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Abstract
A Lotka–Volterra commensal symbiosis model with density dependent birth rate that
takes the form

dx

dt
= x

( b11
b12 + b13x

– b14 – a11x + a12y
)
,

dy

dt
= y

( b21
b22 + b23y

– b24 – a22y
)
,

where bij , i = 1, 2, j = 1, 2, 3, 4, a11, a12, and a22 are all positive constants, is proposed
and studied in this paper. The system may admit four nonnegative equilibria. By
constructing some suitable Lyapunov functions, we show that under some suitable
assumptions, all of the four equilibria may be globally asymptotically stable, such a
property is quite different to the traditional Lotka–Volterra commensalism model.
With introduction of the density dependent birth rate, the dynamic behaviors of the
commensalism model become complicated.
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1 Introduction
The aim of this paper is to investigate the dynamic behaviors of the following commen-
salism model with density dependent birth rate:

dx
dt

= x
(

b11

b12 + b13x
– b14 – a11x + a12y

)
,

dy
dt

= y
(

b21

b22 + b23y
– b24 – a22y

)
,

(1.1)

where bij, i = 1, 2, j = 1, 2, 3, 4, a11, a12, and a22 are all positive constants. x(t), y(t) are the
densities of the first and second species at time t, respectively. Here we make the following
assumptions:

(a) b11
b12+b13x is the birth rate of the first species which is density dependent, the birth rate
of the species is declining as the density of the species is increasing;
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(b) b14 is the death rate of the first species, a11 is the density dependent coefficient of
the first species;

(c) b21
b22+b23y is the birth rate of the second species, it is declining as the density of the
species is increasing;

(d) b24 is the death rate of the second species, a22 is the density dependent coefficient of
the second species;

(e) The relationship between the two species is commensalism, i.e., the second species
has positive effect on the first species, while the first species has no influence on the
second species, we describe such of relationship by using the bilinear function a12xy.

During the last decades, many scholars investigated the dynamic behaviors of the mutu-
alism model or commensalism model [1, 2]. Some essential progress has been made in this
direction. Such topics as the stability of the positive equilibrium [1, 3–20], the persistence
of the system [21–27], the existence of the positive periodic solution [17, 28–30], the ex-
tinction of the species [2, 21, 31], the influence of harvesting [3, 9, 11, 12, 19], the influence
of feedback control variables [1, 8, 18, 21, 22, 25, 26], the influence of stage structure [5,
7], etc. have been extensively investigated.

Sun and Wei [4] for the first time proposed and studied the following two species com-
mensalism symbiosis model:

dx
dt

= r1x
(

k1 – x + αy
k1

)
,

dy
dt

= r2y
(

k2 – y
k2

)
,

(1.2)

where x and y are the densities of the first and second species at time t, respectively. System
(1.2) admits four equilibria E1(0, 0), E2(k1, 0), E3(0, k2), and E4(k1 + αk2k2).

Concerned with the stability property of the above equilibria, Sun and Wei [4] obtained
the following result:

Theorem A E1(0, 0), E2(k1, 0), E3(0, k2) are all unstable, E4(k1 + αk2, k2) is locally stable.

Noting that the authors of [4] did not give any global stability property of the equilib-
rium, with the aim of putting forward the study in this direction, Han and Chen [18] pro-
posed the following commensalism model:

dx
dt

= x(b1 – a11x) + a12xy,

dy
dt

= y(b2 – a22y).
(1.3)

System (1.3) admits a positive equilibrium P0(x0, y0), where

x0 =
b1a22 + b2a12

a11a22
, y0 =

b2

a22
.

Concerned with the stability property of this equilibrium, by constructing some suitable
Lyapunov function, the authors obtained the following result:

Theorem B The positive equilibrium P0(x0, y0) of system (1.3) is globally stable.
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It came to our attention that in system (1.3), if we did not consider the relationship of the
two species, then the equations for both species reduce to the traditional logistic equation.
For example, the first species takes the form

dx
dt

= x(b1 – a11x), (1.4)

where b1 is the intrinsic growth rate and a11 is the density dependent coefficient. System
(1.4) could be revised as

dx
dt

= x(b11 – b14 – ex), (1.5)

where b11 is the birth rate of the species and b14 is the death rate of the species. Already,
Brauer and Castillo-Chavez [32], Tang and Chen [33], Berezansky et al. [34] have showed
that in some cases the density dependent birth rate of the species is more suitable. If we
take the famous Beverton–Holt function [34] as the birth rate, then system (1.5) should
be revised to

dx
dt

= x
(

b11

b12 + b13x
– b14 – a11x

)
. (1.6)

Similarly, the second species could be expressed as follows:

dy
dt

= y
(

b21

b22 + b23y
– b24 – a22y

)
. (1.7)

(1.6), (1.7) together with the cooperation relationship between the species will lead to sys-
tem (1.1).

