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Abstract
In this work, we consider a water eutrophication model with impulsive dredging. We
prove that all solutions of the investigated system are uniformly bounded. There
exists globally asymptotically stable periodic solution of microorganism-extinction
when some condition is satisfied. The condition for permanence of the system is also
obtained. It is concluded that the approach of impulsive dredging provides a reliable
theoretical basis for the management of water eutrophication.
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1 Introduction
Due to human activities, there are more and more nutrients in water, which causes exces-
sive reproduction of algae and other aquatic organisms, decrease in water transparency,
dissolved oxygen reduction, deterioration of water quality, and so on. This kind of pollu-
tion phenomenon, which is caused by the change in the ecological balance of the whole
water body, is called the eutrophication of water body [1].

Eutrophication occurs in ponds, reservoirs, lakes, and so on and it has attracted the
attention of many experts and scholars in the early twentieth century. Especially in re-
cent years, the study on the eutrophication of water body has become quite active like
fuzzy mathematics, stochastic model, gray system, artificial intelligence, and other theo-
retical methods combined with computer technology [2–4]. For instance, based on the
analysis of the present situation and causes of pollution in Chaohu, Li et al. [5] proposed
specific measures for eutrophication control of Chaohu. Yu et al. [6] used three methods—
Carlson comprehensive index method, Grey clustering method, and principal compo-
nent analysis—to analyze the main factors of eutrophication, and they provided theo-
retical basis for controlling water pollution in Poyang Lake. In addition, many scholars
[7–9] have studied the dynamics model of a single population in the polluted environ-
ment.

Many scholars have done in-depth research on the problems of eutrophication. But most
of them studied the reasons and the prevention and treatment of water eutrophication
from the technical aspects. Few researchers studied the problem of eutrophication from
the viewpoint of biological dynamics. In this paper, we discuss water eutrophication with
impulsive dredging.
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2 Model formulation
In this paper, we consider the following eutrophication model with control:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds(t)
dt = λ – d1s(t) – βs(t)x(t)

dx(t)
dt = β

δ
s(t)x(t) – d2x(t)

}

t �= nτ , t �= (n + l)τ ,

�s(t) = μ

�x(t) = 0

}

t = nτ ,

�s(t) = –μ1s(t)
�x(t) = –μ2x(t)

}

t = (n + l)τ , 0 < l < 1, n = 1, 2, . . . ,

(2.1)

where s(t) denotes the concentration of nutrients in water. x(t) denotes the concentration
of microorganism in water. λ > 0 is the original concentration of nutrients s(t) in water,
β > 0 is called the transmission coefficient. β

δ
> 0 is called the transmission of x(t) absorbed

nutrients. d1 > 0 is called the loss of s(t). d2 > 0 is called the death coefficient of x(t). μ > 0
is the increase amount of s(t) at t = nτ . 0 ≤ μ1 < 1, 0 ≤ μ2 < 1 respectively represent the
dredging intensity of s(t) and x(t) at t = (n + l)τ (0 < l < 1), τ is the period of the impulsive
effect.

3 Analyzing model
Let R+ = [0,∞), The solution of system (2.1), denoted by y(t) = (s(t), x(t))T , is a piecewise
continuous function y : R+ → R2

+, y(t) is continuous on (nτ , (n + l)τ ], ((n + l)τ , (n + 1)τ ],
n ∈ Z+ and y(nτ+) = limt→nτ+ y(nτ ), y((n + l)τ+) = limt→(n+l)τ+ y((n + l)τ ) exist. Obviously
the global existence and uniqueness of the solutions of (2.1) are guaranteed by the smooth-
ness of function y, which denotes the mapping defined by the right-hand side of system
(2.1) (see [10]). Before discussing the main results, we will give some definitions, no-
tations, and lemmas. Since s(t) = 0 whenever s′(t) = λ, x(t) = 0 whenever x′(t) = 0, and
s(nτ+) = s(nτ ) + μ, μ ≥ 0, so we have the following.

