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Abstract
In this paper, an alternating segment Crank–Nicolson (ASC-N) parallel difference
scheme is proposed for the time fractional sub-diffusion equation, which consists of
the classical Crank–Nicolson scheme, four kinds of Saul’yev asymmetric schemes, and
alternating segment technique. Theoretical analysis reveals that the ASC-N scheme is
unconditionally stable and convergent by mathematical induction method. Finally,
the theoretical analysis is verified by numerical experiments, which show that the
ASC-N scheme is efficient for solving the time fractional sub-diffusion equation.
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1 Introduction
At present, the research on the fractional order differential and integral equations is at-
tracting more and more attention. This kind of fractional order differential and integral
equations are widely used in various fields of science and engineering [1, 2]. Fractional
derivatives have become an important tool to describe various complex mechanical be-
haviors [3–5]. Most of fractional differential and integral equations cannot be solved an-
alytically [6, 7]. It is necessary and important to develop numerical methods for solving
fractional differential and integral equations [8–10].

In recent years, many scholars have studied the numerical algorithms of fractional dif-
fusion equation. The finite difference method is still dominant among the existing algo-
rithms now. A class of unconditionally stable and convergent implicit difference approxi-
mate methods for time fractional diffusion equation was constructed by Zhuang Pinghui
et al. [11]. Charles Tadjeran et al. [12] examined a second order accurate numerical method
in time and in space to solve a class of initial-boundary value fractional diffusion equa-
tions with variable coefficients. The classical Crank–Nicholson (C-N) method and spatial
extrapolation are used to obtain temporally and spatially second order accurate numeri-
cal estimates [12]. Chen Changming et al. [13] presented implicit and explicit difference
methods for solving the two-dimensional anomalous subdiffusion equation, and applied
a new multivariate extrapolation to improve the accuracy [13]. Zhang, Pu et al. [14] con-
structed a Crank–Nicolson-type difference scheme for fractional subdiffusion equation
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with spatially variable coefficient [14]. Baleanu et al. [15] discussed the motion of a bead
on a wire by fractional calculus [15]. They solved the fractional Euler–Lagrange equation
numerically by using a discretization technique based on a Grünwald–Letnikov approx-
imation for the fractional derivative. Jajarmi et al. [16] investigated an efficient iterative
scheme with low computational effort for the optimal control of nonlinear fractional or-
der dynamic systems with external persistent disturbances [16]. Hajipour et al. [17] pro-
vided a new nonstandard finite difference scheme to study the dynamic treatments of a
class of fractional chaotic systems and stability analysis of fractional order systems [17].
By combining the implicit difference scheme and the preconditioned conjugate gradient
method, Wang Hong et al. [18, 19] gave a fast implicit difference method for the two/three-
dimensional fractional diffusion equation. The method has a computational work count of
O(N log N) per iteration and a memory requirement of O(N) [18, 19]. Gao Guanghua et al.
[20] derived a compact finite difference scheme for the sub-diffusion equation, which is
fourth order accuracy compact approximate for the second order space derivative [20].
Gao Guanghua et al. [21] developed two higher order difference schemes for numeri-
cally solving the one-dimensional time distributed-order fractional wave equations, one
of which is the second order convergence in time and fourth order convergence in both
space and distributed order [21]. Yaseen et al. [22] proposed a finite difference scheme
with cubic trigonometric B-spline functions for time fractional diffusion-wave equation
with reaction term [22]. The scheme is unconditional stable and convergent. Zaky et al.
[23] proposed an efficient numerical algorithm for solving the variable order fractional
Galilei advection-diffusion equation [23]. The method has the advantage of transforming
the problem into the solution of a system of algebraic equations, which greatly simplifies
it.

However, the existing serial implicit difference schemes are of relatively high computa-
tional complexity and relatively low computational efficiency. With the rapid development
of multi core and cluster technology, parallel computing is one of the main techniques to
improve the efficiency of numerical calculation [24–27]. Zhang Baolin et al. proposed the
idea which uses the Saul’yev asymmetric scheme to construct a segment implicit scheme,
and the alternative technique to establish a variety of explicit-implicit or implicit alternat-
ing parallel methods. The methods have been well applied to numerically solve integer
partial differential equations [28–31].

Some progress in parallel algorithms of fractional order partial differential equations
has been made. Most of the algorithms are studied on the parallel algorithm of alge-
braic equations from the perspective of numerical algebra. Kai Diethelm [32] proposed
to implement the fractional version of the second order Adams–Bashforth–Moulton
method on a parallel computer and discussed the precise nature of parallel method [32].
Gong Chunye et al. [33, 34] proposed an efficient parallel for Riesz and Caputo fractional
reaction-diffusion equation respectively. The parallel solver involves the parallel tridiago-
nal matrix vector multiplication, vector vector addition [33–35]. Sweilam et al. [36] con-
structed a class of parallel C-N difference schemes for time fractional parabolic equations.
The core of the method is to use the precondition conjugate gradient method to solve
Ax = b [36]. This method is established in the view of numerical algebra. In this paper,
we study the parallel algorithm based on the parallel of the traditional difference scheme
[37, 38].
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In this paper, we construct an alternating segment C-N (ASC-N) difference scheme for
time fractional sub-diffusion equation. The four kinds of Saul’yev asymmetric schemes
and the classical C-N scheme are proposed. Then we use the four kinds of Saul’yev asym-
metric scheme and the classical C-N scheme to construct an ASC-N scheme by the alter-
nating segment technology. Using the mathematical induction method, we prove that the
ASC-N scheme is unconditionally stable and convergent. Finally, the theoretical analysis
is verified by numerical experiments, which show that the ASC-N scheme is effective for
solving time fractional sub-diffusion equation.

