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Abstract
A two species stage-structured commensalism model is proposed and studied in this
paper. Local and global stability property of the boundary equilibrium and the
positive equilibrium are investigated, respectively. If the stage-structured species is
extinct, then depending on the intensity of cooperation, the species may still be
extinct or become persistent. If the stage-structured species is permanent, then the
final system is always globally asymptotically stable, which means the species is
always permanent. Our study shows that increasing the intensity of the cooperation
between the species is one of very useful methods to avoid extinction of the
endangered species. Such a finding may be useful in protecting the endangered
species. An example together with its numeric simulations is presented to verify our
main results.
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1 Introduction
The aim of this paper is to investigate the dynamic behaviors of the following stage-
structured commensalism system:

dx1

dt
= αx2 – βx1 – δ1x1,

dx2

dt
= βx1 – δ2x2 – γ x2

2 + dx2y,

dy
dt

= y(b2 – a2y),

(1.1)

with x1(0) > 0, x2(0) > 0, and y(0) > 0, where α, β , δ1, δ2, d, b2, a2, and γ are all positive
constants, x1(t) and x2(t) are the densities of the immature and mature first species at
time t, y is the density of the second species at time t. For the simplicity of our model,
we only consider the stage structure of immaturity and maturity of the first species and
do not consider the stage structure of the second species. The following assumptions are
made in formulating model (1.1):

1. For the first species, the per capita birth rate of the immature population is α > 0;
The per capita death rate of the immature population is δ1 > 0; The per capita death
rate of the mature population is proportional to the current mature population with
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a proportionality constant δ2 > 0; β > 0 denotes the surviving rate of immaturity to
reach maturity; The mature species is density-dependent with the parameter γ > 0.

2. The second species is only beneficial to the mature first species, and their
relationship is bilinear (dx2y).

3. The second species satisfies the logistic model, where b2 is the intrinsic growth rate
of the second species, and a2

b2
is the catching capacity of the second species.

During the last decade, many scholars investigated the dynamic behaviors of the mutu-
alism model or commensalism model [1–25]. Han and Chen [15] proposed the following
commensalism model with feedback controls:

dx1(t)
dt

= x1(t)
(
b1 – a11x1(t) + a12x2(t) – α1u1(t)

)
,

dx2(t)
dt

= x2(t)
(
b2 – a22x2(t) – α2u2(t)

)
,

du1(t)
dt

= –η1u1(t) + a1x1(t),

du2(t)
dt

= –η2u2(t) + a2x2(t).

(1.2)

They first showed that the subsystem, i.e., the two species commensalism model

dx1(t)
dt

= x1(t)
(
b1 – a11x1(t) + a12x2(t)

)
,

dx2(t)
dt

= x2(t)
(
b2 – a22x2(t)

)
,

(1.3)

admits a unique globally asymptotically stable positive equilibrium. After that, they fur-
ther showed that system (1.2) admits a unique globally stable positive equilibrium, which
means that feedback control variables have no influence on the stability property of sys-
tem (1.2). Several scholars argued that discrete models are more suitable if the species have
non-overlapping generations. Xie et al. [16] proposed the following discrete commensal
symbiosis model:

x1(k + 1) = x1(k) exp
{

a1(k) – b1(k)x1(k) + c1(k)x2(k)
}

,

x2(k + 1) = x2(k) exp
{

a2(k) – b2(k)x2(k)
}

.
(1.4)

They obtained a set of sufficient conditions which ensure the existence of the positive pe-
riodic solution of system (1.4). Xue et al. [17] further proposed a discrete commensalism
model with delays, they investigated the almost periodic solution of the system. Li et al.
[21] studied the positive periodic solution of a discrete commensalism model with Holling
II functional response. Wu [13] argued that it may be more suitable to assume that the rela-
tionship between two species is of nonlinear type instead of linear one, and she established
the following two species commensal symbiosis model:

dx
dt

= x
(

a1 – b1x +
c1yp

1 + yp

)
,

dy
dt

= y(a2 – b2y),
(1.5)
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where ai, bi, i = 1, 2, p and c1 are all positive constants, p ≥ 1. The results of [13] were then
generalized by Wu et al. [12] to the following commensalism model with Allee effect:

dx
dt

= x
(

a1 – b1x +
c1yp

1 + yp

)
,

dy
dt

= y(a2 – b2y)
y

u + y
,

(1.6)

where ai, bi, i = 1, 2, p, u, and c1 are all positive constants, p ≥ 1.
Recently, several scholars studied the influence of partial closure on the non-selective

