierarchy associated with Eqs. (1), (5), and
(6) has been given by a trace identity technique. In Ref. [43], the concrete infinitely many
conservation laws of Eqs. (1) and (5) have been constructed based on their linear spectral
problems. However, as we know, bright and dark multi-soliton solutions, relevant elastic
interactions, and dynamical behaviors for Eqs. (5) and (6) and rational solutions in terms
of determinants for Eqs. (1), (5), and (6) have not been investigated previously.

Different from the previous studies, in this paper, we further investigate Eqs. (5) and
(6) via the discrete N-fold DT technique. The rest of this paper is arranged as follows:
In Sect. 2, a discrete version of the N-fold DT for Eqs. (5) and (6) is constructed based on
their Lax pair. In Sect. 3, discrete bright and dark multi-soliton solutions in terms of deter-
minant of Eq. (5) are derived via the resulting N-fold DT from non-vanishing background,
and the solitonic elastic interactions are analyzed graphically, the dynamical behaviors of
such soliton solutions are investigated via numerical simulations. In Sect. 4, the dynami-
cal behaviors of discrete multi-soliton solutions of Eq. (6) are investigated via numerical
simulations. In Sect. 5, the dynamical behaviors of multi-soliton solutions of Eq. (1) are
investigated via numerical simulations. In Sect. 6, based on the N-fold DT in Sect. 2, we
propose a discrete version of the generalized (n, N – n)-fold DT for Eqs. (1), (5), and (6). In
Sect. 7, some discrete rational solutions in terms of determinants of the first equation are
given by means of the generalized (1, N – 1)-fold DT, and a few mathematical features are
discussed for such rational solutions. Finally, we conclude this paper in the final section.

2 Discrete N-fold Darboux transformation
In this section, we will construct the discrete N-fold DT of Eqs. (5) and (6). We introduce
the following gauge transformation:

ψ̃n = Tnψn, (9)
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where ψ̃n is required to satisfy Eqs. (2), (7), and (8) with Mn, Wn, Vn replaced by M̃n, W̃n,
Ṽn, i.e.,

Eψ̃n = M̃nψ̃n, M̃n = Tn+1MnTn
–1, (10)

ψ̃n,t = W̃nψ̃n, W̃n = (Tn,t + TnWn)Tn
–1, (11)

ψ̃n,t = Ṽnψ̃n, Ṽn = (Tn,t + TnVn)Tn
–1. (12)

To construct the N-fold DT, M̃n, W̃n, and Ṽn must have the same forms as Mn, Wn, and Vn,
respectively, except replacing the old potentials un, vn with the new ones ũn, ṽn. So, proper
Tn will ensure the correctness of the N-fold DT. Hereby, a special N-order Darboux matrix
Tn is defined as

Tn =

(
an bn

cn dn

)

=

(
λN (1 – b(N–1)

n ) +
∑N–1

j=0 a(j)
n λj ∑N–1

j=0 b(j)
n λj

∑N–1
j=0 c(j)

n λj λN +
∑N–1

j=0 d(j)
n λj

)

, (13)

in which N is a positive integer, a(j)
n , b(j)

n , c(j)
n , and d(j)

n , which are the functions of the variables
n and t, can be determined by the following linear algebraic system:

⎧
⎨

⎩

–b(N–1)
n λN

i +
∑N–1

j=0 a(j)
n λ

j
i +

∑N–1
j=0 b(j)

n δi,nλ
j
i = –λN

i ,
∑N–1

j=0 c(j)
n λ

j
i +

∑N–1
j=0 d(j)

n δi,nλ
j
i = –λN

i δi,n,
(14)

where

δi,n =
ϕ2,n(λi) – riψ2,n(λi)
ϕ1,n(λi) – riψ1,n(λi)

, 1 ≤ i ≤ 2N , (15)

in which ϕn(λi) = (ϕ1,n(λi),ϕ2,n(λi))T and ψn(λi) = (ψ1,n(λi),ψ2,n(λi))T are two essential so-
lutions of (2), (3), (7), and (8), where λ = λi (i = 1, 2, . . . , 2N ), ri (i = 1, 2, . . . , 2N ) are 2N ar-
bitrary real constants. When we choose the 2N different real parameters λi (λi �= λj, i �= j)
so that the determinant of the coefficients for (14) is nonzero, the matrix Tn is determined
by (14) uniquely.

Equation (13) makes clear that detTn is the (2N)th order polynomial of λ and

det Tn(λi) = an(λi)dn(λi) – bn(λi)cn(λi). (16)

Moreover, from (9), (13), and (14), it follows that

an(λi) = –bn(λi)δi,n, cn(λi) = –dn(λi)δi,n. (17)

Hence

det Tn(λi) = 0. (18)

In other words, λi (λi �= 0) (i = 1, 2, . . . , 2N ) are the 2N roots of the det Tn, namely

det Tn =
(
1 – b(N–1)

n
)

2N∏

i=1

(λ – λi). (19)

By using the above facts, we have the following theorem.
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Theorem 1 If the old potential (un, vn) is a solution of Eqs. (5) and (6), then the new po-
tential (̃un, ṽn) with

ũn = un + d(N–1)
n – d(N–1)

n+1 , ṽn =
vn + c(N–1)

n

1 – b(N–1)
n

, (20)

is also a solution of Eqs. (5) and (6), in which

b(N–1)
n =

�b(N–1)
n

�1
, c(N–1)

n =
�c(N–1)

n

�2
, d(N–1)

n =
�d(N–1)

n

�2
, (21)

where

�1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 λ1 · · · λN–1
1 δ1,n λ1δ1,n · · · λN–1

1 δ1,n – λN
1

1 λ2 · · · λN–1
2 δ2,n λ2δ2,n · · · λN–1

2 δ2,n – λN
2

· · · · · · · · · · · · · · · · · · · · · · · ·
1 λ2N · · · λN–1

2N δ2N ,n λ2Nδ2N ,n · · · λN–1
2N δ2N ,n – λN

2N

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

�2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 λ1 · · · λN–1
1 δ1,n λ1δ1,n · · · λN–1

1 δ1,n

1 λ2 · · · λN–1
2 δ2,n λ2δ2,n · · · λN–1

2 δ2,n

· · · · · · · · · · · · · · · · · · · · · · · ·
1 λ2N · · · λN–1

2N δ2N ,n λ2Nδ2N ,n · · · λN–1
2N δ2N ,n

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and �b(N–1)
n is produced from �1 by replacing its (2N)th column with (–λN

1 , –λN
2 , . . . ,

–λN
2N )T , �c(N–1)

n and �d(N–1)
n are produced from �2 by replacing their Nth and (2N)th

columns with (–δ1,nλ
N
1 , –δ2,nλ

N
2 , . . . , –δ2N ,nλ

N
2N )T , respectively, while �d(N)

n+1 can be derived
from �d(N)

n by substituting n + 1 for n. Thus, matrices M̃n, W̃n, and Ṽn in Eqs. (10), (11),
and (12) have the same forms as Mn, Wn, and Vn, respectively, namely

M̃n =

(
0 1

–̃vn λ – ũn

)

, W̃n =

(
–λ2 + λ + ṽn–1 + ũ2

n–1 λ + ũn–1

–̃vn(λ + ũn) λ + ṽn

)

,

Ṽn =

(
1
2 0
0 – 1

2

)

λ3 +

(
0 –1
ṽn 0

)

λ2 +

(
ṽn –ũn–1

ũñvn –̃vn

)

λ

+

(
–ũn–1̃vn – 2̃un–1̃vn–1 – ũn–2̃vn–1 – ũ3

n–1 –̃vn–1 – ṽn – ũ2
n–1

ṽ2
n + ṽñvn+1 + ũ2

ñvn –ũn–1̃vn – ũñvn

)

.

Proof Let T–1
n = T∗

n / det Tn and

F(λ) = Tn+1MnTn
∗ =

(
f11(λ, n) f12(λ, n)
f21(λ, n) f22(λ, n)

)

. (22)

It can be verified that f22(λ, n) is the (2N + 1)th order polynomial in λ, f11(λ, n), f12(λ, n),
and f21(λ, n) are the (2N)th order polynomials in λ.