2 Time fractional sub-diffusion equation
In this paper, we consider the time fractional sub-diffusion equation of the form [2, 3]

∂αu(x, t)
∂tα

=
∂2u(x, t)

∂x2 , 0 ≤ x ≤ L, 0 ≤ t ≤ T . (1)

Initial boundary conditions

u(0, t) = u(L, t) = 0, 0 ≤ t ≤ T ,

u(x, 0) = f (x), 0 ≤ x ≤ L,

where ∂αu(x,t)
∂tα (0 < α < 1) denotes the Caputo fractional derivative of order α of the function

u(x, t):

∂αu(x, t)
∂tα

=
1

�(1 – α)

∫ t

0

∂u(x, ξ )
∂ξ

dξ

(t – ξ )α
. (2)

By taking the finite sine transform and Laplace transform, the analytical solution for
equation (1) with the boundary conditions as above is obtained as [3]

u(x, t) =
2
L

∞∑
n=1

Eα

(
–a2n2tα

)
sin(anx)

∫ t

0
f (r) sin(anr) dr, (3)

where Eα(z) is a Mittag-Leffler function, Eα(z) =
∑∞

k=0
zk

�(αk+1) , a = π
L .

Some special Mittag-Leffler type functions are listed as follows:

E1(–z) = e–z, E2
(
–z2) = cos(z),

E 1
2

(z) =
∞∑

k=1

zk

�( k
2 + 1)

= ez2
erfc(–z),

(4)

where erfc(z) is the error function complement defined by erfc(z) = 2√
π

∫ ∞
z e–t2 dt.

3 The ASC-N scheme of fractional sub-diffusion equation
In this section, we first define tk = kτ , k = 0, 1, 2, . . . , N , and xi = ih, i = 0, 1, 2, . . . , M, where
τ = T

N , h = L
M are time and space steps, respectively. Let uk

i be the numerical approximation
of u(xi, tk).
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The time fractional derivative term can be approximated by the following scheme:

Lα
h,τ u(xi, tk+1) =

τ–α

�(2 – α)

k∑
j=0

bj
[
u(xi, tk+1–j) – u(xi, tk–j)

]
, (5)

where bj = (j + 1)α – jα , j = 0, 1, 2, . . . , N .
Four kinds of Saul’yev asymmetric scheme are constructed for equation (1).

Lα
h,τ u(xi, tk+1) =

1
2h2

[
δ2

x uk
i +

(
uk

i+1 – uk
i – uk+1

i + uk+1
i–1

)]
, (6)

Lα
h,τ u(xi, tk+1) =

1
2h2

[
δ2

x uk
i +

(
uk+1

i+1 – uk+1
i – uk

i + uk
i–1

)]
, (7)

Lα
h,τ u(xi, tk+1) =

1
2h2

[
δ2

x uk+1
i +

(
uk+1

i+1 – uk+1
i – uk

i + uk
i–1

)]
, (8)

Lα
h,τ u(xi, tk+1) =

1
2h2

[
δ2

x uk+1
i +

(
uk

i+1 – uk
i – uk+1

i + uk+1
i–1

)]
, (9)

where δ2
x uk

i = uk
i+1 – 2uk

i + uk
i–1, i = 1, 2, . . . , M – 1, k = 0, 1, 2, . . . , N – 1. Let μ = τα

h2 ,
r = μ�(2 – α). The four kinds of Saul’yev asymmetric scheme also can be rewritten as
follows. When k = 0,

(
1 +

1
2

r
)

u1
i –

1
2

ru1
i–1 = ru0

i+1 +
(

1 –
3
2

r
)

u0
i +

1
2

ru0
i–1,

–
1
2

ru1
i+1 +

(
1 +

1
2

r
)

u1
i =

1
2

ru0
i+1 +

(
1 –

3
2

r
)

u0
i + ru0

i–1,

–ru1
i+1 +

(
1 +

3
2

r
)

u1
i –

1
2

ru1
i–1 =

(
1 –

1
2

r
)

u0
i +

1
2

ru0
i–1,

–
1
2

ru1
i+1 +

(
1 +

3
2

r
)

u1
i – ru1

i–1 =
1
2

ru0
i+1 +

(
1 –

1
2

r
)

u0
i .

When k > 0,

(
1 +

1
2

r
)

uk+1
i –

1
2

ruk+1
i–1 = ruk

i+1 –
3
2

ruk
i +

1
2

ruk
i–1 +

k–1∑
j=0

cju
k–j
i + bku0

i ,

–
1
2

ruk+1
i+1 +

(
1 +

1
2

r
)

uk+1
i =

1
2

ruk
i+1 –

3
2

ruk
i + ruk

i–1 +
k–1∑
j=0

cju
k–j
i + bku0

i ,

–ruk+1
i+1 +

(
1 +

3
2

r
)

uk+1
i –

1
2

ruk+1
i–1 = –

1
2

ruk
i +

1
2

ruk
i–1 +

k–1∑
j=0cj

uk–j
i + bku0

i ,

–
1
2

ruk+1
i+1 +

(
1 +

3
2

r
)

uk+1
i – ruk+1

i–1 =
1
2

ruk
i+1 –

1
2

ruk
i +

k–1∑
j=0

cju
k–j
i + bku0

i ,

where cj = bj – bj+1, j = 0, 2, . . . . The classical C-N scheme for equation (1) is

Lα
h,τ u(xi, tk+1) =

1
2h2 δ2

x
(
uk

i + uk+1
i

)
. (10)
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Figure 1 Point diagram of the ASC-N scheme

The C-N scheme also can be rewritten as follows. When k = 0,

–
1
2

u1
i+1 + (1 + r)u1

i –
1
2

ru1
i–1

=
1
2

ru0
i+1 + (1 – r)u0

i +
1
2

ru0
i–1.