harvesting commensalism model. Deng and Huang [21] studied the dynamic behaviors of
the following system:

dx
dt

= r1x
(

1 –
x

K1
+ α

y
K1

)
– q1Emx,

dy
dt

= r2y
(

1 –
y

K2

)
– q2Emy,

(1.7)

where r1, r2, K1, K2, α are all positive constants. E is the combined fishing effort used
to harvest, and m (0 < m < 1) is the fraction of the stock available for harvesting. They
showed that depending on the fraction of the stock available for harvesting, the system
may undergo extinction, partial survival, or two species may coexist in a stable state. The
dynamic behaviors of the system become complicated compared with the non-harvesting
system. Lin [10] further studied the dynamic behaviors of a commensal symbiosis model
with non-monotonic functional response and non-selective harvesting in a partial closure.

On the other hand, many scholars investigated the dynamic behaviors of the stage-
structured species, see [26–45], and the references cited therein. In constructing a stage-
structured model, two different ideas were applied. Firstly, assume that the species needs
time to grow up, and this leads to the delayed model. Aiello and Freedman [42] for the first
time proposed the following stage-structured single species model:

dx1(t)
dt

= αx2(t) – γ x1(t) – αe–γ τ x2(t – τ ),

dx2(t)
dt

= αe–γ τ x2(t – τ ) – βx2
2(t).

(1.8)

They showed that system (1.8) admits a unique positive equilibrium which is globally
asymptotically stable. Many scholars [26–39] used the idea of Aiello and Freedman to
establish stage-structured ecological models. For example, Chen et al. [28] studied the
persistence property of the following stage-structured predator–prey model:

dx1(t)
dt

= r1x2(t) – d11x1(t) – r1e–d11τ1 x2(t – τ1),

dx2(t)
dt

= r1e–d11τ1 x2(t – τ1) – d12x2(t) – b1x2
2(t) – c1x2(t)y2(t),

dy1(t)
dt

= r2y2(t) – d22y1(t) – r2e–d22τ2 y2(t – τ2),

dy2(t)
dt

= r2e–d22τ2 y2(t – τ2) – d21y2(t) – b2y2
2(t) + c2y2(t)x2(t).

(1.9)
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They obtained a set of sufficient conditions which ensure the global asymptotic stability
of the positive equilibrium. Chen et al. [34] proposed and studied the following May type
stage-structured cooperation model:

ẋ1(t) = b1e–d11τ1 x1(t – τ1) – d12x1(t) –
a11x2

1(t)
c1 + f1x2(t)

– a12x2
1(t),

ẏ1(t) = b1x1(t) – d11y1(t) – b1e–d11τ1 x1(t – τ1),

ẋ2(t) = b2e–d22τ2 x2(t – τ2) – d21x2(t) –
a22x2

2(t)
c2 + f2x1(t)

– a21x2
2(t),

ẏ2(t) = b2x2(t) – d22y2(t) – b2e–d22τ2 x2(t – τ2).

(1.10)

They showed that with introduction of the stage structure, the May type cooperative sys-
tem may admit partial survival property, that is, despite the cooperation between the
species, the species may still be driven to extinction due to the stage structure. They fi-
nally drew the conclusion: the cooperation between the species has no influence on the
persistence property of the system.

Another way to construct a stage-structured ecosystem is to assume that there is a pro-
portional number of immature species that become mature species [40, 41, 43, 44]. Re-
cently, Khajanchi and Banerjee [41] proposed the following stage-structured predator–
prey model with ratio-dependent functional response:

dx1

dt
= αx2(t) – βx1(t) – δ1x1(t),

dx2

dt
= βx1(t) – δ2x2(t) – γ x2

2(t) –
η(1 – θ )x2(t)y(t)

g(1 – θ )x2(t) + hy(t)
,

dy
dt

=
uη(1 – θ )x2(t)y(t)

g(1 – θ )x2(t) + hy(t)
– δ3y1(t)

(1.11)

The authors investigated the stability property of the positive equilibrium and boundary
equilibrium. In system (1.11), without predator species, the system will reduce to the fol-
lowing single species stage-structured system:

dx1

dt
= αx2(t) – βx1(t) – δ1x1(t),

dx2

dt
= βx1(t) – δ2x2(t) – γ x2

2(t).
(1.12)