From (2) and (13), we have

an(λi) = –δi,nbn(λi), cn(λi) = –δi,ndn(λi), δi,n+1 =
–vn + (λi – un)δi,n

δi,n
, (23)
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from (23), we can verify that f11(λi, n), f12(λi, n), f21(λi, n), and f22(λi, n) are all equal to zero.
So, F(λ) = (λ – λ1)(λ – λ2) · · · (λ – λ2N )Pn = det Tn · Pn, where Pn is a first-order polynomial.
Therefore, we have

Tn+1UTn
∗ = det Tn · Pn, (24)

with

Pn = P1
nλ + P0

n, (25)

in which P1
n and P0

n are independent of λ. Thus, we obtain

Tn+1U = PnTn. (26)

By use of transformation (20), comparing the coefficients of λN and λN+1 in Eq. (26), we
have

P1
n =

(
0 0
0 1

)

, P0
n =

(
0 1

–̃vn –ũn

)

. (27)

From Eqs. (10) and (27), we see that Pn = M̃n.
Next, we will prove that the matrix W̃n has the same form as Wn under transformations

(9) and (20). Let T–1
n = T∗

n / det Tn and

G(λ) = (Tn,t + TnWn)T∗
n =

(
g11(λ, n) g12(λ, n)
g21(λ, n) g22(λ, n)

)

. (28)

It can be verified that g11(λ, n) is the (2N + 2)th order polynomial in λ, and g12(λ, n),
g21(λ, n), and g22(λ, n) are the (2N + 1)th order polynomials in λ.

Using (2), (7), and (15), we can obtain

an,t(λi) = –δi,n,tbn(λi) – δi,nbn,t(λi), cn,t(λi) = –δi,n,tdn(λi) – δi,ndn,t(λi),

δi,n,t = –vnλ
2
i – unvn +

(
λ2

i – u2
n–1 – vn – vn–1

)
δi,n – (λi + un–1)δ2

i,n,
(29)

from which we can verify that g11(λi, n), g12(λi, n), g21(λi, n), and g22(λi, n) are all equal to
zero. So, G(λ) = (λ – λ1)(λ – λ2) · · · (λ – λ2N )Qn = det Tn · Qn, where the elements of the
matrix Qn are second-order polynomials in λ. Moreover, we have

(Tn,t + TnVn)T∗
n = det Tn · Qn, (30)

with

Qn =

(
Q(2)

11 λ2 + Q(1)
11 λ + Q(0)

11 Q(1)
12 λ + Q(0)

12

Q(1)
21 λ + Q(0)

21 Q(1)
22 λ + Q(0)

22

)

. (31)

Thus, we obtain

Tn,t + TnWn = QnTn. (32)
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Using (20) and (32), and comparing the coefficients of λN+1, λN , λN–1 in (32), we have

Q(2)
11 = –1, Q(1)

11 = 1, Q(0)
11 = ũ2

n–1 + ṽn–1, Q(1)
12 = 1,

Q(0)
12 = ũn–1, Q(1)

21 = –̃vn, Q(0)
21 = –ũñvn, Q(1)

22 = 1, Q(0)
22 = ṽn.

(33)

From (11) and (33), we see that Qn = W̃n.
Finally, we will prove that the matrix ṼW n has the same form as Vn under transforma-

tions (9) and (20). Let T–1
n = T∗

n / det Tn and

H(λ) = (Tn,t + TnVn)T∗
n =

(
h11(λ, n) h12(λ, n)
h21(λ, n) h22(λ, n)

)

. (34)

It can be verified that h11(λ, n) and h22(λ, n) are the (2N + 3)th order polynomials in λ, and
g12(λ, n) and g21(λ, n) are the (2N + 2)th order polynomials in λ.

Using (2), (8), and (15), we can obtain

an,t(λi) = –δi,n,tbn(λi) – δi,nbn,t(λi), cn,t(λi) = –δi,n,tdn(λi) – δi,ndn,t(λi),

δi,n,t = vnλ
2
i + unvnλi + v2

n + vnvn+1 + u2
nvn –

(
λ3

i + 2vnλi + unvn – 2un–1vn–1

– un–2vn–1 – u3
n–1

)
δi,n +

(
λ2

i + un–1λ + vn–1 + vn + u2
n–1

)
δ2

i,n,

(35)

from which we can verify that h11(λi, n), h12(λi, n), h21(λi, n), and h22(λi, n) are all equal to
zero. So, H(λ) = (λ – λ1)(λ – λ2) · · · (λ – λ2N )Rn = det Tn · Rn, where the elements of the
matrix Rn are third-order polynomials in λ. Moreover, we have

(Tn,t + TnVn)T∗
n = det Tn · Rn, (36)

with

Rn =

(
R(3)

11 λ3 + R(2)
11 λ2 + R(1)

11 λ + R(0)
11 R(2)

12 λ2 + R(1)
12 λ + R(0)

12

R(2)
21 λ2 + R(1)

21 λ + R(0)
21 R(3)

22 λ3 + R(2)
22 λ2 + R(1)

22 λ + R(0)
22

)

. (37)

Thus, we obtain

Tn,t + TnVn = RnTn. (38)

Using (20) and (38), and comparing the coefficients of λN+1, λN , λN–1 in (38), we have

R(3)
11 =

1
2

, R(2)
11 = 0, R(1)

11 = ṽn,

R(0)
11 = –ũn–1̃vn – 2̃un–1̃vn–1 – ũn–2̃vn–1 – ũ3

n–1, R(2)
12 = –1, R(1)

12 = –ũn–1,

R(0)
12 = –̃vn–1 – ṽn – ũ2

n–1, R(2)
21 = ṽn, R(1)

21 = ũñvn,

R(0)
21 = ṽ2

n + ṽñvn+1 + ũ2
ñvn, R(3)

22 = –
1
2

, R(2)
22 = 0, Q(1)

22 = –̃vn.

(39)

From (12) and (39), we see that Rn = Ṽn. The proof is completed. �
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In fact, Theorem 1 is to prove that matrices M̃n, W̃n, Ṽn and Mn, Wn, Vn keep invariant
for their forms. The proof is quite similar to the Toda lattice equation in Ref. [35]. From
Theorem 1, transformations (9) and (20) can change the Lax pair (2), (7), and (8) into the
Lax pair of the same forms (10), (11), and (12). Both of two old and new Lax pairs are
compatibility conditions of Eqs. (5) and (6). Therefore, transformations (9) and (20) map
the old solutions un, vn of Eqs. (5) and (6) into the new solutions ũn, ṽn, we call (9) and
(20) the discrete N-fold DT of Eqs. (5) and (6). We will emphasize here that the discrete
N-fold DT (9) and (20) of Eqs. (5) and (6) is the same as the one for the classical Toda
lattice equation. As a matter of fact, the same discrete N-fold DT can be applied to any
member of the Toda hierarchy, and the formula for multi-solitons is the same as the ones
in Ref. [35], while there is a big difference among these three discrete N-fold DTs that they
use different solutions of three Lax pairs. Next let us note that the transformations can be
used to determine the multi-soliton solutions of Eq. (5) and (6) when un, vn are the initial
constant solutions.

3 Dynamical behaviors of multi-soliton solutions of Eq. (5)
In this part, we will give some multi-dark soliton solutions of Eq. (5) from non-vanishing
background via transformations (9) and (20). Substituting the trivial solutions un = vn = 1
into the Lax pair (2) and (7), we can give two basic solutions of (2) and (7) with λ = λi as
follows:

ϕ =

(
τ n

1 eρ1t

τ n+1
1 eρ1t

)

, ψ =

(
τ n

2 eρ2t

τ n+1
2 eρ2t

)

, (40)

where

τ1 =
1
2
λi –

1
2

+
1
2

√

λ2
i – 2λi – 3,

τ2 =
1
2
λi –

1
2

–
1
2

√

λ2
i – 2λi – 3,

ρ1 =
(

–
1
2
λi +

3
2

+
1
2

√

λ2
i – 2λi – 3

)

(λi + 1),

ρ2 =
(

–
1
2
λi +

3
2

–
1
2

√

λ2
i – 2λi – 3

)

(λi + 1).

Moreover, taking into account (15), we have

δi,n =
ϕ2,n(λi) – riψ2,n(λi)
ϕ1,n(λi) – riψ1,n(λi)

=
τ n+1

1 eρ1t – riτ
n+1
2 eρ2t

τ n
1 eρ1t – riτ

n
2 eρ2t , δi,n+1 =

–1 + (λi – 1)δi,n

δi,n
. (41)

According to (20) and (41), we can derive the exact solutions of Eq. (5). To understand
them, when N = 1, 2, we plot their structure figures as shown in Figs. 1 to 4.