Lemma 1 Suppose that y(t) is a solution of (2.1), with y(0+) ≥ 0, then y(t) ≥ 0 for t ≥ 0 and
further y(t) > 0, t ≥ 0 for y(0+) > 0.

Lemma 2 (see [10, p. 23, Lemma 2.2]) Let the function m ∈ PC′[R+, R] satisfy the inequal-
ities

{
m′(t) ≤ p(t)m(t) + q(t), t ≥ t0, t �= tk , k = 1, 2, . . . ,
m(t+

k ) ≤ dkm(tk) + bk , t = tk ,

where p, q ∈ PC[R+, R], dk ≥ 0, bk are constants, then

m(t) ≤ m(t0)
∏

t0<tk<t
dk exp

(∫ t

t0

p(s) ds
)

+
∑

t0<tk<t

( ∏

t0<tk <t
dj exp

(∫ t

t0

p(s) ds
))

bk

+
∫ t

t0

∏

s<tk <t
dk exp

(∫ t

s
p(σ )dσ

)

q(s) ds, t ≥ t0.

Now, we show that all solutions of (2.1) are uniformly ultimately bounded.
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Lemma 3 There exists a constant M > 0 such that S(t) ≤ M, x(t) ≤ M for each solution
(s(t), x(t)) of (2.1) with all t large enough.

Proof Definition V (t) = 1
δ
s(t) + x(t), d = min{d1, d2}. Then t �= nτ , t �= (n + l)τ . We have

D+V (t) + dV (t) =
1
δ

(
λ – d1s(t) – βs(t)x(t)

)
+

β

δ
s(t)x(t) – d2x(t) +

d
δ

s(t) + dx(t)

=
λ

δ
–

d1 – d
δ

s(t) – (d2 – d)x(t)

≤ λ

δ
.

When t = nτ ,

V
(
nτ+)

=
1
δ

s
(
nτ+)

+ x
(
nτ+)

=
1
δ

(
s(nτ ) +μ

)
+ x(nτ ) =

1
δ

s(nτ ) + x(nτ ) +
μ

δ
= V (nτ ) +

μ

δ
.

When t = (n + l)τ ,

V
(
(n + l)τ+)

=
1
δ

s
(
(n + l)τ+)

+ x
(
(n + l)τ+)

=
1
δ

(1 – μ1)s
(
(n + l)τ

)
+ (1 – μ2)x

(
(n + l)τ

) ≤ V
(
(n + l)τ

)
.

By Lemma 2, for t ∈ (nτ , n + l)τ ], t ∈ ((n + l)τ , (n + 1)τ ], we have

⎧
⎪⎨

⎪⎩

D+V (t) ≤ –dV (t) + λ
δ

, t �= nτ , t �= (n + l)τ ,
V (t+) = V (t) + μ

δ
, t = nτ ,

V (t+) ≤ V (t), t = (n + l)τ ,

then

V (t) ≤ V (0) exp(–dt) +
∫ t

0

λ

δ
exp

(
–d(t – s)

)
ds +

∑

0<nτ<t

μ

δ
exp

(
–d(t – nτ )

)

→ λ

δd
+

μ exp(dτ )
δ(exp(dτ ) – 1)

, as t → ∞.

So V (t) is uniformly ultimately bounded. Hence, by the definition of V (t), there exists a
constant M > 0 such that S(t) ≤ M, x(t) ≤ M for t large enough. The proof is complete. �

If x(t) = 0, we have the following subsystem of (3.1):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s′(t) = λ – d1s(t), t �= nτ , t �= (n + l)τ ,
�s(t) = μ, t = nτ ,
�s(t) = –μ1s(t), t = (n + l)τ ,
s(0+) = s(0) > 0.