When k > 0,

–
1
2

uk+1
i+1 + (1 + r)uk+1

i –
1
2

ruk+1
i–1

=
1
2

ruk
i+1 – ruk

i +
1
2

ruk
i–1 +

k–1∑
j=0

cju
k–j
i + bku0

i .

The design of the ASC-N scheme for equation (1) is as follows. Suppose the numerical
value of m grid points needs to be calculated on each time layer. Let m = Al (A, l are inte-
gers, A is odd, and A ≥ 3, l ≥ 3). m grid points will be divided into A segments, which is
named S1, S2, . . . , SA in turn. In order to facilitate the description, set m = 25, l = 5. The de-
sign of ASC-N scheme’s segmentation is described by Fig. 1. We use × to denote the C-N
scheme in Fig. 1. S1, S5 have one inner boundary point (i = 5, i = 21), and four inner points
(i = 1, 2, 3, 4, i = 22, 23, 24, 25), respectively. S2, S3, S4 have two inner boundary points
(i = 6, 10, i = 11, 15, i = 16, 20) and three inner points (i = 7, 8, 9, i = 12, 13, 14, i = 17, 18, 19),
respectively. We apply the C-N scheme at inner points, apply alternately the Saul’yev asym-
metric scheme at inner boundary points in order to contact other inner points. Specifi-
cally, at inner boundary points (5, k + 1), (15, k + 1), (10, k + 2), (20, k + 2) and (6, k + 1),
(16, k + 1), (11, k + 2), (21, k + 2), we respectively apply Saul’yev asymmetric schemes (6),
(7). At inner boundary points (10, k + 1), (20, k + 1), (5, k + 2), (15, k + 2) and (11, k + 1),
(21, k + 1), (6, k + 2), (16, k + 2), we respectively apply Saul’yev asymmetric schemes (8), (9).
And we alternately apply (6) and (8), (7) and (9) at different time steps. Therefore, at k + 1
time step the space region will be divided into three segments (S1, S2 and S3, S4 and S5),
which are three implicit segments and can be solved independently. At k + 2 time step, the
space region will be divided into three implicit segments (S1 and S2, S3 and S4, S5). Then
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we get the ASC-N scheme for equation (1) as follows. When k = 0,

(I + rG2)U1 = (I – rG1)U0 + H0. (11)

When k > 0,

⎧⎨
⎩

(I + rG1)Uk+1 = (c0I – rG2)Uk + c1Uk–1 + · · · + ck–1U1 + bkU0 + Hk+1,

(I + rG2)Uk+2 = (c0I – rG1)Uk+1 + c1Uk + · · · + ckU1 + bk+1U0 + Hk+2,
(12)

where I is the unit matrix, k = 1, 3, 5, . . .

Hk+1 =
r
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

uk+1
0 + uk

0

0
...
0

uk+1
m+1 + uk

m+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

m×1

, H0 =
r
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u1
0 + u0

0

0
...
0

u1
m+1 + u0

m+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

m×1

,

G1 =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

G(1)
l

G2l
. . .

G2l

G(1)
2l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

M×M

,

G2 =
1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

G(2)
2l

G2l
. . .

G2l

G(2)
l

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

M×M

,

G(1)
l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 –1
–1 2 –1

. . . . . . . . .
–1 2 –1

–1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

l×l

, G(2)
l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 –1
–1 2 –1

. . . . . . . . .
–1 2 –1

–1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

l×l

,

G2l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 –1
–1 2 –1

. . . . . . . . .
–1 2 –1

–1 3 –2
–2 3 –1 (l + 1)th

–1 2 –1
. . . . . . . . .

–1 2 –1
–1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2l×2l

,
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G(1)
2l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 –1
–1 2 –1

. . . . . . . . .
–1 2 –1

–1 3 –2
–2 3 –1 (l + 1)th

–1 2 –1
. . . . . . . . .

–1 2 –1
–1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2l×2l

,

G(2)
2l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 –1
–1 2 –1

. . . . . . . . .
–1 2 –1

–1 3 –2
–2 3 –1 (l + 1)th

–1 2 –1
. . . . . . . . .

–1 2 –1
–1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2l×2l

.

Using the properties of the function g(x) = x1–α (x ≥ 1), the following results can be
obtained:

⎧⎪⎪⎨
⎪⎪⎩

1 = b0 > b1 > b2 > · · · → 0,∑k
j=1 cj = 1 – bk ,∑∞
j=1 cj = 1, 1 > 2 – 21–α = c1 > c2 > c3 > · · · → 0.

From the definitions of G1 and G2, we are easy to know that I + G1 and I + G1 are strictly
diagonally dominant matrices. Therefore, we can get that ASC-N scheme (12) for time
fractional sub-diffusion equation is uniquely solvable.