As far as system (1.1) is concerned, one interesting issue is to find out the influence
of the nonlinear density birth rate. Is it possible for system (1.1) to admit some similar
dynamic behaviors as those of systems (1.2) and (1.3), or does system (1.1) admit some
new characteristic property?

The aim of this paper is to find out the answers to the issues above. The rest of the paper
is arranged as follows. In Sect. 2, we investigate the stability property of the equilibria of
system (1.1); Sect. 3 presents some numerical simulations to show the feasibility of the
main results. We end this paper with a brief discussion.

2 Global asymptotic stability
We first establish a lemma, which is useful for proving the main result.

Lemma 2.1 Consider the following equation:

dy
dt

= y
(

a
b + cy

– d – ey
)

. (2.1)

Assume that a > bd, then the unique positive equilibrium y∗ of system (2.1) is globally
asymptotically stable.
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Proof Set

F(y) =
a

b + cy
– d – ey.

Since a > bd, it follows that F(0) = a
b – d > 0. Also,

dF(y)
dy

= –
ac

(b + cy)2 – e < 0,

hence F(y) is a strictly decreasing function. One could easily see that F(+∞) = –∞, thus
there exists a unique positive solution y∗ such that F(y∗) = 0. Indeed,

y∗ =
–(eb + dc) +

√
(eb + dc)2 – 4ec(db – a)

2ec
. (2.2)

The above analysis shows that
(1) There is y∗, as expressed by (2.2), such that F(y∗) = 0;
(2) For all y∗ > y > 0, F(y) = a

b+cy – d – ey > 0;
(3) For all y > y∗ > 0, F(y) = a

b+cy – d – ey < 0.
Now let us consider the Lyapunov function

V = y – y∗ – y∗ ln
y
y∗ .

Direct calculation shows that

dV
dt

=
(
y – y∗)F(y) < 0.

Thus, y∗ is globally asymptotically stable. This ends the proof of Lemma 2.1. �

Now we are in a position to consider the existence and stability property of the equilibria
of system (1.1). The equilibrium of system (1.1) is determined by the equation

x
(

b11

b12 + b13x
– b14 – a11x + a12y

)
= 0,

y
(

b21

b22 + b23y
– b24 – a22y

)
= 0.

(2.3)

System (1.1) always admits a boundary equilibrium A1(0, 0). Assume that

b11

b12
> b14 (2.4)

holds, then

b11

b12 + b13x
– b14 – a11x = 0

admits a unique positive solution x∗, where

x∗ =
–(b14b13 + a11b12) +

√
(b14b13 + a11b12)2 – 4a11b13(b14b12 – b11)

2a11b13
. (2.5)
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Assume that (2.4) and

b21

b22
< b24 (2.6)

hold, then system (1.1) admits the nonnegative boundary equilibrium A2(x∗, 0). Assume
that

b21

b22
> b24 (2.7)

holds, then

b21

b22 + b23y
– b24 – a22y = 0

admits a unique positive solution y∗, where

y∗ =
–(b24b23 + a22b22) +

√
(b24b23 + a22b22)2 – 4a22b23(b24b22 – b21)

2a22b23
. (2.8)

Assume that (2.7) and

b11

b12
+ a12y∗ < b14 (2.9)

hold, then system (1.1) admits the nonnegative boundary equilibrium A3(0, y∗). Assume
that (2.7) and

b11

b12
+ a12y1 > b14 (2.10)

hold, then system (1.1) admits the unique positive equilibrium A4(x1, y1), where

y1 =
–(b24b23 + a22b22) +

√
(b24b23 + a22b22)2 – 4a22b23(b24b22 – b21)

2a22b23
, (2.11)

and x1 is the unique positive solution of the equation

b11

b12 + b13x
– b14 – a11x + a12y1 = 0. (2.12)

Remark 2.1 From the above discussion, one could easily see that the inequalities

b11

b12
> b14 (2.13)

and

b21

b22
> b24 (2.14)

is enough to ensure the existence of the unique positive equilibrium of system (1.1).