(3.1)

We can easily obtain the analytic solution of (3.1) between pulses as follows:

s(t) =

{
1

d1
[λ – (λ – d1s(nτ+))e–d1(t–nτ )], t ∈ (nτ , (n + l)τ ],

1
d1

[λ – (λ – d1s((n + l)τ+))e–d1(t–(n+l)τ )], t ∈ ((n + l)τ , (n + 1)τ ].
(3.2)
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Considering the third equation of (3.1), we have

s
(
(n + l)τ+)

=
1 – μ1

d1

[
λ –

(
λ – d1s

(
nτ+))

e–d1lτ ]. (3.3)

Considering the fifth equation of (3.1), we also have

s
(
(n + 1)τ+)

=
1
d1

[
λ –

(
λ – d1s

(
(n + l)τ+))

e–d1(1–l)τ ] + μ. (3.4)

Substituting (3.3) into (3.4), we have

s
(
(n + 1)τ+)

=
λ

d1
–

λe–d1(1–l)τ

d1
+

λ(1 – μ1)e–d1(1–l)τ

d1

–
λ(1 – μ1)e–d1τ

d1
+ (1 – μ1)s

(
nτ+)

e–d1τ + μ. (3.5)

Equation (3.1) has one fixed point as follows:

s∗ =
λ – λμ1e–d1(1–l)τ – λ(1 – μ1)e–d1τ + μd1

d1[1 – (1 – μ1)e–d1τ ]
. (3.6)

Then the periodic solution of (3.1) is

s̃(t) =

{
1

d1
[λ – (λ – d1s∗)e–d1(t–nτ )], t ∈ [nτ , (n + l)τ ),

1
d1

[λ – (λ – d1s∗∗)e–d1(t–(n+l)τ )], t ∈ [(n + l)τ , (n + 1)τ ).
(3.7)

Here s∗ is determined as (3.6), s∗∗ is defined as

s∗∗ =
1 – μ1

d1

[
λ –

(
λ – d1s∗)e–d1lτ + d1(1 – μ1)s∗e–d1lτ ]. (3.8)

It is similar to reference [8], we can obtain the following lemma.

Lemma 4 System (3.1) has a positive periodic solution s̃(t). For every solution s(t) of system
(3.1), we have s(t) → s̃(t) as t → ∞.

4 The dynamics
From the above discussion, we know that system (2.1) has a microorganism-extinction
periodic solution (s̃(t), 0). So we can have the following theorem.

Theorem 1 If

ln
1

1 – μ2
>

λτ

d1
–

λ – d1s∗

d2
1

(
1 – e–d1lτ ) –

λ – d1s∗∗

d2
1

(
1 – e–d1(1–l)τ )e–d1τ – d2τ (4.1)

holds, then the microorganism-extinction periodic solution (s̃(t), 0) of system (2.1) is globally
asymptotically stable.
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Proof First we prove the local stability. Defining S(t) = s(t) – s̃(t), X(t) = x(t), we have the
following linearly similar system for (2.1) which concerns one periodic solution (s̃(t), 0):

(
S′(t)
X ′(t)

)

=

(
–d1 β s̃(t)

0 β

δ
s̃(t) – d2

)(
S(t)
X(t)

)

.

It is easy to obtain the fundamental solution matrix

�(t) =

(
e–d1t ∗

0 exp(
∫ t

0 ( β

δ
s̃(s) – d2) ds)

)

.

There is no need to calculate the exact form of ∗ as it is not required in the analysis that
follows. The linearization of the third and fourth equations of (2.1) is as follows:

(
S(nτ+)
X(nτ+)

)

=

(
1 0
0 1

)(
S(nτ )
X(nτ )

)

.

The linearization of the fifth and sixth equations of (2.1) is as follows:

(
S((n + l)τ+)
X((n + l)τ+)

)

=

(
1 – μ1 0

0 1 – μ2

)(
S((n + l)τ )
X((n + l)τ )

)

.

The stability of the periodic solution (s̃(t), 0) is determined by the eigenvalues of

M =

(
1 0
0 1

)(
1 – μ1 0

0 1 – μ2

)

φ(τ )

which are

λ1 = (1 – μ1)e–d1t < 1, λ2 = (1 – μ2) exp

(∫ τ

0

(
β

δ
s̃(s) – d2

)

ds
)

.

