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Abstract
In this paper, based on gauge transformation of Lax pairs, we construct an N-fold
Darboux transformation for the discrete Ragnisco–Tu equation which is a typical
member in the Ragnisco–Tu hierarchy. By using the N-fold Darboux transformation,
new multi-soliton solutions of the discrete Ragnisco–Tu equation can be directly
constructed starting from a seed solution.
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1 Introduction
It is well known that constructing explicit solutions for an integrable system, whether con-
tinuous or discrete, plays an important role in describing and explaining nonlinear phe-
nomena such as nonlinear optics effect, fusion reaction in plasma physics, superconduc-
tion phenomenon, magnetohydrodynamic phenomenology, etc. Furthermore, the inves-
tigation of integrable discrete systems and their related properties has always been impor-
tant and has become a focus of recent research. In recent years, a great deal of progress
has been made on the theory of discrete integrable systems. Lots of important nonlin-
ear integrable differential-difference equations have been obtained [1–12]. In particular,
constructing exact solutions for a differential-difference equation is one of the most fun-
damental and significant topics. There are some methods to construct solutions such as
the inverse scattering transform method [13], the bilinear transformation method of Hi-
rota [14], the Bäcklund and Darboux transformation techniques [15, 16], the Fokas uni-
fied approach [17], the long-time asymptotics approach [18], and so on. Among them, the
Darboux transformation is the most effective technique to find explicit solutions of the in-
tegrable differential-difference equations [10, 11, 17–26]. This method based on Lax pairs
has been proven to be one of the most fruitful algorithmic procedures to get explicit so-
lutions of nonlinear evolution equations. In this paper, we construct an N-Fold Darboux
transformation of Lax pair of the discrete Ragnisco–Tu equation, new multi-soliton solu-
tions can be directly constructed starting from a seed solution.
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The main purpose of the present paper is to construct the N-fold Darboux transforma-
tion of the following discrete Ragnisco–Tu equation [27, 28]:

⎧
⎨

⎩

un,t = un+1 – u2
nvn,

vn,t = unv2
n – vn–1,

(1)

where un, vn are two potentials. System (1) is a member of the Ragnisco–Tu hierarchy and
admits the following Lax pair:

Eψn = Unψn =

(
λ + unvn un

vn 1

)(
φ1

ϕ2

)

, (2)

dψn

dt
= Vnψn, Vn =

(
V11 V12

V21 V22

)

=

(
1
2λ un

vn–1 – 1
2λ

)

, (3)

where the shift operator E is defined as

Efn = fn+1, E–1fn = fn–1 (n ∈ Z),

and λ is the spectral parameter and λt = 0. System (1) can be obtained from the following
discrete zero-curvature equation:

Un,t – (EVn)Un + UnVn = 0.

Therefore, in this paper, we construct the N-fold Darboux transformation for Eq. (1).
Outline of this paper is organized as follows. In Sect. 2, based on its Lax pairs, the N-fold
Darboux transformation is constructed for Eq. (1). In Sect. 3, as one of the applications of
the N-fold Darboux transformation, we give some exact solutions of Eq. (1). Conclusions
are made in the last section.

2 N-Fold DT of Ragnisco–Tu system
At present, much work has been done on a single Darboux transformation (DT) of the
Lax integrable nonlinear integrable systems [29–32]. Here we would like to construct an
N-fold DT for the Ragnisco–Tu system (1). For this purpose, we search for the following
gauge transformation:

ψ̃n = Tnψn, (4)

which can change the Lax pair (2) and (3) into

ψ̃n+1 = Ũnψ̃n, ψ̃nt = Ṽnψ̃n,

with

Ũn = Tn+1UnT–1
n , Ṽn = (Tnt + TnVn)T–1

n . (5)
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To make Ũn, Ṽn and Un, Vn have the same form respectively, we take φn = (φ1n,φ2n)T ,
ϕn = (ϕ1n,ϕ2n)T as two basic solutions of the Lax pair (2) and (3) and define a 2 × 2 matrix
Tn by

Tn =

(
T11 T12

T21 T22

)

, (6)

where T11, T12, T21, T22 depend on variables n and t:

T11 = λN +
N–1∑

i=0

T11
i (n)λi, T12 =

N–1∑

i=0

T12
i (n)λi,

T21 =
N–1∑

i=0

T21
i (n)λi, T22 = λN +

N–1∑

i=0

T22
i (n)λi,

(7)

and T11
i (n), T12

i , T21
i (n), T22

i (n) can be determined by the following linear algebraic system:

N–1∑

i=0

T11
i (n)λi

j + αj

N–1∑

i=0

T12
i (n)λi

j = –λN
j ,

N–1∑

i=0

T21
i (n)λi

j + αj

N–1∑

i=0

T22
i (n)λi

j = –αjλ
N
j ,

(8)

with

αj(n) =
φ2n(λj) – γjϕ2n(λj)
φ1n(λj) – γjϕ1n(λj)

(j = 1, 2, . . . , 2N), (9)

λj and γj (λj �= λk , γj �= γk , as k �= j) are some parameters suitably chosen such that the
determinants of coefficients for system (8) are nonzero.