Though system (1.12) seems very simple, in [43], we showed that if

αβ < δ2(β + δ1) (1.13)

holds, the equilibrium O(0, 0) is globally asymptotically stable, which means extinction of
the species. Therefore, the dynamic behaviors of system (1.12) are very different to the
dynamic behaviors of system (1.8). It is in this sense that we need to do more work on a
non-delay stage-structured ecosystem.
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Recently, in [43], we proposed the following single species stage-structured system in-
corporating partial closure for the populations and non-selective harvesting:

dx1

dt
= αx2 – βx1 – δ1x1 – q1Emx1,

dx2

dt
= βx1 – δ2x2 – γ x2

2 – q2Emx2,
(1.14)

where α, β , δ1, δ2, q1, q2, E, and γ are all positive constants, x1(t) and x2(t) are the densities
of the immature and mature species at time t. Our study showed that the birth rate of the
immature species and the fraction of the stocks for the harvesting play a crucial role in the
dynamic behaviors of the system.

One could easily see that in system (1.1), without the cooperation of the second species,
the first species is described by (1.12). Hence, one interesting issue is proposed:

Assume that without the cooperation of the second species, the first species in system (1.1)
will be driven to extinction, i.e., assume inequality (1.13) holds. Is it possible for the species
1 to avoid the extinction due to the cooperation of the second species, or will the first species
be driven to extinction despite the cooperation of the second species, just like the dynamic
behaviors of system (1.10)?

We will try to find the answer in the rest of the paper.
The paper is arranged as follows. We investigate the existence and local stability prop-

erty of the equilibria of system (1.1) in Sect. 2. In Sect. 3, by constructing some suitable
Lyapunov function, we are able to investigate the global stability property of the equilibria.
Section 4 presents some numerical simulations to show the feasibility of the main results.
We end this paper with a brief discussion.

2 Local stability of the equilibria
Before we study the local stability property of the equilibrium points of system (1.1), we
would like to introduce the stability result of equilibrium of system (1.12). The following
lemma is Theorems 4.1 and 4.2 of [43].

Lemma 2.1 Assume that

αβ < δ2(β + δ1) (2.1)

holds, then the boundary equilibrium O(0, 0) of system (1.12) is globally stable. Assume that

αβ > δ2(β + δ1) (2.2)

holds, then the positive equilibrium B(x∗
1, x∗

2) of system (1.12) is globally stable, where

x∗
1 =

αx∗
2

β + δ1
, x∗

2 =
αβ – δ2(β + δ1)

γ (β + δ1)
.

Lemma 2.2 R+
3 is the invariant set of system (1.1).

Proof Note that from system (1.1), for all x1, x2, y > 0, one has

ẋ1|x1=0 = αx2 > 0,
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ẋ2|x2=0 = βx1 > 0,

y(t) = y(0) exp
∫ t

0

(
b2 – a2y(s)

)
ds > 0.

It immediately follows that R+
3 is the invariant set of system (1.1). �

Now we are in a position to investigate the local stability property of system (1.1).
The equilibria of system (1.1) are determined by the following system:

αx2 – βx1 – δ1x1 = 0,

βx1 – δ2x2 – γ x2
2 + dx2y = 0,

y(b2 – a2y) = 0.

(2.3)

The system always admits two boundary equilibria: A1(0, 0, 0), A2(0, 0, b2
a2

). Also, if

αβ > δ2(β + δ1), (2.4)

then the system admits another boundary equilibrium A3(x∗
1, x∗

2, 0), where

x∗
1 =

αx∗
2

β + δ1
, x∗

2 =
αβ – δ2(β + δ1)

γ (β + δ1)
. (2.5)

Assume that

αβ –
(

δ2 –
db2

a2

)
(β + δ1) > 0, (2.6)

then system (1.1) admits a unique positive equilibrium A4(x∗∗
1 , x∗∗

2 , y∗∗), where

x∗∗
1 =

αx∗
2

β + δ1
,

x∗∗
2 =

αβ – (δ2 – db2
a2

)(β + δ1)
(β + δ1)γ

,

y∗∗ =
b2

a2
.

(2.7)

Obviously, x∗∗
1 , x∗∗

2 , and y∗∗ satisfy the equations

αx∗∗
2 – βx∗∗

1 – δ1x∗∗
1 = 0,

βx∗∗
1 – δ2x∗∗

2 – γ
(
x∗∗

2
)2 + dx∗∗

2 y∗∗ = 0,

b2 – a2y∗∗ = 0.