(I) When N = 1, let λ = λi (i = 1, 2). Solving the linear algebraic system (14) leads to

b(0)
n =

�b(0)
n

�1
, c(0)

n =
�c(0)

n

�2
, d(0)

n =
�d(0)

n

�2
, (42)
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Figure 1 (a1), (b1) Overtaking elastic interactions of dark two-soliton solution ũn in (43) with the parameters
r1 = –1, r2 = 1, λ1 = –2, λ2 = –4. (a2), (b2) Overtaking elastic interactions of bright two-soliton solution ṽn in
(43) with the same parameters as in (a1), (b1). The interaction processes for (c1) ũn and (c2) ṽn at t = –10
(dash-dot line), t = 0 (dashed line), and t = 10 (solid line)

Figure 2 (a1)–(c1) Dark one-soliton solution ũn in (43). (a2)–(c2) Bright one-soliton solution ṽn in (43). The
same parameters as Fig. 1 except that λ1 = –1

where

�b(0)
n =

∣
∣
∣
∣
∣

1 –λ1

1 –λ2

∣
∣
∣
∣
∣
, �c(0)

n =

∣
∣
∣
∣
∣

–λ1δ1,n δ1,n

–λ2δ2,n δ2,n

∣
∣
∣
∣
∣
, �d(0)

n =

∣
∣
∣
∣
∣

1 –λ1δ1,n

1 –λ2δ2,n

∣
∣
∣
∣
∣
,

�1 =

∣
∣
∣
∣
∣

1 δ1,n – λ1

1 δ2,n – λ2

∣
∣
∣
∣
∣
, �2 =

∣
∣
∣
∣
∣

1 δ1,n

1 δ2,n

∣
∣
∣
∣
∣
.
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Figure 3 (a1), (b1) Overtaking elastic interactions of dark four-soliton solution ũn in (45) with the parameters
r1 = 1, r2 = –1, r3 = 1

2 , r2 = – 1
2 , λ1 = –4, λ2 = –3, λ3 = –2.5, λ4 = –2. (a2), (b2) Overtaking elastic interactions of

bright four-soliton solution ṽn in (45) with the same parameters as in (a1), (b1). The interaction processes for
(c1) ũn and (c2) ṽn at t = –20 (dash-dot line), t = 0 (dashed line), and t = 20 (solid line)

Figure 4 (a1)–(c1) Overtaking elastic interactions of dark three-soliton solution ũn in (45). (a2)–(c2)
Overtaking elastic interactions of bright four-soliton solution ṽn in (45) with the same parameters as in
(a1)–(c1). The same parameters as Fig. 3 except that λ4 = –1

Consequently, an explicit 1-fold exact solution of (5) can be written via the discrete 1-fold
DT as follows:

ũn = 1 + d(0)
n – d(0)

n+1, ṽn =
1 + c(0)

n

1 – b(0)
n

. (43)

When λ1 ≥ 3, λ2 ≥ 3 or λ1 ≤ –1, λ2 ≤ –1 or λ1 ≥ 3, λ2 ≤ –1 or λ1 ≤ –1, λ2 ≥ 3 and the
parameters ri (i = 1, 2) are real and not equal to zero, solution (43) may be the one-soliton
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or two-soliton solution, the corresponding evolution plots are shown in Figs. 1 and 2.
Figures 1(a1)–(c1) show the overtaking interactions between two unidirectional anti-bell-
shape dark solitons with different amplitudes for solution un, the soliton with a larger am-
plitude moves faster and overtakes the smaller, the amplitude minimum for the smaller
soliton is 0, the amplitude minimum for the larger soliton is –2, however the background
level here is 1. Thus, the minimums of the smaller and larger amplitudes are 1 and 3 units
lower than the background. At last, the shapes of two dark solitons do not change before
and after the interaction, their interactions are elastic. Figures 1(a2)–(c2) reveal the over-
taking interactions between two unidirectional bell-shape bright solitons with different
amplitudes for solution vn, the soliton with a higher amplitude moves faster and overtakes
the lower, the maximal amplitude of the high soliton is 6.25, the maximal amplitude of the
low soliton is 2.25, however the background level here is 1. Thus, the maximums of the
high and low amplitudes are 1.25 and 5.25 units higher than the background. After inter-
action, the final bright solitons preserve their shapes and amplitudes, propagate along the
negative n-direction, and their interactions are elastic. However, it is worthwhile to note
that the above two solitons will reduce to one soliton when one of two λ’s is equal to –1.
For λ1 and λ2 when N = 1, suppose λ1 = –1, we can see that τ1 = τ2 = – 3

2 , ρ1 = ρ2 = 0 in
(40), while δ1,n = – 3

2 in (42) and (43). That is to say, the two solutions of the Lax pair are
linearly dependent. At this point, solution (43) only uses one solution of the Lax pair (2)
and (7), so the previous two solitons will reduce to one, while solution (43) uses two dif-
ferent linearly independent solutions of the Lax pair when λ1 �= –1, which will lead to two
solitons. Figures 2(a1)–(c1) present the evolution structures of the anti-bell-shape dark
one-soliton solution un, the minimal amplitude of the solution is along a line, the mini-
mum is -2, however the background level here is 1. Thus, the minimum is 3 units lower
than the background. Figures 2(a2)–(c2) show the evolution structures of the bell-shape
bright one-soliton solution vn, the maximal amplitude of the solution is also along a line,
the maximum is 6.25, however the background level here is also 1. Thus, the maximum is
5.25 units higher than the background. As shown in Figs. 2, both one-soliton solutions un

and vn propagate along the negative n-axis direction with the same amplitude, and their
shapes remain the same during the propagation.

(II) When N = 2, let λ = λi (i = 1, 2, 3, 4). Solving the linear algebraic system (14) gives

b(1)
n =

�b(1)
n

�1
, c(1)

n =
�c(1)

n

�2
, d(1)

n =
�d(1)

n

�2
, (44)

where

�b(1)
n =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 λ1 δ1,n –λ2
1

1 λ2 δ2,n –λ2
2

1 λ3 δ3,n –λ2
3

1 λ4 δ4,n –λ2
4

∣
∣
∣
∣
∣
∣
∣
∣
∣

, �c(1)
n =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 –λ2
1δ1,n δ1,n λ1δ1,n

1 –λ2
2δ2,n δ2,n λ2δ2,n

1 –λ2
3δ3,n δ3,n λ3δ3,n

1 –λ2
4δ4,n δ4,n λ4δ4,n

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

�d(1)
n =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 λ1 δ1,n –λ2
1δ1,n

1 λ2 δ2,n –λ2
2δ2,n

1 λ3 δ3,n –λ2
3δ3,n

1 λ4 δ4,n –λ2
4δ4,n

∣
∣
∣
∣
∣
∣
∣
∣
∣

, �1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 λ1 δ1,n λ1δ1,n – λ2
1

1 λ2 δ2,n λ2δ2,n – λ2
2

1 λ3 δ3,n λ3δ3,n – λ2
3

1 λ4 δ4,n λ4δ4,n – λ2
4

∣
∣
∣
∣
∣
∣
∣
∣
∣

,
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�2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 λ1 δ1,n λ1δ1,n

1 λ2 δ2,n λ2δ2,n

1 λ3 δ3,n λ3δ3,n

1 λ4 δ4,n λ4δ4,n

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Thus, via the discrete 2-fold DT, the 2-fold explicit exact solution of (5) can be written as

ũn = 1 + d(1)
n – d(1)

n+1, ṽn =
1 + c(1)

n

1 – b(1)
n

. (45)

When λi ≥ 3 (i = 1, 2, 3, 4) or λi ≤ –1 (i = 1, 2, 3, 4) and the parameters ri (i = 1, 2) are real
and not equal to zero, solution (45) with N = 2 may be the three or four solitons, the
corresponding evolution plots are shown in Figs. 3 and 4. Figures 3(a1)–(c1) show the
overtaking collision interactions among four unidirectional anti-bell-shape dark solitons
with different amplitudes for solution ũn in (45), the amplitude minimums of the four dark
solitons are around 0, –0.5, –1, and 2, respectively, however the background level here is
1. Thus, the minimums are 1, 1.5, 2, and 3 units under the background. Figures 3(a2)–(c2)
show the overtaking collision interactions among four bell-shape unidirectional bright
solitons with different amplitudes for solution ṽn in (45), the amplitudes of the four bright
solitons are around 2.25, 3, 4, and 6.25, respectively, however the background level here is
1. Thus, the maximums are 1.25, 2, 3, and 5.25 units above the background. However, it is
worthwhile to note that this solution is the three-soliton solution if when one of four λ’s is
equal to –1. Figures 4(a1)–(c1) present the overtaking collision interactions among three
unidirectional anti-bell-shape dark solitons with different amplitudes for solution ũn in
(45), the minimums of amplitude for the three dark solitons are 1.5, 2, and 3 units under
the background level 1, respectively. Figures 4(a2)–(c2) reveal the overtaking collision in-
teractions among three unidirectional bell-shape bright solitons with different amplitudes
for solution ũn in (45), the maximums of amplitude for the three bright solitons are 2, 3,
and 5.25 units, respectively, above the background level 1. Before and after the overtaking
interactions, the final three and four solitons preserve their shapes and amplitudes and
move along the negative n-axis direction, so their interactions are elastic.