According to the Floquet theory [11], if |λ2| < 1, i.e.,

∣
∣
∣
∣(1 – μ2) exp

(∫ τ

0

(
β

δ
s̃(t) – d2

)

dt
)∣

∣
∣
∣ < 1,

that is,

ln
1

1 – μ2
>

λτ

d1
–

λ – d1s∗

d2
1

(
1 – e–d1lτ ) –

λ – d1s∗∗

d2
1

(
1 – e–d1(1–l)τ )e–d1τ – d2τ

holds, then (s̃(t), 0) is locally stable.
The following work is to prove the global attraction. Choose ε > 0 such that

ρ = (1 – μ2) exp

(∫ τ

0

[
β

δ

(
s̃(s) – ε

)
– d2

]

ds
)

< 1.
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From the first equation of (2.1), we notice that ds(t)
dt ≤ λ – d1s(t). So we consider the fol-

lowing impulsive differential equations:

⎧
⎪⎨

⎪⎩

dy(t)
dt = λ – d1y(t), t �= nτ , t �= (n + l)τ ,

�y(t) = μ, t = nτ ,
�y(t) = –μ2y(t), t = (n + l)τ .

(4.2)

From Lemma 2 and the comparison theorem of impulsive differential equations (see The-
orem 3.1.1 in [11]), we have s(t) ≤ y(t), and, y(t) → s̃(t), as t → ∞, that is,

s(t) ≤ y(t) ≤ s̃(t) + ε (4.3)

for all t large enough. For convenience, we may assume (4.3) holds for all t > 0. From (2.1)
and (4.3), we get

⎧
⎪⎨

⎪⎩

dx(t)
dt ≤ β

δ
(s̃(t) + ε)x(t) – d2x(t), t �= nτ , t �= (n + l)τ ,

�x(t) = 0, t = nτ ,
�x(t) = –μ2x(t), t = (n + l)τ .

(4.4)

So

x
(
(n + 1)τ

) ≤ x
(
nτ+)

(1 – μ2) exp

(∫ (n+1)τ

nτ

[
β

δ

(
s̃(s) – ε

)
– d2

]

ds
)

.

Hence

x
(
(n + l)τ

) ≤ x
(
0+)

ρn

and x((n + l)τ ) → 0, as t → ∞, therefore x(t) → 0, as t → ∞.
In what follows, we prove that s(t) → s̃(t), as t → ∞, let 0 < ε ≤ d1, there must exist

t0 > 0 such that t ≥ t0, 0 < x(t) < ε. Without loss of generality, we assume that 0 < x(t) < ε

for all t > 0, then, for system (2.1), we have

λ – (d1 + ε)s(t) ≤ ds(t)
dt

≤ λ – d1s(t). (4.5)

Then we have z1(t) ≤ s(t) ≤ z2(t) and z1(t) → s̃(t), z2(t) → s̃(t) as t → ∞. While z1(t) and
z2(t) are the solutions of

⎧
⎪⎨

⎪⎩

dz1(t)
dt = λ – (d1 + ε)z1(t), t �= nτ , t �= (n + l)τ ,

�z1(t) = μ, t = nτ ,
�z1(t) = –μ1z1(t), t = (n + l)τ

(4.6)

and

⎧
⎪⎨

⎪⎩

dz2(t)
dt = λ – d1z2(t), t �= nτ , t �= (n + l)τ ,

�z2(t) = μ, t = nτ ,
�z2(t) = –μ1z2(t), t = (n + l)τ ,

(4.7)
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respectively

z1(t) =

{
1

d1+ε
[λ – (λ – (d1 + ε)z∗

1)e–(d1+ε)(t–nτ )], t ∈ [nτ , (n + l)τ ),
1

d1+ε
[λ – (λ – (d1 + ε)z∗∗

1 )e–(d1+ε)(t–(n+l)τ )], t ∈ [(n + l)τ , (n + 1)τ ).
(4.8)

Here z∗
1 and z∗∗

1 are defined as

z∗
1 =

λ – λμ1e–(d1+ε)(1–l)τ – λ(1 – μ1)e–(d1+ε)τ + (d1 + ε)μ
(d1 + ε)[1 – (1 – μ1)e–(d1+ε)τ ]

and

z∗∗
1 =

λ – μ1

(d1 + ε)
[
λ –

(
λ – (d1 + ε)z∗

1
)
e–(d1+ε)lτ ].