4 Theoretical analysis of the ASC-N scheme
4.1 Stability analysis of the ASC-N scheme
In order to discuss the stability of the ASC-N scheme, we need the following Kellogg
lemma [24].

Lemma 1 If ρ > 0 and P is a nonnegative real matrix, then (ρI + P)–1 exists and
‖(ρI – P)(ρI + P)–1‖2 ≤ 1.

Lemma 2 The matrices G1 and G2 of the ASC-N scheme are nonnegative real matrixes.

If G1 and G2 meet that G1 + G1
T , G2 + G2

T are nonnegative real matrices, then Lemma 2
will be established. Therefore, we only need to prove G1 + G1

T , G2 + G2
T are nonnegative
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real matrices. Sufficient and necessary conditions for the establishment of Lemma 2 are
G(1)

l + G(1)
l

T
, G(2)

l + G(2)
l

T
, G2l + G2l

T , G(1)
2l + G(1)

2l
T

, G(2)
2l + G(2)

2l
T

are nonnegative real matrixes.

G2l + GT
2l =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 –2
–2 4 –2

. . . . . . . . .
–2 4 –2

–2 6 –4
–4 6 –2 (l + 1)th line

–2 4 –2
. . . . . . . . .

–2 4 –2
–2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2l×2l

,

G2l + G2l
T is diagonally dominant three diagonal matrix, and the main diagonal elements

are positive real numbers. So G2l + G2l
T is a nonnegative real matrix. In the same way,

we can prove that G(1)
l + G(1)

l
T

, G(2)
l + G(2)

l
T

, G(1)
2l + G(1)

2l
T

, G(2)
2l + G(2)

2l
T

are nonnegative real
matrices. Therefore, G1 + G1

T , G2 + G2
T are nonnegative real matrices. In other words,

G1 and G2 are two nonnegative real matrices.
From the definitions of G(1)

l , G(2)
l , G(1)

2l , and G(2)
2l , we can know that G(1)

l and G(2)
l have the

same eigenvalues, G(1)
2l and G(2)

2l have the same eigenvalues. Therefore, G1 and G2 have the
same eigenvalues, and ‖rG1‖2 = ‖rG2‖2 ≥ 0.

The growth matrix of the ASC-N scheme for time fractional sub-diffusion equation is

T = (I + rG2)–1(I – rG1)(I + rG1)–1(I – rG2).

We can easily obtain estimates of the growth matrix by Lemmas 1 and 2. Let

T̂ = (I + rG2)T(I + rG2)–1

= (I – rG1)(I + rG1)–1(I – rG2)(I + rG2)–1,

then

‖T‖2 = ‖T̂‖2 =
∥∥(I – rG1)(I + rG1)–1(I – rG2)(I + rG2)–1∥∥

2 ≤ 1.

We suppose that ũk
i (i = 0, 1, 2, . . . , M; k = 0, 1, 2, . . . , N ) is the approximate solution of

ASC-N scheme (12), the error ε̃k
i = ũk

i – uk
i , Ek = [εk

1 , εk
2 , . . . , εk

M–1]′ satisfies

(I + rG2)E1 = (I – rG1)E0,
⎧⎨
⎩

(I + rG1)Ek+1 = (c0I – rG2)Ek + c1Ek–1 + · · · + ck–1E1 + bkE0,

(I + rG2)Ek+2 = (c0I – rG1)Ek+1 + c1Ek + · · · + ckE1 + bk+1E0,

where k = 1, 3, 5, . . . . The following result is proved using mathematical induction.
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For k = 1, λ1, λ2 are the eigenvalues of rG1, rG2, respectively.

‖T‖2 =
∥∥(I – rG1)(I + rG1)–1(I – rG2)(I + rG2)–1∥∥

2 = max

{∣∣∣∣
(

1 – λ1

1 + λ2

)2∣∣∣∣
}

≤ 1,

∥∥(I + rG2)–1(I – rG1)
∥∥

2 = max

{∣∣∣∣1 – λ2

1 + λ1

∣∣∣∣
}

≤ 1,

∥∥E1∥∥
2 =

∥∥(I + rG2)–1(I – rG1)E0∥∥
2

≤ ∥∥(I + rG2)–1(I – rG1)
∥∥

2 · ∥∥E0∥∥
2 ≤ ∥∥E0∥∥

2.

For k = 2,

∥∥E2∥∥
2 =

∥∥(I + rG1)–1[(c0I – rG2)E1 + b1E0]∥∥
2

≤ ∥∥(I + rG1)–1∥∥
2 · (∥∥(c0I – rG2)E1∥∥

2 + b1
) · ∥∥E0∥∥

2

≤ max

{∣∣∣∣ |c0 – λ1| + b1

1 + λ2

∣∣∣∣
}∥∥E0∥∥

2.

When c0 ≥ b1,
∣∣∣∣ |c0 – λ1| + b1

1 + λ2

∣∣∣∣ =
∣∣∣∣ c0 – λ1 + b1

1 + λ2

∣∣∣∣ =
∣∣∣∣1 – λ1

1 + λ2

∣∣∣∣ ≤ 1.

When c0 ≤ b1, 0 < b < 1 ⇒ –1 < 2b1 – 1 < 1,
∣∣∣∣ |c0 – λ1| + b1

1 + λ2

∣∣∣∣ =
∣∣∣∣λ1 – c0 + b1

1 + λ2

∣∣∣∣ =
∣∣∣∣λ1 + 2b1 – 1

1 + λ2

∣∣∣∣ ≤ 1.