(2.8)

We shall now investigate the local stability property of the above equilibria.
The variational matrix of system (1.1) is

J(x1, x2, y) =

⎛

⎜
⎝

–β – δ1 α 0
β –δ2 – 2γ x2 + dy dx2

0 0 –2a2y + b2

⎞

⎟
⎠ . (2.9)
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Theorem 2.1 A1(0, 0, 0) is unstable.

Proof From (2.9) we could see that the Jacobian matrix of the system about the equilibrium
point A1(0, 0, 0) is given by

⎛

⎜
⎝

–β – δ1 α 0
β –δ2 0
0 0 b2

⎞

⎟
⎠ . (2.10)

The characteristic equation of the above matrix is

(λ – b2)
(
λ2 + (δ1 + δ2 + β)λ + βδ2 + δ1δ2 – αβ

)
= 0. (2.11)

Hence, it has one positive characteristic root λ1 = b2; consequently, A1(0, 0, 0) is unstable.
This ends the proof of Theorem 2.1. �

Remark 2.1 Theorem 2.1 shows that it is impossible for the system to be driven to extinc-
tion, that is, the two species in system (1.1) could not be extinct at the same time.

Theorem 2.2 Assume that

(β + δ1)
(

δ2 –
db2

a2

)
– αβ > 0, (2.12)

then A2(0, 0, b2
a2

) is locally asymptotically stable. Assume that

(β + δ1)
(

δ2 –
db2

a2

)
– αβ < 0, (2.13)

then A2(0, 0, b2
a2

) is unstable.

Proof From (2.9) we could see that the Jacobian matrix of the system about the equilibrium
point A2(0, 0, b2

a2
) is given by

⎛

⎜
⎝

–β – δ1 α 0
β

db2
a2

– δ2 0
0 0 –b2

⎞

⎟
⎠ . (2.14)

The characteristic equation of the above matrix is

(λ + b2)
[
λ2 +

(
δ1 + δ2 + β –

db2

a2

)
λ + (β + δ1)

(
δ2 –

db2

a2

)
– αβ

]
= 0. (2.15)

Hence, it has one negative characteristic root λ1 = –b2 < 0, the other two characteristic
roots are determined by the equation

λ2 +
(

δ1 + δ2 + β –
db2

a2

)
λ + (β + δ1)

(
δ2 –

db2

a2

)
– αβ = 0. (2.16)
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Note that the two characteristic roots of Eq. (2.16) satisfy

λ2 + λ3 = –
(

δ1 + δ2 + β –
db2

a2

)
,

λ2λ3 = (β + δ1)
(

δ2 –
db2

a2

)
– αβ .

(2.17)

Under assumption (2.13), λ2λ3 < 0, hence at least one characteristic root is positive; con-
sequently, A2(0, 0, b2

a2
) is unstable. Under assumption (2.12), it implies that δ2 > db2

a2
, and so,

from (2.17), one has λ2 + λ3 < 0, λ2λ3 > 0. Hence, λ2 < 0,λ3 < 0. That is, under assumption
(2.12), three characteristic roots of matrix (2.14) are all negative; consequently, A1(0, 0, b2

a2
)

is locally asymptotically stable. This ends the proof of Theorem 2.2. �

Remark 2.2 Assume that (2.1) holds, then for the system without cooperation, it follows
from Lemma 2.1 that the first species will be driven to extinction. If the cooperative co-
efficient d is small enough, then inequality (2.12) holds. It follows from the first part of
Theorem 2.2 that in this case the first species will still be driven to extinction despite the
cooperation of the second species.

Theorem 2.3 A3(x∗
1, x∗

2, 0) is unstable.

Proof From (2.9) we could see that the Jacobian matrix of the system about the equilibrium
point A3(x∗

1, x∗
2, 0) is given by

⎛

⎜
⎝

–β – δ1 α 0
β –δ2 – 2γ x∗

2 dx∗
2

0 0 b2

⎞

⎟
⎠ . (2.18)

The characteristic equation of the above matrix is

(λ – b2)
(
λ2 +

(
δ1 + 2γ x∗

2 + β
)
λ + (β + δ1)

(
δ2 + 2γ x∗

2
)

– αβ
)

= 0. (2.19)

Hence, it has one positive characteristic root λ1 = b2; consequently, A3(x∗
1, x∗

2, 0) is unstable.
This ends the proof of Theorem 2.3. �

Remark 2.3 Theorem 2.3 shows that it is impossible for the second species to be driven
to extinction while the first species is asymptotically stable.