From (7)–(9), it is easy to see that

det Tn = T11(λj)T22(λj) – T12(λj)T21(λj), (10)

where det Tn is a (2N)th-degree polynomial in λ.
On the other hand, from (8) we have

T11(λj) = –αjT12(λj), T21(λj) = –αjT22(λj).

Therefore,

det Tn(λj) = 0,

which implies that λj (1 ≤ j ≤ 2N ) are 2N roots of det Tn, that is,

det Tn(λ) =
2N∏

j=1

(λ – λj). (11)

By using the above fact, we can prove the following proposition.
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Proposition 1 The matrix Ũn defined by (5) has the same form as Un, that is,

Ũn =

(
λ + ũnṽn ũn

ṽn 1

)

,

in which the transformation formulae between old and new potentials are defined by

ũn = un – T12
N–1(n), ṽn = vn + T21

N–1(n + 1), (12)

the transformation (ψn, un, vn) → (ψ̃n, ũn, ṽn) is usually called a DT of the spectral prob-
lem (2).

Proof Let T–1
n = T∗

n / det Tn and

Tn+1UnT∗
n =

(
f11(λ, n) f12(λ, n)
f21(λ, n) f22(λ, n)

)

.

It is easy to see that f11(λ, n) and f22(λ, n) are (2N + 1)th-degree polynomials in λ, f12(λ, n)
and f21(λ, n) are 2Nth-degree polynomials in λ, respectively. From (2) and (9), we can find
that

αj(n + 1) =
μj(n)
νj(n)

, (13)

where μj(n) = vn + αj(n), νj(n) = λj + unvn + unαj(n) (j = 1, 2, . . . , 2N ).
By virtue of (11) and (13), it can be verified that λj (j = 1, 2, . . . , 2N ) are roots of fk,l(λ, n)

(k, l = 1, 2). Again noticing (8), we can conclude that

det Tn|fk,l(λ, n) (k, l = 1, 2).

Therefore, we have

Tn+1UnT∗
n = (det Tn)Pn = (det Tn)

(
p11

(1)λ + p11
(0) p12

(0)

p21
(0) p22

(1)λ + p22
(0)

)

,

where p(l)
ij (i, j = 1, 2; l = 0, 1) are independent of λ. At the same time, the above equation

can be rewritten as

Tn+1Un = PnTn. (14)

By comparing the coefficients of λN+1, λN in (14), we obtain

p(1)
11 = p(0)

22 = 1, p(1)
22 = 0,

p(0)
11 = unvn + T11

N–1(n + 1) – T11
N–1(n) = ũnṽn,

p(0)
12 = un – T12

N–1(n) = ũn,

p(0)
21 = vn + T21

N–1(n + 1) = ṽn.

Thus we complete the proof. �
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Proposition 2 Under transformation (4), the matrix Ṽn defined by (5) has the same form
as Vn, that is,

Ṽn =

(
1
2λ ũn

ṽn–1 – 1
2λ

)

,

the old potentials un and vn are mapped into new ũn and ṽn according to the same DT
Eq. (4).

Proof Let T–1
n = T∗

n / det Tn and

(Tnt + TnVn)T∗
n =

(
g11(λ, n) g12(λ, n)
g21(λ, n) g22(λ, n)

)

.

With a direct calculation we know that g11(λ, n), g22(λ, n) or g12(λ, n), g21(λ, n) are (2N +
1)th or 2N th polynomials in λ, respectively. It can be checked that λj (j = 1, 2, . . . , 2N ) are
roots of gk,l(λ, n) (k, l = 1, 2). And the matrix (Tnt + TnVn)T∗

n is written as

(Tnt + TnVn)T∗
n = (det Tn)Rn = (det Tn)

(
r(1)

11 λ + r(0)
11 r(0)

12

r(0)
21 r(1)

22 λ + r(0)
22

)

,

namely

Tnt + TnVn = RnTn, (15)

where rl
ij (i, j = 1, 2; l = 0, 1) are independent of λ. Comparing the coefficients of λi (i =

N + 1, N , N – 1) in Eq. (15), we gain the following formulas:

r(1)
11 = –r(1)

22 =
1
2

, r(0)
11 = r(0)

22 = 0,

r(0)
12 = un – T12

N–1(n) = ũn,

r(0)
21 = vn–1 + T21

N–1(n) = ṽn–1.