Therefore, we have

∥∥E2∥∥
2 ≤ max

{∣∣∣∣ |c0 – λ1| + b1

1 + λ2

∣∣∣∣
}

· ∥∥E0∥∥
2 ≤ ∥∥E0∥∥

2.

For k = 3,

∥∥E3∥∥
2 =

∥∥(I + rG2)–1[(c0I – rG1)E2 + c1E1 + b2E0]∥∥
2

=
∥∥(I + rG2)–1∥∥

2 · ∥∥(c0I – rG1)E2 + c1E1 + b2E0∥∥
2

≤ ∥∥(I + rG1)–1∥∥
2 · (∥∥(c0I – rG2)

∥∥
2 + c1 + b2

) · ∥∥E0∥∥
2

≤ ∥∥(I + rG1)–1∥∥
2 · (∥∥(c0I – rG2)

∥∥
2 + b1

) · ∥∥E0∥∥
2

≤ max

{∣∣∣∣ |c0 – λ1| + b1

1 + λ2

∣∣∣∣
}∥∥E0∥∥

2

≤ ∥∥E0∥∥
2.

Suppose that ‖Ej‖2 ≤ ‖E0‖2, j ≤ 2k. We have

∥∥E2k+1∥∥
2 =

∥∥(I + rG1)–1[(c0I – rG2)E2k + c1E2k–1 + · · · + b2kE0]∥∥
2

≤ ∥∥(I + rG1)–1∥∥
2 · (‖c0I – rG2‖2 + c1 + · · · + b2k

) · ∥∥E0∥∥
2
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=
∥∥(I + rG1)–1∥∥

2 · (‖c0I – rG2‖2 + b1
) · ∥∥E0∥∥

2

≤ ∥∥E0∥∥
2,

∥∥E2k+2∥∥
2 =

∥∥(I + rG2)–1[(c0I – rG1)E2k+1 + c1E2k + · · · + b2k+1E0]∥∥
2

≤ ∥∥(I + rG2)–1∥∥
2 · (‖c0I – rG1‖2 + c1 + · · · + b2k+1

) · ∥∥E0∥∥
2

=
∥∥(I + rG2)–1∥∥

2 · (‖c0I – rG1‖2 + b1
) · ∥∥E0∥∥

2

≤ ∥∥E0∥∥
2.

In summary, we have ‖Ek‖2 ≤ ‖E0‖2, k = 1, 2, 3, . . . . Hence, the following theorem is ob-
tained.

Theorem 1 ASC-N scheme (12) for time fractional sub-diffusion equation (1) is uncondi-
tionally stable.

4.2 Accuracy of the ASC-N scheme
The ASC-N scheme will be expanded as the Taylor series at the point (xi, tk+1). Let u(xi, tk)
be the exact solution of the time fractional sub-diffusion equation at the mesh point (xi, tk).

Lemma 3 Suppose that u(x, t) is the exact solution of the time fractional sub-diffusion
equation and u(x, t) ∈ C(4,2)([0, L] × [0, T]), then

Lα
h,τ u(xi, tk+1) =

∂αu(xi, tk+1)
∂tα

– θτ
∂α+1u(xi, tk+1)

∂tα+1 + r1,

where r1 ≤ Cτ 2–α , C is a constant, 0 < θ < 1.

Proof

Lα
h,τ u(xi, tk+1)

=
∂αu(xi, tk+1)

∂tα
+

1
�(1 – α)

k∑
j=0

∫ (j+1)τ

jτ

∂2u(xi, ξ )
∂2ξ

(tj+1 – ξ )(tj – ξ )
2(tk+1 – ξ )α

dξ

=
∂αu(xi, tk+1)

∂tα
– θτ

∂α+1u(xi, tk+1)
∂tα+1

+
1

�(1 – α)

k∑
j=0

∫ (j+1)τ

jτ

∂2u(xi, ξ )
∂2ξ

1
(tk+1 – ξ )α

(
θτ +

(tj+1 – ξ )(tj – ξ )
2

)
dξ

+ O
(
τ 2–α

)
,

r1 =
1

�(1 – α)

k∑
j=0

∫ (j+1)τ

jτ

∂2u(xi, ξ )
∂2ξ

1
(tk+1 – ξ )α

(
θτ +

(tj+1 – ξ )(tj – ξ )
2

)
dξ + O

(
τ 2–α

)
.

From equation (1), we have

∂α+1u(x, t)
∂tα+1 =

1
�(1 – α)

∫ t

0

∂2u(x, ξ )
∂2ξ

dξ

(t – ξ )α
, 0 < α ≤ 1.
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Set cu is a constant depending only on ∂2u(x,t)
∂2t ,

1
�(1 – α)

k∑
j=0

∫ (j+1)τ

jτ

∂2u(x, ξ )
∂2ξ

dξ

(tk+1 – ξ )α

≤ cu

�(1 – α)

k∑
j=0

∫ (j+1)τ

jτ

dξ

(tk+1 – ξ )α

=
cuτ

1–α

(1 – α)�(1 – α)

k∑
j=0

[
(k + 1 – j) – (k – j)

]

=
cu(k + 1)
�(2 – α)

τ 1–α ,

1
�(1 – α)

k∑
j=0

∫ (j+1)τ

jτ

∂2u(x, ξ )
∂2ξ

(tj+1 – ξ )(tj – ξ )
2(tk+1 – ξ )α

dξ ≤ cuτ
2–α .