(III) When N = m, let λ = λi (i = 1, 2, . . . , 2m). Solving the linear algebraic system (14)
leads to

b(m–1)
n =

�b(m–1)
n

�1
, c(m–1)

n =
�c(m–1)

n

�2
, d(m–1)

n =
�d(m–1)

n

�2
, (46)

where

�b(m–1)
n =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 λ1 · · · λm–1
1 δ1,n λ1δ1,n · · · –λm

1

1 λ2 · · · λm–1
2 δ2,n λ2δ2,n · · · –λm

2

· · · · · · · · · · · · · · · · · · · · · · · ·
1 λ2m · · · λm–1

2m δ2m,n λ2mδ2m,n · · · λm
2m

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

�c(m–1)
n =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 λ1 · · · –δ1,nλ
m
1 δ1,n λ1δ1,n · · · λm–1

1 δ1,n

1 λ2 · · · –δ2,nλ
m
2 δ2,n λ2δ2,n · · · λm–1

2 δ2,n

· · · · · · · · · · · · · · · · · · · · · · · ·
1 λ2m · · · –δ2m,nλ

m
2m δ2m,n λ2mδ2m,n · · · λm–1

2m δ2m,n

∣
∣
∣
∣
∣
∣
∣
∣
∣

,
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Figure 5 One-soliton solution (43) with the same parameters as Fig. 2. (a) Exact solution; (b) Time evolution
using exact solution (43) as an initial condition; (c) Time evolution using exact solution (43) perturbed by a 5%
noise as the initial condition

�d(m–1)
n =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 λ1 · · · λm–1
1 δ1,n λ1δ1,n · · · –δ1,nλ

m
1

1 λ2 · · · λm–1
2 δ2,n λ2δ2,n · · · –δ2,nλ

m
2

· · · · · · · · · · · · · · · · · · · · · · · ·
1 λ2m · · · λm–1

2m δ2m,n λ2mδ2m,n · · · –δ2m,nλ
m
2m

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

�1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 λ1 · · · λm–1
1 δ1,n λ1δ1,n · · · λm–1

1 δ1,n – λm
1

1 λ2 · · · λm–1
2 δ2,n λ2δ2,n · · · λm–1

2 δ2,n – λm
2

· · · · · · · · · · · · · · · · · · · · · · · ·
1 λ2m · · · λm–1

2m δ2m,n λ2mδ2m,n · · · λm–1
2m δ2m,n – λm

2m

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

�2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 λ1 · · · λm–1
1 δ1,n λ1δ1,n · · · λm–1

1 δ1,n

1 λ2 · · · λm–1
2 δ2,n λ2δ2,n · · · λm–1

2 δ2,n

· · · · · · · · · · · · · · · · · · · · · · · ·
1 λ2m · · · λm–1

2m δ2m,n λ2mδ2m,n · · · λm–1
2m δ2m,n

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

In this way, a general m-fold explicit exact solution of Eq. (5) can be obtained via the m-fold
DT written as follows:

ũn = 1 + d(m–1)
n – d(m–1)

n+1 , ṽn =
1 + c(m–1)

n

1 – b(m–1)
n

, (47)

where d(m–1)
n+1 is derived from d(m–1)

n by replacing their n with n + 1.
Next, we implement the numerical simulations to display the dynamical behaviors of the

previous bright and dark multi-solitons of Eq. (5) by using the finite difference method [56,
57]. Figure 5 exhibits the exact one-soliton solution (43) of Eq. (5), time evolutions of using
exact one-soliton solution (43), and those perturbed by a small noise 5%. Figures 5(a1),
(b1)–(a2), (b2) show that the profiles of the time evolution of the bright and dark one-
soliton solution (43) without a noise almost agrees with the ones of the corresponding
exact bright and dark one-soliton solution (43) in time t ∈ (–1.5, 1.5). It is clearly seen
that our numerical solutions exactly reproduce the analytical solutions; in other words,
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these solutions have the stable evolutions without a noise, which also shows the accuracy
of our numerical scheme. We further numerically study the stability of these solutions by
perturbing the above initial conditions (i.e., a small noise (5%) is added to both the initial
exact solutions un and vn components with t = –1.5), the numerical results in Figs. 5(c1)–
(c2) show that they can evolve as before, that is to say, one-soliton solution (43) of Eq. (5)
is robust against a small noise.

Figures 6–8 demonstrate the exact two-, three-, and four-soliton solutions of Eq. (5),
time evolutions of using their exact solutions, and those perturbed by a small noise 5%,
respectively. Just like the one-soliton solution, Figs. 6–8(a1), (b1)–(a2), (b2) show the ac-
curacy of our numerical scheme and the stable evolutions of the two-, three-, and four-
soliton solutions without a noise. Numerical results in Figs. 6–8(c1)–(c2) reveal the almost

Figure 6 Two-soliton solution (43) with the same parameters as Fig. 1. (a) Exact solution; (b) Time evolution
using exact solution (43) as an initial condition; (c) Time evolution using exact solution (43) perturbed by a 5%
noise as the initial condition

Figure 7 Three-soliton solution (45) with the same parameters as Fig. 4. (a) Exact solution; (b) Time evolution
using exact solution (45) as an initial condition; (c) Time evolution using exact solution (45) perturbed by a 5%
noise as the initial condition
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Figure 8 Four-soliton solution (45) with the same parameters as Fig. 3. (a) Exact solution; (b) Time evolution
using exact solution (45) as an initial condition; (c) Time evolution using exact solution (45) perturbed by a 5%
noise as the initial condition

steady evolutions of the two-, three-, and four-soliton solutions with a small noise; in other
words, these solutions are stable and also robust against a small noise.

4 Dynamics of multi-soliton solutions of Eq. (6) via numerical simulations
In this part, we will give some dark and bright soliton solutions of Eq. (6) from non-
vanishing background via transformations (9) and (20). Substituting the trivial solutions
un = vn = 1 into the Lax pair (2) and (8), we can give two basic solutions of (2) and (8) with
λ = λi as follows:

ϕ =

(
τ n

1 eρ1t

τ n+1
1 eρ1t

)

, ψ =

(
τ n

2 eρ2t

τ n+1
2 eρ2t

)

, (48)

where

τ1 =
1
2
λi –

1
2

+
1
2

√

λ2
i – 2λi – 3,

τ2 =
1
2
λi –

1
2

–
1
2

√

λ2
i – 2λi – 3,

ρ1 = –
7
2

–
1
2
√

λ6 – 14λ3 – 24λ2 – 36λ – 27,

ρ2 = –
7
2

+
1
2
√

λ6 – 14λ3 – 24λ2 – 36λ – 27.

Moreover, taking into account (15), we have

δi,n =
ϕ2,n(λi) – riψ2,n(λi)
ϕ1,n(λi) – riψ1,n(λi)

=
τ n+1

1 eρ1t – riτ
n+1
2 eρ2t

τ n
1 eρ1t – riτ

n
2 eρ2t , δi,n+1 =

–1 + (λi – 1)δi,n

δi,n
. (49)

According to (20) and (49), we can obtain the explicit exact solution of Eq. (6) as follows:

ũn = 1 + d(N–1)
n – d(N–1)

n+1 , ṽn =
1 + c(N–1)

n

1 – b(N–1)
n

, (50)
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Figure 9 Exact one-soliton solutions ũn and ṽn in (50) with N = 1 via the parameters r1 = –1, r2 = 1, λ1 = –1,
λ2 = –2. (a) Exact solution; (b) Time evolution using exact solution as an initial condition; (c) Time evolution
using exact solution perturbed by a 2% noise as the initial condition

where b(N–1)
n , c(N–1)

n , and d(N–1)
n are the same as those in the previous section, so we omit

their expressions here. The soliton interactions and structures of Eq. (6) are similar to
Eq. (5), so the next thing we do is we only perform the numerical simulations to show
the dynamical behaviors of the multi-solitons of Eq. (6). Figure 9 exhibits the exact one-
soliton solution (50) with N = 1, time evolutions of using the exact one-soliton solution,
and those perturbed by a small noise 2%. Figures 9(a1), (b1)–(a2), (b2) show that the time
evolution profiles of the bright and dark one-soliton solution (50) with N = 1 without a
noise almost agree with the ones of the corresponding exact bright and dark one-soliton
solution in time t ∈ (–2, 2). It is clearly seen that our numerical solutions almost exactly
reproduce the analytical solutions; in other words, these solutions have the stable evolu-
tions without a noise, which also shows the accuracy of our numerical scheme. We further
numerically study the stability of these solutions by perturbing the above initial conditions
(i.e., a small noise (2%) is added to both the initial exact solutions un and vn components
with t = –2), the numerical results in Figs. 9(c1)–(c2) show the almost steady evolutions as
before, in addition to some small oscillations as time close to 2. With the noise increasing
(for example, a small noise 5% is added to the initial solution), the simulated evolutions ex-
hibit obviously strong oscillations and instability. Compared with Eq. (5), we find that the
same small noise has different effect on the evolutions of the soliton solutions for Eqs. (5)
and (6). The evolutions of the lower-order equation can keep better propagation stabil-
ity under a bigger small noise, however the evolutions of the higher-order equation only
have the propagation stability under a very small noise. For the higher-order equation, the
simulated evolutions exhibit obviously strong oscillations and instability with the noise in-
creasing (for example, adding a 5% noise), so we infer that the possible reason is that the
higher-order nonlinear terms for Eq. (6) cause the propagation instability of the solitons
relative to Eq. (5).