Therefore, for any ε1 > 0, there exists t1, t > t1, such that

z1(t) – ε1 < s(t) < s̃(t) + ε1.

Let ε → 0, so we have

s̃(t) – ε1 < s(t) < s̃(t) + ε1

for t large enough, which implies s(t) → s̃(t) as t → ∞. This completes the proof. �

The following work is to investigate the permanence of system (2.1). Before starting this
work, we should give the following definition.

Definition 1 System (2.1) is said to be permanent if there are constants m, M > 0 (inde-
pendent of the initial value) and a finite time T0 such that for all solutions (s(t), x(t)) with
all initial values s(0+) > 0, x(0+) > 0, m ≤ s(t) ≤ M, m ≤ x(t) ≤ M hold for all t ≥ T0. Here
T0 may depend on the initial values (s(0+), x(0+)).

Theorem 2 Let (s(t), x(t)) be any solution of system (2.1). If

ln
1

1 – μ2
<

λτ

d1
–

λ – d1s∗

d2
1

(
1 – e–d1lτ ) –

λ – d1s∗∗

d2
1

(
1 – e–d1(1–l)τ )e–d1τ – d2τ

holds, then system (2.1) is permanent.

Proof Let (s(t), x(t)) be a solution of (2.1) with s(0) > 0, x(0) > 0. By Lemma 3, we have
proved there exists a constant of M > 0 such that s(t) ≤ M, x(t) ≤ M for t large enough.
We may assume s(t) ≤ M, x(t) ≤ M for t ≥ 0. Thus we only need to find m1 > 0 and ε3

such that x(t) ≥ m1 for t large enough. Otherwise, we can select m3 > 0 small enough and
prove x(t) < m3 does not hold for t ≥ 0. By the condition of Theorem 2, let

σ =
∫ (n+1)τ

nτ

(
β

δ

(
z̃(t) – ε1

)
– d2

)

dt > 0.
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We will prove that x(t) < m3 cannot hold for t ≥ 0. Otherwise,

⎧
⎪⎨

⎪⎩

ds(t)
dt ≥ λ – (d1 + βm3)s(t), t �= nτ , t �= (n + l)τ ,

�s(t) = μ, t = nτ ,
�s(t) = –μ1s(t), t = (n + l)τ .

(4.9)

By Lemma 3, we have s(t) ≥ z(t) and z(t) → z̃(t), t → ∞, where z(t) is the solution of

⎧
⎪⎨

⎪⎩

dz(t)
dt = λ – (d1 + βm3)z(t), t �= nτ , t �= (n + l)τ ,

�z(t) = μ, t = nτ ,
�s(t) = –μ1z(t), t = (n + l)τ

(4.10)

and

z̃(t) =

{
1

(d1+βm3) [λ – (λ – (d1 + βm3)z∗)e–(d1+βm3)(t–nτ )], t ∈ [nτ , (n + l)τ ),
1

(d1+βm3) [λ – (λ – (d1 + βm3)z∗∗)e–(d1+βm3)(t–(n+l)τ )], t ∈ [(n + l)τ , (n + 1)τ ).

(4.11)

Here z∗ and z∗∗ are defined as

z∗ =
λ(1 – μ1e–(d1+βm3)(1–l)τ ) – λ(1 – μ1)e–(d1+βm3)τ ) + (d1 + βm3)μ

(d1 + βm3)[1 – (1 – μ1)e–(d1+βm3)τ ]

and

z∗∗ =
1 – μ1

(d1 + βm3)
[
λ –

(
λ – (d1 + βm3)z∗)e–(d1+βm3)lτ ].