Therefore,

r1 =
1

�(1 – α)

k∑
j=0

∫ (j+1)τ

jτ

∂2u(xi, ξ )
∂2ξ

1
(tk+1 – ξ )α

(
θτ +

(tj+1 – ξ )(tj – ξ )
2

)
dξ + O

(
τ 2–α

)

≤
(

k + 1
�(2 – α)

+ 1
)

cuτ
2–α + O

(
τ 2–α

) ≤ Cτ 2–α .

This completes the proof. �

First, the truncation error Ti,k+1
cn of the C-N scheme will be analyzed at the inner points

for the ASC-N scheme.

Ti,k+1
cn

= Lα
h,τ u(xi, tk+1) –

1
2h2 δ2

x
(
u(xi, tk) + u(xi, tk+1)

)

=
∂αu(x, t)

∂tα
–

τ

2
∂α+1u(x, t)

∂tα+1 + r1 – uxx(xi, tk) +
τ

2
utxx(xi, tk+1)

–
h2

12
uxxxx(xi, tk+1) –

τ 2

4
uttxx(xi, tk+1) + O

(
τ 2–α + h2)

= O
(
τ 2–α + h2).

Second, the truncation error Ti,k+1
6 of Saul’yev asymmetric scheme (6) will be analyzed

at the inner boundary point for the ASC-N scheme for space.

Ti,k+1
6

= Lα
h,τ u(xi, tk+1) –

1
2h2

{
δ2

x u(xi, tk) +
[
u(xi+1, tk) – u(xi, tk) – u(xi, tk+1) + u(xi–1, tk+1)

]}

=
∂αu(x, t)

∂tα
–

τ

4
∂α+1u(x, t)

∂tα+1 + r1 +
τ

2h
utx(xi, tk+1) –

τ 2

4h
uttx(xi, tk+1) +

τh
12

utxxx(xi, tk+1)

+
τ

4
utxx(xi, tk+1) –

τ 2

8
uttxx(xi, tk+1) –

h2

12
uxxxx(xi, tk+1) + O

(
τ 2–α + h2).
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The truncation error Ti,k+1
8 of Saul’yev asymmetric scheme (8) will be analyzed at the

inner boundary point for the ASC-N scheme for space.

Ti,k+1
8

= Lα
h,τ u(xi, tk+1) –

1
2h2

{
δ2

x u(xi, tk) +
[
u(xi+1, tk+1) – u(xi, tk+1) – u(xi, tk) + u(xi–1, tk)

]}

=
∂αu(x, t)

∂tα
–

τ

4
∂α+1u(x, t)

∂tα+1 + r1 –
τ

2h
utx(xi, tk+1) +

τ 2

4h
uttx(xi, tk+1) –

τh
12

utxxx(xi, tk+1)

+
τ

4
utxx(xi, tk+1) –

τ 2

8
uttxx(xi, tk+1) –

h2

12
uxxxx(xi, tk+1) + O

(
τ 2–α + h2).

The first three terms τ
2h utx(xi, tk+1), τ2

4h uttx(xi, tk+1), τh
12 utxxx(xi, tk+1) of Ti,k+1

6 and Ti,k+1
8

have the same form but opposite sign. So alternating Saul’yev asymmetric schemes (6)
and (8) can counteract partial error and the three terms will disappear. And the terms
τ
4 utxx(xi, tk+1) of (6) and (8) can disappear with – τ

4
∂α+1u(x,t)

∂tα+1 . So, alternating Saul’yev asym-
metric schemes (6) and (8), we also can have O(τ 2–α + h2).

In the same way, alternating Saul’yev asymmetric schemes (7) and (9) we also can have
O(τ 2–α + h2). The truncation error of ASC-N at the inner boundary points is O(τ 2–α + h2).

Therefore, we have the following theorem.

Theorem 2 The truncation error of ASC-N scheme (12) for time fractional sub-diffusion
equation (1) is O(τ 2–α + h2).

4.3 Convergence analysis of the ASC-N scheme
Define ek

i = u(xi, tk) – uk
i , ek = (ek

1, ek
2, . . . , ek

M–1)T , and ‖ek‖∞ = max1≤i≤m–1 |ek
i |. Using e0 = 0,

substitution into ASC-N scheme (12) leads to

⎧⎨
⎩

(I + rG1)ek+1 = (c0I – rG2)ek + c1ek–1 + · · · + cke1 + Rk+1,

(I + rG2)ek+2 = (c0I – rG1)ek+1 + c1ek + · · · + ck+1e1 + Rk+2,
(13)

where ‖Rj‖∞ = τα�(2 – α)(τ 2–α + h2) ≤ C1(τ 2 + ταh2), j = 1, 2, 3, . . . , C1 is a constant.

Lemma 4 Suppose that ek is the solution of (13), then ‖ek‖∞ ≤ b–1
k–1C(τ 2 + ταh2), where

k = 1, 2, . . . , N and C is a positive constant.