Figures 10–12 exhibit the exact two-, three-, and four-soliton solutions of Eq. (6), time
evolutions of using their exact solutions, and those perturbed by a small noise 2%, re-
spectively. Like its one-soliton solution, Figs. 10–12(a1), (b1)–(a2), (b2) show the accu-
racy of our numerical scheme and the almost steady evolutions of the two-, three-, and
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Figure 10 Collisions of two-soliton solutions ũn and ṽn in (50) with N = 1 via the parameters r1 = –1, r2 = 1,
λ1 = –2, λ2 = –3. (a) Exact solution; (b) Time evolution using exact solution as an initial condition; (c) Time
evolution using exact solution perturbed by a 2% noise as the initial condition

Figure 11 Collisions of three-soliton solutions ũn and ṽn in (50) with N = 2 via the parameters r1 = 1, r2 = –1,
r3 = 1/2, r4 = –1/2, λ1 = –3, λ2 = –2, λ3 = –3/2, λ4 = –1. (a) Exact solution; (b) Time evolution using exact
solution as an initial condition; (c) Time evolution using exact solution perturbed by a 2% noise as the initial
condition

four-soliton solutions without a noise. Numerical results in Figs. 10–12(c1)–(c2) reveal
the almost steady evolutions except for some small oscillations as time close to 1 and 2.
With adding a 5% noise to the initial solution, the simulated evolutions exhibit obviously
strong oscillations and instability.

5 Dynamics of multi-soliton solutions of Eq. (1) via numerical simulations
In this part, we will give some explicit solutions of Eq. (1) via transformations (9) and (20),
and we will compare the numerical evolution results of Eq. (1) with its corresponding two
higher-order Toda lattice Eqs. (5) and (6) by use of numerical simulations. Substituting a
trivial solution un = vn = 1 into (2) and (3), we can give one solution of the Lax pair (2) and
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Figure 12 Collisions of four-soliton solutions ũn and ṽn in (50) with N = 2 via the parameters r1 = 1
2 , r2 = – 1

2 ,
r3 = 1, r4 = –1, λ1 = –3, λ2 = – 5

2 , λ3 = –2, λ4 = – 3
2 . (a) Exact solution; (b) Time evolution using exact solution

as an initial condition; (c) Time evolution using exact solution perturbed by a 2% noise as the initial condition

(3) with λ = λi (i = 1, 2, . . . , 2N ) as follows:

ϕ =

(
τ n

1 eρ1t

τ n+1
1 eρ1t

)

, ψ =

(
τ n

2 eρ2t

τ n+1
2 eρ2t

)

, (51)

where

τ1 =
λ

2
–

1
2

+
√

λ2 – 2λ – 3
2

, τ2 =
λ

2
–

1
2

–
√

λ2 – 2λ – 3
2

,

ρ1 =
3
2

–
λ

2
+

√
λ2 – 2λ – 3

2
, ρ2 =

3
2

–
λ

2
–

√
λ2 – 2λ – 3

2
.

Therefore, the explicit solutions of Eq. (1) are also given as follows:

ũn = 1 + d(N–1)
n – d(N–1)

n+1 , ṽn =
1 + c(N–1)

n

1 – b(N–1)
n

, (52)

where b(N–1)
n , c(N–1)

n , d(N–1)
n are the same as those in Sects. 3 and 4, so we omit their expres-

sions here. The soliton interactions and structures of Eq. (1) are similar to those of Eqs. (5)
and (6). Next, we only implement the numerical simulations to display the dynamical be-
haviors of the previous dark multi-solitons of Eq. (1). Figures 13–16 exhibit the exact one-,
two-, three-, and four-soliton solutions (52) of Eq. (1), time evolutions of using exact one-
soliton solution (52) and those perturbed by a relatively big noise 20%. Figures 13–16(a1),
(b1)–(a2), (b2) show that the profiles of the time evolution of the one-soliton solution (52)
without a noise almost agree with the ones of the corresponding exact one-soliton solution
(52) in a larger time t ∈ (–2, 2) or t ∈ (–4, 4). It is clearly seen that our numerical solutions
exactly reproduce the analytical solutions; in other words, these solutions have the sta-
ble evolutions without a noise, which also shows the accuracy of our numerical scheme.
We further numerically study the stability of these solutions by perturbing the above ini-
tial conditions (i.e., a relatively big noise (20%) is added to both the initial exact solutions
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Figure 13 One-soliton solution (52) with the parameters r1 = –1, r2 = 1, λ1 = –1, λ2 = –4 when N = 1.
(a) Exact solution; (b) Time evolution using exact solution (52) as an initial condition; (c) Time evolution using
exact solution (52) perturbed by a 20% noise as the initial condition

Figure 14 Two-soliton solution (52) with the parameters r1 = –1, r2 = 1, λ1 = –4, λ2 = –9 when N = 1.
(a) Exact solution; (b) Time evolution using exact solution (52) as an initial condition; (c) Time evolution using
exact solution (52) perturbed by a 20% noise as the initial condition

un and vn components), the numerical results in Figs. 13–16(c1)–(c2) show that they can
evolve as before, that is to say, these soliton solutions (52) of Eq. (1) are robust against a
relatively big noise (20%). In fact, when adding a 30% noise to their initial solutions, the
simulated evolutions of these soliton solutions exhibit very small oscillations.

Compared with the numerical evolution results of Eqs. (1), (5), and (6), we can see that
the multi-soliton solutions of Eqs. (1), (5), and (6) can still keep stable evolutions under a
small perturbation (a small noise 2%) except for some small oscillations for Eq. (6). How-
ever, the simulated evolutions exhibit obviously strong oscillations and instability for the
multi-soliton solutions of Eq. (6) with adding a 5% noise to their initial solutions, while
the multi-soliton solutions of Eqs. (1) and (5) have almost stable evolutions under a small
noise (5%). When adding a 20% big noise to their initial solutions, we find that the simu-
lated evolutions exhibit obviously strong oscillations and instability for the multi-soliton
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Figure 15 Three-soliton solution (52) with the parameters r1 = 1, r2 = –1, r3 = 1
2 , r2 = – 1

2 , λ1 = –4, λ2 = –3,
λ3 = –2, λ4 = –1 when N = 2. (a) Exact solution; (b) Time evolution using exact solution (52) as an initial
condition; (c) Time evolution using exact solution (52) perturbed by a 20% noise as the initial condition

Figure 16 Four-soliton solution (52) with the parameters r1 = 1, r2 = –1, r3 = 1
2 , r2 = – 1

2 , λ1 = –4, λ2 = –3,
λ3 = –2.5, λ4 = –2 when N = 2. (a) Exact solution; (b) Time evolution using exact solution (52) as an initial
condition; (c) Time evolution using exact solution (52) perturbed by a 20% noise as the initial condition

solutions of Eqs. (5) and (6), while the multi-soliton solutions of Eq. (1) still have stable
evolutions; that is to say, the same small noise has different effect on the evolutions of the
dark multi-soliton solutions for three equations. We can see that the multi-soliton solu-
tions of higher-order equations in the same hierarchy are weaker against a small noise than
the lower-order equations. We infer that the higher-order nonlinear terms of the higher-
order equations (5) and (6) may be the possible reason for the instability of the simulated
evolutions.

6 Discrete generalized (n, N – n)-fold Darboux transformation of Eqs. (1), (5),
and (6)

In Refs. [38, 39], we have proposed the discrete generalized (n, N – n)-fold DTs to solve
two discrete integrable NLEs. In this section, we will extend this idea to discrete Eqs. (1),
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(5), and (6) and propose their discrete generalized (n, N – n)-fold DTs for seeking some
new rational solutions. Due to the similar steps for solving three equations, we here only
give some rational form solutions of Eq. (1) via our proposed generalized (n, N – n)-fold
DT technique. For the N-fold DT with 2N distinct eigenvalues in Sect. 2, we can give
the 2N-soliton solutions of Eqs. (1), (5), and (6). However, to derive some new rational
solutions of Eqs. (1), (5), and (6), this cannot be done for the N-fold DT with 2N distinct
eigenvalues, but we can change the number n of the eigenvalues λ to construct a new
generalized (n, N – n)-fold DT to achieve our aim. Next, let us modify the N-fold DT in
Sect. 2 in order to express some rational form solutions in terms of the determinants of
Eqs. (1), (5), and (6). Here we use n distinct eigenvalues λi (i = 1, 2, . . . , n), 1 ≤ n ≤ 2N
and their corresponding highest order mi (mi = 0, 1, 2, . . .) derivatives of the solutions of
the Lax pair, and we demand that these nonnegative integers n, mi are required to satisfy
2N = n +

∑n
i=1 mi, where N is the same as the one in the Darboux matrix T in Sect. 2. If

1 ≤ n ≤ 2N , then a discrete version of generalized (n, N – n)-fold DT of Eqs. (1), (5), and
(6) is described by the following theorem.