The proof is thus completed. �

From the fact of equivalence between differential-difference Eq. (5) and the discrete
zero-curvature equation Ũnt – Ṽn+1Ũn + ŨnṼn = 0, with the help of Proposition 1 and
Proposition 2, we obtain the following proposition.

Theorem 1 The solutions (un, vn) of the Ragnisco–Tu system (1) are mapped into new so-
lutions (ũn, ṽn) under the N-fold DT (4) and (12): (ψn, un, vn) → (ψ̃n, ũn, ṽn).

3 Applications of DT and exact solutions
In this section, we will give some exact solutions of the Ragnisco–Tu system (1) via trans-
formations (4) and (12). Substituting the trivial solution un = 1, vn = 1 into the Lax pair (2)
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and (3), we can give two real basic solutions as follows:

φn =
(λi + 2 +

√

λ2
i + 4

2

)n

exp

(
√

λ2
i + 4

2
t
)(

1√
λ2

i +4–λi
2

)

, (16)

ϕn =
(λi + 2 –

√

λ2
i + 4

2

)n

exp

(–
√

λ2
i + 4

2
t
)(

1

– λi+
√

λ2
i +4

2

)

. (17)

According to (9), we have

αi(n) =
�i

√
λ2

i +4–λi
2 + γi

√
λ2

i +4+λi
2

�i – γi
, (18)

αi(n + 1) =
�i

√
λ2

i +4–λi+2
2 + γi

√
λ2

i +4+λi–2
2

�i

√
λ2

i +4+λi+2
2 + γi

√
λ2

i +4–λi–2
2

, (19)

where �i = (λi+2+
√

λ2
i +4)2n

(4λi)n exp(
√

λ2
i + 4t), i = 1, 2, . . . , 2N .

Solving the linear algebraic system (8) by using Cramer’s rule, we have

T11
N–i =

	T11
N–i

	1
, T12

N–i =
	T12

N–i
	1

(20)

with

	1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

λN–1
1 λN–2

1 . . . λ1 1 α1λ
N–1
1 α1λ

N–2
1 · · · α1λ1 α1

λN–1
2 λN–2

2 . . . λ2 1 α2λ
N–1
2 α2λ

N–2
2 · · · α2λ2 α2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
λN–1

2N λN–2
2N . . . λ2N 1 α2NλN–1

2N α2NλN–2
2N · · · α2Nλ2N α2N

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and 	T11
N–i(n) is produced from 	1 by replacing its ith column with (–λN

1 , –λN
2 , . . . , –λN

2N ),
	T12

N–i(n) is produced from 	1 by replacing its (N + i)th column with (–λN
1 , –λN

2 , . . . , –λN
2N )

where i = 1, 2, . . . , N . Similarly, we have

T21
N–i =

	T21
N–i

	2
, T22

N–i =
	T22

N–i
	2

(21)

with

	2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

λN–1
1 λN–2

1 . . . λ1 1 α1λ
N–1
1 α1λ

N–2
1 · · · α1λ1 α1

λN–1
2 λN–2

2 . . . λ2 1 α2λ
N–1
2 α2λ

N–2
2 · · · α2λ2 α2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
λN–1

2N λN–2
2N . . . λ2N 1 α2NλN–1

2N α2NλN–2
2N · · · α2Nλ2N α2N

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and 	T21
N–i(n) is produced from 	2 by replacing its ith column with (–α1λ

N
1 , –α2λ

N
2 , . . . ,

–α2NλN
2N ), 	T22

N–i(n) is produced from 	2 by replacing its (N + i)th column with (–α1λ
N
1 ,

–α2λ
N
2 , . . . , –α2NλN

2N ), where i = 1, 2, . . . , N .
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On the basis of (19) and (20), we can derive a new solution to system (1), here we discus
three cases when N = 1, 2, 3.

(I) When N = 1, let λ = λi (i = 1, 2). Solving the linear system (8) leads to

T12
0 (n) =

	T12
0 (n)
	1

, T21
0 (n) =

	T21
0 (n)
	2

(22)

with

	1 = 	2 =

∣
∣
∣
∣
∣

1 α1

1 α2

∣
∣
∣
∣
∣
, T12

0 (n) =

∣
∣
∣
∣
∣

1 –λ1

1 –λ2

∣
∣
∣
∣
∣
, T21

0 (n) =

∣
∣
∣
∣
∣

–α1λ1 α1

–α2λ2 α2

∣
∣
∣
∣
∣
.