Proof Lemma 4 can be proved using mathematical induction.
When k = 1,

∥∥e1∥∥∞ =
∥∥(I + rG2)–1R1∥∥∞ ≤ b–1

0 C1
(
τ 2 + ταh2).

When k = 2,

∥∥e2∥∥∞ =
∥∥(I + rG1)–1[(c0I – rG2)e1 + R2]∥∥∞

≤ b–1
1

∥∥(I + rG1)–1∥∥
2 · (∥∥(c0I – rG2)E1∥∥

2 + b1
)∥∥R2∥∥∞

≤ b–1
1 C1

(
τ 2 + ταh2).
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Suppose that ‖ej‖∞ ≤ b–1
j C1(τ 2 + ταh2), j = 2k. Then we also have

∥∥e2k+1∥∥∞

=
∥∥(I + rG1)–1[(c0I – rG2)e2k + c1e2k–1 + · · · + c2k–1E1 + R2k+1]∥∥∞

≤ b–1
2k

∥∥(I + rG1)–1∥∥
2 · (‖c0I – rG2‖2 + c1 + · · · + c2k–1 + b2k

) · ∥∥R2k+1∥∥∞

= b–1
2k

∥∥(I + rG1)–1∥∥
2 · (‖c0I – rG2‖2 + b1

) · ∥∥R2k+1∥∥∞

≤ b–1
2k C1

(
τ 2 + ταh2),

∥∥e2k+2∥∥∞

=
∥∥(I + rG2)–1[(c0I – rG1)e2k+1 + c1e2k + · · · + c2ke1 + b2k+1R2k+1]∥∥∞

≤ b–1
2k+1

∥∥(I + rG2)–1∥∥
2 · (‖c0I – rG1‖2 + c1 + · · · + b2k+1

) · ∥∥R2k+2∥∥∞

= b–1
2k+1

∥∥(I + rG2)–1∥∥
2 · (‖c0I – rG1‖2 + b1

) · ∥∥R2k+2∥∥∞

≤ b–1
2k+1C1

(
τ 2 + ταh2).

In summary, we have ‖ej‖∞ ≤ b–1
j C1(τ 2 +ταh2), j = 1, 2, . . . , N . To sum up, for the ASC-N

scheme, we have |ek+1
l | ≤ b–1

k C1(τ 2 + ταh2), kατα ≤ T , and

lim
k→∞

b–1
k

kα
= lim

k→∞
k–α

(k + 1)1–α – k1–α
= lim

k→∞
k–1

(1 + 1
k )1–α – 1

= lim
k→∞

k–1

(1 – α)k–1 =
1

(1 – α)
.

Thus

∥∥ek∥∥∞ ≤ C̃kα
(
τ 2 + ταh2) = C̃kατα

(
τ 2–α + h2) ≤ C̃Tα

(
τ 2–α + h2),

where C̃ = C1
b–1

k
kα is a constant. �

Hence, the following theorem is obtained.

Theorem 3 Let uk
i be the approximate value of u(xi, tk) computed by use of ASC-N

scheme (12). Then there is a positive constant C such that |uk
i – u(xi, tk)| ≤ C(τ 2–α + h2),

i = 1, 2, . . . , M – 1, k = 1, 2, . . . , N .

5 Numerical examples
In this section, we will present numerical examples to demonstrate that the ASC-N
scheme is an effective numerical method for time fractional sub-diffusion equation and
verify the theoretical analysis of the ASC-N scheme.

We consider the following time fractional sub-diffusion equation [3]:

∂αu(x, t)
∂tα

=
∂2u(x, t)

∂x2 , 0 ≤ x ≤ 2, t > 0.

Boundary conditions: u(0, t) = u(2, t) = 0.
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Table 1 Comparison of exact solution and numerical solutions

0.25 0.5 1 1.5 CPU times

Exact solution 0.108947 0.191955 0.236690 0.155975 3350.4 s
Solution of ID 0.107779 0.191948 0.235167 0.155302 3.8089 s
Solution of ASC-N 0.107737 0.191843 0.235051 0.155234 0.3981 s

Figure 2 Displacement of ASC-N scheme’s
numerical solution for various α

Initial condition:

u(x, 0) = f (x) =

⎧⎨
⎩

2x, 0 ≤ x ≤ 0.5,

(4 – 2x)/3, 0.5 ≤ x ≤ 2.

The function f (x) represents the temperature distribution in a bar generated by a point
heat source kept in the point x = 0.5 for long enough.

At t = 0.4, α = 0.5, we compare the exact solution and the numerical solutions of the
implicit difference (ID) scheme and the ASC-N scheme. For the exact solution, the series in
equation (3) is truncated after 20 terms. For numerical solution, we take M = 40, N = 1000.
The computed results and CPU times are listed in Table 1.

In terms of the computational accuracy, we can see that the numerical solution of the
ASC-N and ID schemes is close to the exact solution from Table 1. In terms of computa-
tional efficiency, the computing times (CPU times) of the ASC-N and ID schemes have big
advantage compared with the exact solution. Therefore, the difference scheme is effective
for solving the time fractional sub-diffusion equation.

From Fig. 2, we compare the response of the diffusion wave system with different values
of α at t = 0.4 for the numerical solution of the ASC-N scheme. The ASC-N scheme can
be easily applied to solve the time fractional sub-diffusion equation.

Next we will analyze the change cure of the relative error (RE) with time steps for the
ASC-N scheme. We take the exact solution u(xi, tk) as the control solution, and the nu-
merical solution uj

i of the ASC-N scheme as a perturbation solution. The definition of RE
is as follows:

RE(i) =
N∑

j=1

|u(xi, tj) – ui
j|

u(xi, tj)
.
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Figure 3 Change curve of RE with time steps

Figure 4 Distribution of DTE at space points

Then we will analyze the distribution of the difference total energy (DTE) at space grid
points. The definition of DTE is as follows:

DTE(j) =
1
2

M∑
i=1

(
u(xi, tj) – ui

j
)2.