Theorem 2 Let ϕ(λi) = (φi(λi),ψi(λi))T ≡ (φi,ψi)T (i = 1, 2, . . . , n) be column vector solu-
tions of the spectral problem (2), (3), (7), and (8) for the spectral parameters λi (i = 1, 2, . . . , n)
with the initial solution un, vn of Eqs. (1), (5), and (6). Then the generalized perturbation
(n, N – n)-fold DT of Eq. (1) given by

ũn = un + d(N–1)
n – d(N–1)

n+1 , ṽn =
vn + c(N–1)

n

1 – b(N–1)
n

, (53)

is also a solution of Eqs. (1), (5), and (6), in which

b(N–1)
n =

�b(N–1)
n

�1
, c(N–1)

n =
�c(N–1)

n

�2
, d(N–1)

n =
�d(N–1)

n

�2
, (54)

where �1 = (�(1)
1 ,�(2)

1 , . . . ,�(n)
1 )T , �2 = (�(1)

2 ,�(2)
2 , . . . ,�(n)

2 )T , �
(i)
1 = (�(i)

1,j,s)(mi+1)×2N , �
(i)
2 =

(�(i)
2,j,s)(mi+1)×2N , in which �

(i)
1 and �

(i)
2 (1 ≤ j ≤ mi + 1, 1 ≤ s ≤ 2N , i = 1, 2, . . . , n) being given

by the following formulae:

�
(i)
1,j,s =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑j–1
k=0 Ck

N–sλi
N–s–kφ

(j–1–k)
i

for 1 ≤ j ≤ mi + 1, 1 ≤ s ≤ N ,
∑j–1

k=0 Ck
2N–sλ

s–k–1
i ψ

j–k
i –

∑j–1
k=0 Ck

2N–s+1λ
2N–s–k+1
i φ

j–k–1
i

for 1 ≤ j ≤ mi + 1, N + 1 ≤ s ≤ 2N ,

�
(i)
2,j,s =

⎧
⎨

⎩

∑j–1
k=0 Ck

N–sλi
N–s–kφ

(j–1–k)
i for 1 ≤ j ≤ mi + 1, 1 ≤ s ≤ N ,

∑j–1
k=0 Ck

2N–sλ
2N–s–k
i ψ

j–k–1
i for 1 ≤ j ≤ mi + 1, N + 1 ≤ s ≤ 2N ,

where �b(N–1)
n is given from the determinant �1 by substituting the column vector

(b(1)
1 , b(1)

2 , . . . , b(1)
m1+1, . . . , b(i)

1 , b(i)
2 , . . . , b(i)

mi+1, . . . , b(n)
1 , b(n)

2 , . . . , b(n)
mn+1) in which b(i)

j = –
∑j–1

k=0 Ck
N ×

λN–k
i φ

(j–k–1)
i (1 ≤ j ≤ mi + 1, i = 1, 2, . . . , n) for its (N + 1)th column, while �c(N–1)

n and
�d(N–1)

n are obtained from the determinant �2 by respectively replacing the first and (N +
1)th columns with the column vector (c(1)

1 , c(1)
2 , . . . , c(1)

m1+1, . . . , c(i)
1 , c(i)

2 , . . . , c(i)
mi+1, . . . , c(n)

1 , c(n)
2 , . . . ,
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c(n)
mn+1) in which c(i)

j = –
∑j–1

k=0 Ck
NλN–k

i ψ
(j–k–1)
i (1 ≤ j ≤ mi + 1, i = 1, 2, . . . , n). Moreover, the

terms �d(N)
n+1 can be derived from �d(N)

n by replacing n with n + 1.

For the discrete generalized (n, N – n)-fold DT in Theorem 2, the number n is the num-
ber of the distinct spectral parameters and 2N – n =

∑n
i=1 mi is the sum of the orders of

the highest derivative of the Darboux matrix Tn in system (13) or the vector eigenfunc-
tion ϕn. When n = 2N and mi = 0, Theorem 2 reduces to the usual discrete N-fold DT in
Theorem 1; when n = 1 and m1 = 2N – 1, Theorem 2 reduces to the discrete generalized
(1, N – 1)-fold DT, which will be used to derive higher-order rational solutions of Eqs. (1),
(5), and (6) from the initial seed solution in the next section. When n �= 1 or 2N , we can
derive some other new DTs which will not be discussed here.

7 Rational solutions of Eq. (1) from non-vanishing background
In this section, we will use the discrete generalized (1, N – 1)-fold DT (i.e., discrete gen-
eralized (n, N – n)-fold DT with n = 1) with the single eigenvalue to investigate some new
rational solutions of Eq. (1) from the initial non-vanishing background. According to the
similar steps, we can also give some discrete rational solutions for Eqs. (5) and (6) which
are not discussed here. Next we only take Eq. (1) as an example. Choosing the seed solu-
tions un = vn = 1, we can give one combined solution of the Lax pair (2) and (3) from (51)
as follows:

ϕ = C1

(
τ n

1 eρ1t

τ n+1
1 eρ1t

)

+ C2

(
τ n

2 eρ2t

τ n+1
2 eρ2t

)

, (55)

with

ρ1 =
3
2

–
1
2
λ +

1
2
√

λ2 – 2λ – 3, ρ2 =
3
2

–
1
2
λ –

1
2
√

λ2 – 2λ – 3,

τ1 =
1
2
λ –

1
2

+
1
2
√

λ2 – 2λ – 3, τ2 =
1
2
λ –

1
2

–
1
2
√

λ2 – 2λ – 3,

where C1 and C2 are arbitrary real constants and ε is a small parameter. In what follows,
we fix the spectral parameter λ = λ1 + ε2 with λ1 = 3 in Eq. (55), then expand the vector
function ϕ in Eq. (55) as two Taylor series at ε = 0. Here we choose some special C1, C2

(e.g., C1 = ε, C2 = ε) and then obtain

ϕ
(
ε2) = ϕ(0) + ϕ(1)ε2 + ϕ(2)ε4 + ϕ(3)ε6 + · · · , (56)

where

ϕ(0) =

(
φ(0)

ψ (0)

)

=

(
2
2

)

, (57)

ϕ(1) =

(
φ(1)

ψ (1)

)

=

(
n2 + 2nt + t2 – t

n2 + (2t + 2)n + t2 + t + 1

)

, (58)
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ϕ(2) =

(
φ(2)

ψ (2)

)

=

(
1

12 n4 + 1
3 tn3 + 1

2 (t2 – t – 1
6 )n2 + ( 1

3 t3 – t2 + 1
6 t)n + 1

12 t4 – 1
2 t3 + 1

2 t2

1
12 n4 + 1

3 (t + 1)n3 + 1
12 (6t2 + 6t + 5)n2 + 1

6 (2t3 + t + 1)n + 1
12 t3(t – 2)

)

, (59)

and (φ(i),ψ (i))T (i = 3, 4, 5, . . .) are omitted here. By applying (53), we can give some new
rational form solutions of Eq. (1). Next, we will give some rational form solutions via the
foregoing proposed discrete generalized (1, N – 1)-fold DT with N = 1, 2, 3.

(I) When N = 1, according to Theorem 2, based on the generalized (1, 0)-fold DT, the
first-order rational solution of Eq. (1) is given as

ũn = un + d(0)
n – d(0)

n+1, ṽn =
vn + c(0)

n

1 – b(0)
n

, (60)

where

b(0)
n =

�b(0)
n

�1
, c(0)

n =
�c(0)

n

�2
, d(0)

n =
�d(0)

n

�2
, (61)

with

�1 =

∣
∣
∣
∣
∣

φ(0) –λφ(0) + ψ (0)

φ(1) –λφ(1) + ψ (1) – φ(0)

∣
∣
∣
∣
∣
, �b(0)

n =

∣
∣
∣
∣
∣

φ(0) –λφ(0)

φ(1) –λφ(1) – φ(0)

∣
∣
∣
∣
∣
,

�2 =

∣
∣
∣
∣
∣

φ(0) ψ (0)

φ(1) ψ (1)

∣
∣
∣
∣
∣
, �c(0)

n =

∣
∣
∣
∣
∣

–λψ (0) ψ (0)

–λψ (1) – ψ (0) ψ (1)

∣
∣
∣
∣
∣
,

�d(0)
n =

∣
∣
∣
∣
∣

φ(0) –λψ (0)

φ(1) –λψ (1) – ψ (0)

∣
∣
∣
∣
∣
.

The simplification form of solution (60) is listed as follows:

ũ1 =
4n2 + 8(t + 1)n + 4t2 + 8t – 1

(2n + 2t + 3)(2n + 2t + 1)
, ṽ1 =

(2n + 2t + 3)(2n + 2t – 1)
(2n + 2t + 1)2 , (62)

from which we can see that ũ1 possesses singularity at two straight lines 2n + 2t + 3 = 0
and 2n + 2t + 1 = 0, while ṽ1 possesses singularity at the straight line 2n + 2t + 1 = 0.