Theorem 2.4 Assume that (2.6) holds, then A4(x∗∗
1 , x∗∗

2 , y∗∗) is locally asymptotically sta-
ble.

Proof From (2.9) we could see that the Jacobian matrix of the system about the equilibrium
point A4(x∗∗

1 , x∗∗
2 , y∗∗) is given by

⎛

⎜
⎝

–β – δ1 α 0
β –δ2 – 2γ x∗∗

2 + dy∗∗ dx∗∗
2

0 0 –2a2y∗∗ + b2

⎞

⎟
⎠ . (2.20)
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Noting that

–2a2y∗∗ + b2 = –2a2
b2

a2
+ b2 = –b2,

also, from the second equation of (2.6), we have

–δ2 – 2γ x∗∗
2 + dy∗∗ = –

βx∗∗
1

x∗∗
2

– γ x∗∗
2

= –
αβ

β + δ1
– γ x∗∗

2 .

The characteristic equation of the above matrix is

(λ + b2)
[
λ2 + B1λ + B2

]
= 0, (2.21)

where

B1 = β + δ1 +
βα

β + δ1
+ γ x∗∗

2 ,

B2 = (β + δ1)
(

βα

β + δ1
+ γ x∗∗

2

)
– αβ .

Hence, it has one negative characteristic root λ1 = –b2 < 0, the other two characteristic
roots are determined by the equation

λ2 + B1λ + B2 = 0. (2.22)

Note that from the expression of x∗∗
2 and condition (2.6), the two characteristic roots of

Eq. (2.22) satisfy

λ2 + λ3 = –B1 < 0,

λ2λ3 = (β + δ1)
(

βα

β + δ1
+ γ x∗∗

2

)
– αβ

= (β + δ1)
(

βα

β + δ1
+

αβ – δ2(β + δ1)
β + δ1

)
– αβ

= αβ – δ2(β + δ1) > 0.

(2.23)

Hence, λ2 < 0,λ3 < 0, therefore, all of the three characteristic roots are negative. Con-
sequently, A4(x∗∗

1 , x∗∗
2 , y∗∗) is locally asymptotically stable. This ends the proof of Theo-

rem 2.4. �

Remark 2.4 Condition (2.6) is necessary to ensure the existence of the positive equilib-
rium. Theorem 2.4 shows that if the positive equilibrium exists, it is locally asymptotically
stable.
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3 Global stability
We showed in Sect. 2 that A1(0, 0, 0) and A3(x∗

1, x∗
2, 0) are unstable, while under assumption

(2.12), A2(0, 0, b2
a2

) is locally asymptotically stable; and if the positive equilibrium exists, it
is locally asymptotically stable. One interesting issue is to investigate the global stability
property of the equilibria. In this section we will try to obtain some sufficient conditions
which could ensure the global asymptotic stability of the equilibria A2 and A4 of system
(1.1).

Theorem 3.1 Assume that

(β + δ1)
(

δ2 –
db2

a2

)
– αβ > 0, (3.1)

then A2(0, 0, b2
a2

) is globally asymptotically stable.

Proof We will prove Theorem 3.1 by constructing some suitable Lyapunov function. Let
us define a Lyapunov function

V1(x1, x2, y) =
β

β + δ1
x1 + x2 +

d2

4γ a2

(
y – y1 – y1 ln

y
y1

)
, (3.2)

where

y1 =
b2

a2
. (3.3)

One could easily see that the function V1 is zero at the boundary equilibrium A2(0, 0, b2
a2

)
and is positive for all other positive values of x1 and x2. The time derivative of V1 along
the trajectories of (1.1) is

D+V1(t) =
β

β + δ1
(αx2 – βx1 – δx1)

+ βx1 – δ2x2 – γ x2
2 + dyx2

+
d2

4γ a2
(y – y1)(b2 – a2y)

=
(

αβ

β + δ1
– δ2

)
x2 – γ x2

2 + dyx2

+
d2

4γ a2
(y – y1)(b2 – a2y)

=
(

αβ

β + δ1
– δ2 +

db2

a2

)
x2 – γ x2

2 + dx2(y – y1)

+
d2

4γ a2
(y – y1)(a2y1 – a2y)

=
1

β + δ1

(
αβ –

(
δ2 –

db2

a2

)
(β + δ1)

)
x2 – γ x2

2

+ dx2(y – y1) –
d2

4γ
(y – y1)2
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=
1

β + δ1

(
αβ –

(
δ2 –

db2

a2

)
(β + δ1)

)
x2

– γ

[
x2 –

d
2γ

(y – y1)
]2

. (3.4)

It then follows from (3.1) and (3.4) that D+V1(t) < 0 strictly for all x1, x2, y > 0 except
the boundary equilibrium A2(0, 0, b2

a2
), where D+V1(t) = 0. Thus, V1(x1, x2, y) satisfies Lya-

punov’s asymptotic stability theorem, and the boundary equilibrium A2(0, 0, b2
a2

) of system
(1.1) is globally asymptotically stable.