Hence, an explicit solution of Eq. (1) is obtained as follows:

ũn = 1 –
2(λ1 – λ2)(�1 – γ2)(�2 – γ2)

�1
, (23)

where

�1 = �1�2

(√

4 + λ2
2 –

√

4 + λ2
1 + λ1 – λ2

)
+ �1γ2

(√

4 + λ2
2 +

√

4 + λ2
1 + λ2 – λ1

)

+ �2γ1

(
–
√

4 + λ2
2 –

√

4 + λ2
1 + λ2 – λ1

)
+ γ1γ2

(√

4 + λ2
1 –

√

4 + λ2
2 + λ1 – λ2

)

and

ṽn = 1 +
(λ2 – λ1)�1�2

�2
, (24)

where

�1 = �2

(√

λ2
2 + 4 – λ2 + 2

)
+ γ2

(√

λ2
2 + 4 + λ2 – 2

)
;

�2 = �1

(√

λ2
1 + 4 – λ1 + 2

)
+ γ1

(√

λ2
1 + 4 + λ1 – 2

)
;

�2 = 2λ1

√

λ2
2 + 4(�1�2 – �2γ1 + �1γ2 – γ1γ2)

+ 2λ2

√

λ2
1 + 4(–�1�2 – �2γ1 + �1γ2 + γ1γ2)

+ 4(λ1 – λ2)(�1�2 – �2γ1 – �1γ2 + γ1γ2).

(II) When N = 2, let λ = λi (i = 1, 2, 3, 4). Solving the linear system (8) leads to

T12
1 (n) =

	T12
1 (n)
	1

, T21
1 (n) =

	T21
1 (n)
	2

(25)
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with

	1 = 	2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

λ1 1 α1 α1λ1

λ2 1 α2 α2λ2

λ3 1 α3 α3λ3

λ4 1 α4 α4λ4

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

T12
1 (n) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

λ1 1 α1 –λ2
1

λ2 1 α2 –λ2
2

λ3 1 α3 –λ2
3

λ4 1 α4 –λ2
4

∣
∣
∣
∣
∣
∣
∣
∣
∣

, T21
1 (n) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

–α1λ
2
1 1 α1 α1λ1

–α2λ
2
2 1 α2 α2λ2

–α3λ
2
3 1 α3 α3λ3

–α4λ
2
4 1 α4 α4λ4

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Therefore, an explicit solution of Eq. (1) is obtained as follows:

ũn = 1 –
	1T12

1 (n)
	1(n)

, (26)

and

ṽn = 1 +
	2T21

1 (n + 1)
	2(n + 1)

. (27)

(III) When N = 3, let λ = λi (i = 1, 2, 3, 4, 5, 6). Solving the linear system (8) leads to

T12
1 (n) =

	T12
1 (n)
	1

, T21
1 (n) =

	T21
1 (n)
	2

(28)

with

	1 = 	2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ2
1 λ1 1 α1 α1λ1 α1λ

2
1

λ2
2 λ2 1 α2 α2λ2 α2λ

2
2

λ2
3 λ3 1 α3 α3λ3 α3λ

2
3

λ2
4 λ4 1 α4 α4λ4 α4λ

2
4

λ2
5 λ5 1 α5 α5λ5 α5λ

2
5

λ2
6 λ6 1 α6 α6λ6 α6λ

2
6

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

T12
1 (n) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

λ2
1 λ1 1 α1 α1λ1 –λ2

1

λ2
2 λ2 1 α2 α2λ2 –λ2

2

λ2
3 λ3 1 α3 α3λ3 –λ2

3

λ2
4 λ4 1 α4 α4λ4 –λ2

4

λ2
5 λ5 1 α5 α5λ5 –λ2

5
λ2

6 λ6 1 α6 α6λ6 –λ2
6

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

T21
1 (n) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

–α1λ
2
1 λ1 1 α1 α1λ1 α1λ

2
1

–α2λ
2
2 λ2 1 α2 α2λ2 α2λ

2
2

–α3λ
2
3 λ3 1 α3 α3λ3 α3λ

2
3

–α4λ
2
4 λ4 1 α4 α4λ4 α4λ

2
4

–α5λ
2
5 λ5 1 α5 α5λ5 α5λ

2
5

–α6λ
2
6 λ6 1 α6 α6λ6 α6λ

2
6

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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Therefore, an explicit solution of Eq. (1) is obtained as follows:

ũn = 1 –
	1T12

1 (n)
	1(n)

, (29)

and

ṽn = 1 +
	2T21

1 (n + 1)
	2(n + 1)

. (30)

4 Conclusions and remarks
In this paper, we have constructed the N-fold Darboux transformation for the discrete
Ragnisco–Tu system. As an application of the N-fold Darboux transformation, we provide
three explicit cases of the forms of the exact solutions when N = 1, N = 2, and N = 3.
Moreover, if these resulting solutions are taken as new starting points, we may make a
Darboux transformation once again and obtain another set of new explicit solutions. This
process can be done continuously, and multi-soliton solutions will usually be obtained.
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