(II) When N = 2, according to Theorem 2, based on the generalized (1, 1)-fold DT, the
second-order rational solution of Eq. (1) is given as

ũn = un + d(1)
n – d(1)

n+1, ṽn =
vn + c(1)

n

1 – b(1)
n

, (63)

where

b(1)
n =

�b(1)
n

�1
, c(1)

n =
�c(1)

n

�2
, d(1)

n =
�d(1)

n

�2
, (64)
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with

�1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

λφ(0) φ(0) –λ2φ(0) + λψ (0) ψ (0)

λφ(1) + φ(0) φ(1) –λ2φ(1) – 2λφ(0) + λψ (1) + ψ (0) ψ (1)

λφ(2) + φ(1) φ(2) –λ2φ(2) – 2λφ(1) – φ(0) + λψ (2) + ψ (1) ψ (2)

λφ(3) + φ(2) φ(3) –λ2φ(3) – 2λφ(2) – φ(1) + λψ (3) + ψ (2) ψ (3)

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

�b(1)
n =

∣
∣
∣
∣
∣
∣
∣
∣
∣

λφ(0) φ(0) –λ2φ(0) ψ (0)

λφ(1) + φ(0) φ(1) –λ2φ(1) – 2λφ(0) ψ (1)

λφ(2) + φ(1) φ(2) –λ2φ(2) – 2λφ(1) – φ(0) ψ (2)

λφ(3) + φ(2) φ(3) –λ2φ(3) – 2λφ(2) – φ(1) ψ (3)

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

�2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

λφ(0) φ(0) λψ (0) ψ (0)

λφ(1) + φ(0) φ(1) λψ (1) + ψ (0) ψ (1)

λφ(2) + φ(1) φ(2) λψ (2) + ψ (1) ψ (2)

λφ(3) + φ(2) φ(3) λψ (3) + ψ (2) ψ (3)

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

�c(1)
n =

∣
∣
∣
∣
∣
∣
∣
∣
∣

–λ2ψ (0) φ(0) λψ (0) ψ (0)

–λ2ψ (1) – 2λψ (0) φ(1) λψ (1) + ψ (0) ψ (1)

–λ2ψ (2) – 2λψ (1) – ψ (0) φ(2) λψ (2) + ψ (1) ψ (2)

–λ2ψ (3) – 2λψ (2) – ψ (1) φ(3) λψ (3) + ψ (2) ψ (3)

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

�d(1)
n =

∣
∣
∣
∣
∣
∣
∣
∣
∣

λφ(0) φ(0) –λ2ψ (0) ψ (0)

λφ(1) + φ(0) φ(1) –λ2ψ (1) – 2λψ (0) ψ (1)

λφ(2) + φ(1) φ(2) –λ2ψ (2) – 2λψ (1) – ψ (0) ψ (2)

λφ(3) + φ(2) φ(3) –λ2ψ (3) – 2λψ (2) – ψ (1) ψ (3)

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

The simplification form of solution (64) is listed as follows:

ũ2 =
�1

�2
, ṽ2 =

�3

�4
, (65)

where

�1 = –813,600nt4 + 17,412n3 – 89,760n5 + 1890n – 223,920t6 – 1,230,192nt5

– 3,343,840n3t3 + 783,360t7n2 – 111,472n6 + 14,336n10 + 3072n11t

– 3,055,680n4t3 – 24,480t8 + 120,000n5t3 + 3,225,600t4n5 + 11,061n2

+ 16,896t10n2 + 3072t11 + 131,840t9n + 256n12 – 135,360t7 + 599,040t8n2

+ 3072n11 + 28,350t2 + 168,960t9n2 + 1,013,760t4n7 – 2,791,440n2t4 + 256t12

+ 506,880t8n3 + 104,256n7t – 501,360n4t – 778,800tn5 – 390,144t6n2

+ 3072t11n + 506,880t3n8 + 2,849,280t6n4 – 148,320nt3 + 8100t + 184,320t8n

+ 21,600t3 – 36,528tn3 + 3,451,392t5n5 + 56,320t9n3 – 153,792t7n – 192,240t5

– 482,112t5n3 + 112,860nt2 + 2,257,920t3n6 + 126,720n8t4 – 3,490,560n3t4

– 1,566,720n5t2 + 18,528n8 + 19,200t9 + 211,968n6t2 + 30,720n9 + 33,792t10n

+ 1,612,800t7n3 + 33,792n10t + 126,720t8n4 + 1,674,240t3n7 + 1,419,264t6n5
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– 48,384n7 + 13,056t10 + 633,600t2n8 + 264,960n8t + 1,013,760t2n7

– 227,520t4n4 + 3,064,320t5n4 – 98,514n2t2 + 1,419,264t5n6 – 1,372,320n2t3

– 68,175t4 + 142,080tn9 + 202,752t7n5 + 56,320n9t3 + 16,896n10t2

– 2,226,000n4t2 + 115,632n2t – 2,349,504n2t5 + 236,544t6n6 + 1,935,360t6n3

– 17,759n4 + 2,903,040t4n6 – 1,162,560n3t2 – 431,424tn6 – 866,304nt6

+ 202,752n7t5 + 168,960t2n9 + 1,013,760t7n4 + 55,620nt,

�2 =
(
90 + 471n + 520n4 + 949n2 + 16n6 + 480t4 + 320n3t3 + 16t6 + 144t5 + 780t3

+ 96tn5 + 1644nt + 2040tn3 + 1960nt3 + 2520nt2 + 3000n2t2 + 2700n2t

+ 1440n2t3 + 1440n3t2 + 720nt4 + 96nt5 + 240n2t4 + 360t + 144n5 + 240n4t2

+ 675t2 + 960n3 + 720n4t
)(

–3n – 60t3 – 45t2 + 48t5 + 16t6 – 36nt + 120tn3

+ 40nt3 – 120nt2 + 120n2t2 – 60n2t – 11n2 + 40n4 + 480n2t3 + 480n3t2 + 48n5

+ 16n6 + 240nt4 + 96nt5 + 240n2t4 + 320n3t3 + 240n4t + 240n4t2 + 96tn5),

�3 =
(
90 + 520n4 + 3000n2t2 + 2520nt2 + 1960nt3 + 2040tn3 + 1644nt + 471n

+ 2700n2t + 240n4t2 + 144n5 + 720n4t + 320n3t3 + 949n2 + 1440n3t2

+ 1440n2t3 + 96nt5 + 720nt4 + 240n2t4 + 360t + 16n6 + 960n3 + 96tn5 + 780t3

+ 480t4 + 675t2 + 144t5 + 16t6)(3n + 60t3 – 45t2 – 48t5 + 16t6 – 36nt + 120tn3

+ 40nt3 + 120nt2 + 120n2t2 + 60n2t – 11n2 + 40n4 – 480n2t3 – 480n3t2 – 48n5

+ 16n6 – 240nt4 + 96nt5 + 240n2t4 + 320n3t3 – 240n4t + 240n4t2 + 96tn5),

�4 =
(
–3n – 60t3 – 45t2 + 48t5 + 16t6 – 36nt + 120tn3 + 40nt3 – 120nt2 + 120n2t2

– 60n2t – 11n2 + 40n4 + 480n2t3 + 480n3t2 + 48n5 + 16n6 + 240nt4 + 96nt5

+ 240n2t4 + 320n3t3 + 240n4t + 240n4t2 + 96tn5)2.

From (65) we can see that ũ2 possesses singularity at two curves

90 + 471n + 520n4 + 949n2 + 16n6 + 480t4 + 320n3t3 + 16t6 + 144t5 + 780t3 + 96tn5

+ 1644nt + 2040tn3 + 1960nt3 + 2520nt2 + 3000n2t2 + 2700n2t + 1440n2t3

+ 1440n3t2 + 720nt4 + 96nt5 + 240n2t4 + 360t + 144n5 + 240n4t2 + 675t2

+ 960n3 + 720n4t = 0

and

–3n – 60t3 – 45t2 + 48t5 + 16t6 – 36nt + 120tn3 + 40nt3 – 120nt2 + 120n2t2 – 60n2t

– 11n2 + 40n4 + 480n2t3 + 480n3t2 + 48n5 + 16n6 + 240nt4 + 96nt5 + 240n2t4

+ 320n3t3 + 240n4t + 240n4t2 + 96tn5 = 0,
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while ṽ1 possesses singularity at the curve

–3n – 60t3 – 45t2 + 48t5 + 16t6 – 36nt + 120tn3 + 40nt3 – 120nt2 + 120n2t2 – 60n2t

– 11n2 + 40n4 + 480n2t3 + 480n3t2 + 48n5 + 16n6 + 240nt4 + 96nt5 + 240n2t4

+ 320n3t3 + 240n4t + 240n4t2 + 96tn5 = 0.