Chen et al. Advances in Difference Equations  (2018) 2018:296 Page 6 of 14

Concerned with the stability property of the above four nonnegative equilibria, we have
the following result.

Theorem 2.1
(1) Assume that (2.7) and (2.10) hold, then system (1.1) admits a unique positive

equilibrium A4(x1, y1), which is globally asymptotically stable;
(2) Assume that (2.7) and (2.9) hold, then the boundary equilibrium A3(0, y∗) is globally

asymptotically stable;
(3) Assume that (2.4) and (2.6) hold, then the boundary equilibrium A2(x∗, 0) is globally

asymptotically stable;
(4) Assume that

b11 < b12b14 (2.15)

and (2.6) hold, then the boundary equilibrium A1(0, 0) is globally asymptotically
stable.

Remark 2.2 Conditions (2.7) and (2.10) are necessary to ensure that system (1.1) admits a
positive equilibrium. Hence, it follows from Theorem 2.1(1) that if system (1.1) admits a
positive equilibrium, it is globally asymptotically stable.

Remark 2.3 From Remark 2.2 it immediately follows that under the assumption that (2.13)
and (2.14) hold, system (1.1) admits a unique globally asymptotically stable positive equi-
librium.

Proof of Theorem 2.1 (1) Obviously, x1, y1 satisfy the equations

b11

b12 + b13x1
– b14 – a11x1 + a12y1 = 0,

b21

b22 + b23y1
– b24 – a22y1 = 0.

(2.16)

Now let us consider the Lyapunov function

V1(x, y) =
a11a22

a2
12

(
x – x1 – x1 ln

x
x1

)
+

1
4

(
y – y1 – y1 ln

y
y1

)
. (2.17)

One could easily see that the function V1 is zero at the positive equilibrium A4(x1, y1) and
is positive for all other positive values of x, y. By applying (2.16), the time derivative of V1

along the trajectories of (1.1) is

D+V1(t) =
a11a22

a2
12

(x – x1)
(

b11

b12 + b13x
– b14 – a11x + a12y

)

+
1
4

(y – y1)
(

b21

b22 + b23y
– b24 – a22y

)

=
a11a22

a2
12

(x – x1)
(

b11

b12 + b13x
–

b11

b12 + b13x1
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+ a11x1 – a12y1 – a11x + a12y
)

+
1
4

(y – y1)
(

b21

b22 + b23y
–

b21

b22 + b23y1
+ a22y1 – a22y

)

=
a11a22

a2
12

(x – x1)
(

b11b13(x1 – x)
(b12 + b13x)(b12 + b13x1)

+ a11(x1 – x) + a12(y – y1)
)

+
1
4

(y – y1)
(

b21b23(y1 – y)
(b22 + b23y)(b22 + b23y1)

+ a22(y1 – y)
)

= –
a11a22

a2
12

b11b13

(b12 + b13x)(b12 + b13x1)
(x – x1)2

–
a2

11a22

a2
12

(x – x1)2 +
a11a22

a12
(x – x1)(y – y1)

–
1
4

b21b23

(b22 + b23y)(b22 + b23y1)
(y – y1)2 –

1
4

a22(y – y1)2

= –
a11a22

a2
12

b11b13

(b12 + b13x)(b12 + b13x1)
(x – x1)2

–
1
4

b21b23

(b22 + b23y)(b22 + b23y1)
(y – y1)2

– a22

[
a11

a12
(x – x1) –

1
2

(y – y1)
]2

. (2.18)

It then follows from (2.18) that D+V1(t) < 0 strictly for all x, y > 0 except the positive equi-
librium A4(x1, y1), where D+V1(t) = 0. Thus, V1(x, y) satisfies Lyapunov’s asymptotic stabil-
ity theorem [35], and the positive equilibrium A4(x1, y1) of system (1.1) is globally asymp-
totically stable.