Therefore, there exists T1 > 0 such that

s(t) ≥ z(t) ≥ z̃(t) – ε1,

and

⎧
⎪⎨

⎪⎩

dx(t)
dt ≥ ( β

δ
(z̃(t) – ε1) – d2)x(t), t �= nτ , t �= (n + l)τ ,

�x(t) = 0, t = nτ ,
�x(t) = –μ2x(t), t = (n + l)τ

(4.12)

for t ≥ T1. Let N1 ∈ N and N1τ > T . Integrating (4.12) on (nτ , (n + 1)τ ] (n ≥ N1), we have

x
(
(n + 1)τ

) ≥ (1 – μ2)x
(
nτ+)

exp

(∫ (n+1)τ

nτ

(
β

δ

(
z̃(t) – ε1

)
– d2

)

dt
)

= (1 – μ2)x
(
nτ+)

eσ .

Then x((N1 + K)τ ) ≥ (1 – μ2)K x(N1τ
+)eKσ → ∞, as K → ∞, which is a contradiction to

the boundedness of x(t). Hence there exists t1 > 0 such that x(t) ≥ m3.
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Thus, we can also obtain that ds(t)
dt ≥ λ – (d1 + βM)s(t), then the following comparatively

impulsive differential equation is

⎧
⎪⎨

⎪⎩

dz3(t)
dt = λ – (d1 + βM)z3(t), t �= nτ , t �= (n + l)τ ,

�z3(t) = μ, t = nτ ,
�z3(t) = –μ2z3(t), t = (n + l)τ .

(4.13)

Similar to (3.7), we have

z̃3(t) =

{
1

(d1+βM) [λ – (λ – (d1 + βM)z∗
3)e–(d1+βM)(t–nτ )], t ∈ [nτ , (n + l)τ ),

1
(d1+βM) [λ – (λ – (d1 + βM)z∗∗

3 )e–(d1+βM)(t–(n+l)τ )], t ∈ [(n + l)τ , (n + 1)τ ).

(4.14)

Here z∗
3 and z∗∗

3 are defined as

z∗
3 =

λ(1 – μ1e–(d1+βm3)(1–l)τ ) – λ(1 – μ1)e–(d1+βm3)τ ) + (d1 + βm3)μ
(d1 + βm3)[1 – (1 – μ1)e–(d1+βm3)τ ]

and

z∗∗
3 =

1 – μ1

(d1 + βm3)
[
λ –

(
λ – (d1 + βm3)z∗)e–(d1+βm3)lτ ].

For any ε4 small enough, we obtain

z3(t) > z̃3(t) – ε4.

From the comparison theorem of impulsive differential equations, we have

s(t) > z3(t) > z̃3(t) – ε4 >
(
z∗

3(t) + z∗∗
3 (t)

)
– ε4 = m4,

i.e., s(t) > m4. This completes the proof. �

Remark Let

F(τ ) = ln
1

1 – μ2
–

λτ

d1
–

λ – d1s∗

d2
1

(
1 – e–d1lτ ) –

λ – d1s∗∗

d2
1

(
1 – e–d1(1–l)τ )e–d1τ – d2τ .

We easily know F(0) = 1
ln(1–μ2) > 0, F(τ ) → –∞ as τ → ∞, and F ′′(τ ) > 0, so F(τ ) = 0 has a

unique positive root, denoted by τmax. From Theorems 1 and 2, we know τmax is a thresh-
old. If τ < τmax, the microorganism-extinction periodic solution (s(t), 0) of (2.1) is globally
asymptotically stable. If τ < τmax, system (2.1) is permanent.

5 Discussion
In this paper, according to the actual situation, we discussed the impulsive dredging at a
fixed time. The global asymptotic stability of the microorganism-extinction periodic so-
lution (s(t), 0) of (2.1) is discussed and the condition for the permanence of the system is
also obtained. From Theorems 1 and 2, we can deduce that there must exist a threshold
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μ∗
2. If μ2 > μ∗

2, the microorganism-extinction periodic solution (s(t), 0) of (2.1) is globally
asymptotically stable. If μ2 < μ∗

2, system (2.1) is permanent. Our results indicate that the
impulsive dredging and the period of impulsive dredging play an important role in water
eutrophication management.
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