From Fig. 3, the RE of ASC-N scheme is less than 0.75. The RE is a little big in the first few
steps and decreases rapidly with the time step. Therefore, we can know that the ASC-N
scheme of the time fractional sub-diffusion equation is stable.

The DTE of ASC-N scheme is between 0 and 0.025 from Fig. 4. It can also demonstrate
that the ASC-N scheme is very close to the exact solution. The DTE appears to fluctuate
near the grids 8, 16, 24, 32. And its maximum values appear near the grids 8 and 16. The
grids 8, 16, 24, 32 are the “inter boundary point” of the ASC-N scheme. The four kinds
of Saul’yev scheme are alternatively applied at the “inter boundary point”. The classic C-N
scheme is applied at the inter point for the ASC-N scheme. The truncation error of the C-
N scheme is better than the four kinds of Saul’yev scheme. So the DTE of “inter boundary
point” is little bigger than the DTE of inter point. The result of Fig. 4 is consistent with
theoretical analysis.

The next example will be performed to illustrate the computational efficiency and con-
vergence rate of the ASC-N scheme. Denote

L2
h,τ =

√√√√ M∑
i=1

(
u(xi, tM) – uM

i
)2, order 1 = log2

L2
τ

L2
τ /2

, order 2 = log2
L2

h
L2

h/2
.

Firstly, the numerical accuracy in temporal direction is verified. Fixing the spatial step
size h (h = 1/80), Table 2 gives the computational results with different temporal step sizes
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Table 2 The numerical errors and convergence orders in temporal direction (h = 1/80)

α N ID scheme ASC-N scheme

L2h,τ order 1 CPU (times) L2h,τ order 1 CPU (times)

0.8 400 1.553456e–4 — 0.592518 1.615210e–4 — 0.121606
800 6.820719e–5 1.187486 1.572824 6.961018e–5 1.214352 0.272843
1600 2.980843e–5 1.194203 4.995801 3.013909e–5 1.207662 0.757238
3200 1.299478e–5 1.197787 17.68847 1.307457e–5 1.204872 2.459121
6400 5.657158e–6 1.199783 67.09086 5.676690e–6 1.203642 8.867395

0.5 400 3.023084e–5 — 0.614962 3.901743e–5 — 0.133529
800 1.072534e–5 1.494996 1.557829 1.244259e–5 1.648831 0.260445
1600 3.788676e–6 1.501258 4.963961 4.138894e–6 1.587970 0.741085
3200 1.332788e–6 1.507246 17.56794 1.406616e–6 1.557016 2.419346
6400 4.666755e–7 1.513955 66.60791 4.827127e–7 1.542992 8.741754

0.4 400 1.399030e–5 — 0.621470 2.705434e–5 — 0.136365
800 4.601493e–6 1.604253 1.568314 7.015947e–6 1.947150 0.266416
1600 1.501415e–6 1.615778 4.983283 1.980694e–6 1.824631 0.761807
3200 4.849224e–7 1.630497 17.93907 5.825449e–7 1.765565 2.535364
6400 1.543647e–7 1.651411 67.22779 1.746222e–7 1.738132 9.100791

Table 3 The numerical errors and convergence orders in spatial direction (α = 0.5, τ = h2)

M ID scheme ASC-N scheme

L2h,τ order 2 CPU (times) L2h,τ order 2 CPU (times)

20 6.679077e–3 — 0.083528 9.475760e–3 — 0.032612
40 1.721474e–3 1.956004 0.121359 2.019811e–3 2.230020 0.040072
80 4.354177e–4 1.983172 1.131083 4.736757e–4 2.092249 0.200203
160 1.094024e–4 1.992754 27.12532 1.142419e–4 2.051806 2.578617
320 2.741480e–5 1.996618 614.8381 2.802388e–5 2.027363 87.60506

using the same machine with α = 0.8, 0.5, 0.4, respectively. From Table 2, we can see that
the numerical accuracy in temporal direction is order 2 – α for these three cases.

Secondly, we compute the numerical accuracy in spatial direction. Take M = 20, 40, 80,
160, 320 for the ID and ASC-N schemes, and let τ = h2 (N = M2/10). From Table 3, we can
see that the numerical accuracy in spatial direction is second order for the ID and ASC-N
schemes. The same convergence orders of spatial and temporal direction are obtained for
both of them.

In terms of computational efficiency, the CPU times of the ASC-N have big advantage
compared with the ID scheme. From Tables 2 and 3, we know that the parallel computing
advantages of the ASC-N scheme will be more obvious with the increase of the number
of time layers or space lattice points. Comparing with the ID scheme the CPU times of
the ASC-N scheme can save near 90%. Comprehensively considering the computational
efficiency and computational accuracy, the ASC-N scheme can be more effective to solve
the time fractional sub-diffusion equation. When the long time course is calculated, the
parallel computing advantages of the ASC-N scheme will be more evident.

6 Conclusion
An alternating segment Crank–Nicolson (ASC-N) difference scheme for solving the time
fractional sub-diffusion equation has been constructed. The computing accuracy, stability,
and convergence of the ASC-N scheme have been analyzed. The results of the numerical
experiments are consistent with the theoretical analysis. The computing time of the ASC-
N scheme can save near 90% compared with the classic implicit difference scheme.
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The ASC-N scheme has ideal computing accuracy and computing efficiency. The par-
allel computing advantages of the ASC-N scheme will be more obvious for the long time
course or the high dimensional fractional diffusion equation.
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