(2) Inequality (2.9) implies that for enough small positive constant ε, one has

b11

b12
+ a12

(
y∗ + ε

)
< b14 (2.19)

holds. Obviously, y∗ satisfies the equation

b21

b22 + b23y∗ – b24 – a22y∗ = 0. (2.20)

Also, it follows from Lemma 2.1 that the unique positive equilibrium y∗ of system

dy
dt

= y
(

b21

b22 + b23y
– b24 – a22y

)
(2.21)

is globally asymptotically stable. That is,

lim
t→+∞ y(t) = y∗.
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Hence, for ε satisfies (2.19), there exists enough large T1 such that

y(t) < y∗ + ε for all t ≥ T1. (2.22)

Now let us consider the Lyapunov function

V2(x, y) = x +
(

y – y∗ – y∗ ln
y
x∗

)
. (2.23)

One could easily see that the function V2 is zero at the boundary equilibrium A3(0, y∗) and
is positive for all other positive values of x, y. By applying (2.20) and (2.23), for t > T1, the
time derivative of V2 along the trajectories of (1.1) is

D+V2(t) = x
(

b11

b12 + b13x
– b14 – a11x + a12y

)

+
(
y – y∗)

(
b21

b22 + b23y
– b24 – a22y

)

≤ x
(

b11

b12 + b13x
– b14 – a11x + a12

(
y∗ + ε

))

+
(
y – y∗)

(
b21

b22 + b23y
–

b21

b22 + b23y∗ + a22y∗ – a22y
)

≤ x
(

b11

b12
– b14 + a12

(
y∗ + ε

))
– a11x2

–
(

b21b23

(b22 + b23y)(b22 + b23y∗)
+ a22

)(
y – y∗)2. (2.24)

It then follows from (2.19) that D+V2(t) < 0 strictly for all x, y > 0 except the boundary
equilibrium A3(0, y∗), where D+V2(t) = 0. Thus, V2(x, y) satisfies Lyapunov’s asymptotic
stability theorem [35], and the boundary equilibrium A3(0, y∗) of system (1.1) is globally
asymptotically stable.

(3) Obviously, x∗ satisfies the equation

b11

b12 + b13x∗ – b14 – a11x∗ = 0. (2.25)

Now let us consider the Lyapunov function

V3(x, y) =
a11a22

a2
12

(
x – x∗ – x∗ ln

x
x∗

)
+

1
4

y. (2.26)

One could easily see that the function V3 is zero at the boundary equilibrium A2(x∗, 0) and
is positive for all other positive values of x, y. By applying (2.25), the time derivative of V3

along the trajectories of (1.1) is

D+V3(t) =
(
x – x∗)a11a22

a2
12

(
b11

b12 + b13x
– b14 – a11x + a12y

)

+
1
4

y
(

b21

b22 + b23y
– b24 – a22y

)
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≤ (
x – x∗)a11a22

a2
12

(
b11

b12 + b13x
–

b11

b12 + b13x∗ + a11x∗ – a11x
)

+
a11a22

a12

(
x – x∗)y +

1
4

y
(

b21

b22
– b24

)
–

1
4

a22y2

= –
a11a22

a2
12

b11b13

(b12 + b13x∗)(b12 + b13x)
(
x – x∗)2 +

1
4

y
(

b21

b22
– b24

)

– a22

[
a11

a12
(x – x1) –

1
2

y
]2

. (2.27)

It then follows from (2.6) that D+V3(t) < 0 strictly for all x, y > 0 except the boundary
equilibrium A2(x∗, 0), where D+V3(t) = 0. Thus, V3(x, y) satisfies Lyapunov’s asymptotic
stability theorem [35], and the boundary equilibrium A2(x∗, 0) of system (1.1) is globally
asymptotically stable.

(4) Now let us consider the Lyapunov function

V4(x, y) =
a11a22

a2
12

x +
1
4

y. (2.28)

One could easily see that the function V4 is zero at the boundary equilibrium A(0, 0) and
is positive for all other positive values of x, y. The time derivative of V4(x, y) along the
trajectories of (1.1) is

D+V4(t) =
a11a22

a2
12

x
(

b11

b12 + b13x
– b14 – a11x + a12y

)

+
1
4

y
(

b21

b22 + b23y
– b24 – a22y

)

≤ a11a22

a2
12

x
(

b11

b12
– b14

)
–

a2
11a22

a2
12

x2 +
a11a22

a12
xy

+
1
4

y
(

b21

b22
– b24

)
–

1
4

a22y2

=
a11a22

a2
12

(
b11

b12
– b14

)
x – a22

[
a11

a12
x –

1
2

y
]2

+
1
4

y
(

b21

b22
– b24

)
. (2.29)

It then follows from (2.6) and (2.15) that D+V4(t) < 0 strictly for all x, y > 0 except the
boundary equilibrium A1(0, 0), where D+V4(t) = 0. Thus, V4(x, y) satisfies Lyapunov’s
asymptotic stability theorem [35], and the boundary equilibrium A1(0, 0) of system (1.1)
is globally asymptotically stable.