(III) When N = 3, according to Theorem 2, based on the generalized (1, 2)-fold DT, we
have the third-order rational solution of Eq. (1) as follows:

ũn = un + d(2)
n – d(2)

n+1, ṽn =
vn + c(2)

n

1 – b(2)
n

, (66)

where

b(2)
n =

�b(2)
n

�1
, c(2)

n =
�c(2)

n

�2
, d(2)

n =
�d(2)

n

�2
, (67)

with

�1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ2φ(0) λφ(0) φ(0) –λ3φ(0) + λ2ψ (0) λψ (0) ψ (0)

λ2φ(1) + 2λφ(0) λφ(1) + φ(0) φ(1) –λ3φ(1) – 3λ2φ(0) + λ2ψ (1) + 2λψ (0) λψ (1) + ψ (0) ψ (1)

λ2φ(2) + 2λφ(1) + φ(0) λφ(2) + φ(1) φ(2) –λ3φ(2) – 3λ2φ(1) – 3λφ(0) + λ2ψ (2) + 2λψ (1) + ψ (0) λψ (2) + ψ (1) ψ (2)

λ2φ(3) + 2λφ(2) + φ(1) λφ(3) + φ(2) φ(3) –λ3φ(3) – 3λ2φ(2) – 3λφ(1) – φ(0) + λ2ψ (3) + 2λψ (2) + ψ (1) λψ (3) + ψ (2) ψ (3)

λ2φ(4) + 2λφ(3) + φ(2) λφ(4) + φ(3) φ(4) –λ3φ(4) – 3λ2φ(3) – 3λφ(2) – φ(1) + λ2ψ (4) + 2λψ (3) + ψ (2) λψ (4) + ψ (3) ψ (4)

λ2φ(5) + 2λφ(4) + φ(3) λφ(5) + φ(4) φ(5) –λ3φ(5) – 3λ2φ(4) – 3λφ(3) – φ(2) + λ2ψ (5) + 2λψ (4) + ψ (3) λψ (5) + ψ (4) ψ (5)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

�2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ2φ(0) λφ(0) φ(0) λ2ψ (0) λψ (0) ψ (0)

λ2φ(1) + 2λφ(0) λφ(1) + φ(0) φ(1) λ2ψ (1) + 2λψ (0) λψ (1) + ψ (0) ψ (1)

λ2φ(2) + 2λφ(1) + φ(0) λφ(2) + φ(1) φ(2) λ2ψ (2) + 2λψ (1) + ψ (0) λψ (2) + ψ (1) ψ (2)

λ2φ(3) + 2λφ(2) + φ(1) λφ(3) + φ(2) φ(3) λ2ψ (3) + 2λψ (2) + ψ (1) λψ (3) + ψ (2) ψ (3)

λ2φ(4) + 2λφ(3) + φ(2) λφ(4) + φ(3) φ(4) λ2ψ (4) + 2λψ (3) + ψ (2) λψ (4) + ψ (3) ψ (4)

λ2φ(5) + 2λφ(4) + φ(3) λφ(5) + φ(4) φ(5) λ2ψ (5) + 2λψ (4) + ψ (3) λψ (5) + ψ (4) ψ (5)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and �b(2)
n is produced from �1 by replacing its fourth column with (–λ3φ(0), –λ3φ(1) –

3λ2φ(0), –λ3φ(2) – 3λ2φ(1) – 3λφ(0), –λ3φ(3) – 3λ2φ(2) – 3λφ(1) – φ(0), –λ3φ(4) – 3λ2φ(3) –
3λφ(2) –φ(1), –λ3φ(5) –3λ2φ(4) –3λφ(3) –φ(2))T , �c(2)

n and �d(2)
n from �2 by replacing its first

and fourth columns with (–λ3ψ (0), –λ3ψ (1) – 3λ2ψ (0), –λ3ψ (2) – 3λ2ψ (1) – 3λψ (0), –λ3ψ (3) –
3λ2ψ (2) –3λψ (1) –ψ (0), –λ3ψ (4) –3λ2ψ (3) –3λψ (2) –ψ (1), –λ3ψ (5) –3λ2ψ (4) –3λψ (3) –ψ (2))T ,
respectively. The simplification form of solution (66) is so complicated that it is omitted
here.

With symbolic computation Maple, solutions (60) or (62), (63) or (65) and (66) have
been verified by substituting them into Eq. (1). Next, we summarize a few mathematical
features of the foregoing discrete rational solutions for Eq. (1) and sum up the findings
which are shown in Tables 1 and 2. The first column in Table 1 shows the order number of
the solutions, while the second and third columns show the highest power of the polyno-
mials involved in each solution. The last column provides the background level of these
solutions. We can conclude that the highest powers in the numerator and denominator
polynomials are both 2j(2j – 1) for the rational solutions un and vn of order j, and their
background levels are 1. Through analyzing these rational solutions, we can find that they
possess singularity. Further research is needed whether or not Eq. (1) has some nonsingu-
lar rational solutions.
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Table 1 Main mathematical features of rational solutions un and vn of order j

j HPN HPD Background

1 2 2 1
2 12 12 1
3 30 30 1
. . . . . . . . . . . .
j 2j(2j – 1) 2j(2j – 1) 1

Here, HPN is the highest power in the numerator, while HPD is the highest power in the denominator.

Table 2 Main mathematical features of rational solutions un and vn of order j

j HPN HPD Background

1 6 6 1
2 20 20 1
3 42 42 1
. . . . . . . . . . . .
j 2j(2j + 1) 2j(2j + 1) 1

Here, HPN is the highest power in the numerator, while HPD is the highest power in the denominator.

It is particularly worth pointing out that we also derive some new rational solutions
from (60), (63), and (66) if we choose C1 = 1, C2 = –1 in solution (55) and expand the
vector function ϕ in Eq. (55) as two Taylor series at ε = 0 when λ = 3 + ε2. We here omit
their analytical expressions and only list their properties in Table 2. According to the same
steps for seeking the rational solutions of Eq. (1), we can also give some discrete rational
solutions for Eqs. (5) and (6), and their properties are the same as the ones of Eq. (1) in
Tables 1 and 2, so we will not discuss them here.

8 Conclusion
In this paper, we have studied the discrete bright and dark multi-soliton solutions of two
high order Toda lattice equations (5) and (6). The discrete N-fold DT (9) and (20) for
Eqs. (5) and (6) have been constructed. One-, two-, three-, and four-soliton solutions in
terms of determinant for Eqs. (5) and (6) have been derived via the resulting N-fold DT,
and the propagation and elastic interaction structures of such multi-solitons are shown
graphically: Fig. 1 exhibits the overtaking elastic interactions between the bright and dark
two-soliton solutions with N = 1; Fig. 2 shows the evolution structures of the bright and
dark one-soliton solutions with N = 1; Fig. 3 displays the overtaking elastic interactions
among the bright and dark four-soliton solutions with N = 2; Fig. 4 shows the overtaking
elastic interactions among the bright and dark three-soliton solutions with N = 2. Soli-
tonic shapes and amplitudes in Figs. 2–4 do not change before and after the interactions,
their interactions are elastic. And it is worth noting that the corresponding (2N)-soliton
solutions for both Eqs. (5) and (6) can reduce to the (2N – 1)-soliton solutions by choosing
spectral parameter λ. Moreover, the (2N)-soliton and (2N – 1)-soliton solutions make up
the N-soliton solutions for Eqs. (5) and (6). Numerical simulation results in Figs. 5–8 show
that the evolutions of the bright and dark soliton solutions of Eq. (5) are stable against a
5% noise. Compared with Eq. (5), the numerical simulation evolutions in Figs. 9–12 ex-
hibit the almost steady evolutions with a 2% small noise for Eq. (6). However, with adding
the same 5% noise to Eq. (6) as Eq. (5), the evolutions exhibit obviously strong oscillations
and instability. Numerical simulation results in Figs. 13–16 show that the evolutions of
the soliton solutions of Eq. (1) are stable against a 20% noise. When adding a 20% noise
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to the initial solutions of Eqs. (5) and (6), the soliton evolutions for Eqs. (5) and (6) exhibit
obviously strong oscillations and instability, while Eq. (1) still has stable evolutions. In fact,
when adding a 30% noise to the initial solutions for Eq. (1), the simulated evolutions of
these soliton solutions only exhibit some small oscillations. We find that the same noise
has different effect on the evolutions of the multi-soliton solutions for three different equa-
tions in the same hierarchy, and we infer that the possible reason is that the higher-order
nonlinear terms in higher-order equations have an important impact on the propagation
instability of the solitons relative to their corresponding lower-order equations. Finally,
some discrete higher-order rational solutions for Eq. (1) have been derived by applying
the discrete generalized (n, N – n)-fold DT, and the same process is also applied to Eqs. (5)
and (6). Tables 1 and 2 show a few mathematical features of these rational solutions of
Eq. (5). The results in this paper might be helpful for understanding the propagation of
nonlinear waves in soliton theory.
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