This ends the proof of Theorem 2.1. �

3 Numeric simulations
Now let us consider the following four examples.

Example 3.1

dx
dt

= x
(

1
2 + x

– 1 – x + y
)

,

dy
dt

= y
(

1
2 + y

– 1 – y
)

.
(3.1)
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Figure 1 Dynamic behaviors of system (3.1) with the initial condition (x(0), y(0)) = (1, 0.3), (0.4, 2), (0.02, 2), (1, 2),
and (0.1, 2), respectively

In this system, corresponding to system (1.1), we take b11 = b13 = b14 = a11 = a12 = b21 =
b23 = b24 = a22 = 1, b12 = b22 = 2. Since b11 < b12b14, b21 < b22b24, it follows from Theo-
rem 2.1(4) that the boundary equilibrium A1(0, 0) is globally asymptotically stable. Figure 1
supports this assertion.

Example 3.2

dx
dt

= x
(

2
1 + x

– 1 – x + y
)

,

dy
dt

= y
(

2
1 + y

– 1 – y
)

.
(3.2)

In this system, corresponding to system (1.1), we take b12 = b13 = b14 = a11 = a12 = b22 =
b23 = b24 = a22 = 1, b11 = b21 = 2. Since b11 > b12b14, b21 > b22b24, it follows from Remark 2.3
that the unique positive equilibrium A4(0.4142, 0.6364) is globally asymptotically stable.
Figure 2 supports this assertion.

Example 3.3

dx
dt

= x
(

2
1 + x

– 1 – x + y
)

,

dy
dt

= y
(

1
2 + y

– 1 – y
)

.
(3.3)
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Figure 2 Dynamic behaviors of system (3.2) with the initial condition (x(0), y(0)) = (1, 0.3), (0.4, 2), (0.02, 2), (1, 2),
and (0.1, 2), respectively

In this system, corresponding to system (1.1), we take b12 = b13 = b14 = a11 = a12 = b21 =
b23 = b24 = a22 = 1, b11 = b22 = 2. Since b11 > b12b14, b21 < b22b24, that is, inequalities (2.4)
and (2.6) hold, it follows from Theorem 2.1(3) that the boundary equilibrium A2(0.4142, 0)
is globally asymptotically stable. Figure 3 supports this assertion.

Example 3.4

dx
dt

= x
(

1
2 + x

– 1 – x + y
)

,

dy
dt

= y
(

2
1 + y

– 1 – y
)

.
(3.4)

In this system, corresponding to system (1.1), we take b11 = b13 = b14 = a11 = a12 = b22 =
b23 = b24 = a22 = 1, b12 = b21 = 2. Since b11 < b12b14, b21 > b22b24, that is, inequalities (2.7)
and (2.9) hold, it follows from Theorem 2.1(2) that the boundary equilibrium A2(0, 0.4142)
is globally asymptotically stable. Figure 4 supports this assertion.

4 Discussion
Recently, many scholars have studied the dynamic behaviors of the commensal symbiosis
model [13–31]. All of the works of [13–31] are based on the traditional logistic model, as
was showed in the introduction section. Especially, Han and Chen [18] showed that the
unique positive equilibrium P0(x0, y0) of system (1.3) is globally asymptotically stable (see
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Figure 3 Dynamic behaviors of system (3.3) with the initial condition (x(0), y(0)) = (1, 0.3), (0.4, 2), (0.02, 2), (1, 2),
and (0.1, 2), respectively

Figure 4 Dynamic behaviors of system (3.4) with the initial condition (x(0), y(0)) = (0.4, 1), (1, 0.3), (0.02, 1), (1, 1),
and (1, 0.1), respectively
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Theorems A and B in the Introduction section for more details), this means that all other
equilibria of system (1.3) are unstable.

In this paper, we argued that the birth rate of the species may be density dependent;
indeed, this is one of the phenomena that could be observed in the nature and society.
We propose system (1.1). Theorem 2.1 shows that under some suitable assumptions, all of
the four equilibria may be globally asymptotically stable. That is, with introduction of the
density dependent birth rate, the dynamic behaviors of the system become complicated.
Such kind of phenomenon is not observed in [13–31].

Our study shows that the birth rate is one of the essential factors in determining the
dynamic behaviors of the species. To control the number of the species, maybe one of the
useful methods is to control the birth rate of the species.
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