This completes the proof of Theorem 3.1. �

Remark 3.1 Under the assumption αβ < δ2(β +δ1), it follows from Lemma 2.1 that the first
species will be driven to extinction. Obviously, if db2

a2
is small enough, then inequality (3.1)

holds. Moreover, it follows from Theorem 3.1 that A2(0, 0, b2
a2

) is globally asymptotically
stable, which means that the first species is still driven to extinction. That is, if the cooper-
ation is limited, then, despite the cooperation between the two species, the species is still
driven to extinction.

Theorem 3.2 Assume that

αβ –
(

δ2 –
db2

a2

)
(β + δ1) > 0 (3.5)

holds, then A4(x∗∗
1 , x∗∗

2 , y∗∗) is globally asymptotically stable.

Proof We will prove Theorem 3.2 by constructing some suitable Lyapunov function. Let
us define a Lyapunov function

V2(x1, x2, y) = k1

(
x1 – x∗∗

1 – x∗∗
1 ln

x1

x∗∗
1

)

+ k2

(
x2 – x∗∗

2 – x∗∗
2 ln

x2

x∗∗
2

)

+ k3

(
y – y∗∗ – y∗∗ ln

y
y∗∗

)
, (3.6)

where k1, k2, k3 are some positive constants to be determined later.
One could easily see that the function V2 is zero at the equilibrium A4(x∗∗

1 , x∗∗
2 , y∗∗) and

is positive for all other positive values of x1, x2, and y. The time derivative of V2 along the
trajectories of (1.1) is

D+V2(t) = k1
x1 – x∗∗

1
x1

ẋ1 + k2
x2 – x∗∗

2
x2

ẋ2 + k3
y – y∗∗

y
ẏ

= k1
x1 – x∗∗

1
x1

(
αx2 – (β + δ1)x1

)

+ k2
x2 – x∗∗

2
x2

(
βx1 – δ2x2 – γ x2

2 + dyx2
)

+ k3
(
y – y∗∗)(b2 – a2y). (3.7)
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Note that from the relationship of x∗∗
1 , x∗∗

2 , and y∗∗ (see (2.8)) we have

αx2 – (β + δ1)x1 =
α

x∗∗
1

(
–x2

(
x1 – x∗∗

1
)

+ x1
(
x2 – x∗∗

2
))

. (3.8)

Also, from (2.7) and (2.8), we have

βx1 – δ2x2 – γ x2
2 – dux2

=
β

x∗∗
2

(
x1x∗∗

2 – x2x∗∗
1

)
+ βx2

x∗∗
1

x∗∗
2

– δ2x2 – γ x2
2 + dyx2

=
β

x∗∗
2

(
x1x∗∗

2 – x1x2 + x1x2 – x2x∗∗
1

)

+
(

αβ

β + δ1
– δ2 +

db2

a2

)
x2 – γ x2

2 + dx2
(
y – y∗∗)

=
β

x∗∗
2

(
x1

(
x∗∗

2 – x2
)

+ x2
(
x1 – x∗∗

1
))

+
(

αβ

β + δ1
– δ2 +

db2

a2

)
x2 – γ x2

2 + dx2
(
y – y∗∗)

=
β

x∗∗
2

(
x1

(
x∗∗

2 – x2
)

+ x2
(
x1 – x∗∗

1
))

– γ x2
2 + γ x2x∗∗

2 + dx2
(
y – y∗∗)

=
β

x∗∗
2

(
x1

(
x∗∗

2 – x2
)

+ x2
(
x1 – x∗∗

1
))

– γ x2
(
x2 – x∗∗

2
)

+ dx2
(
y – y∗∗), (3.9)

from the third equation of (2.8), we have

b2 – a2y = a2y∗∗ – a2y = –a2
(
y – y∗∗). (3.10)

Applying (3.8)–(3.10) to (3.7) leads to

D+V2(t) = k1
x1 – x∗∗

1
x1

α

x∗∗
1

(
–x2

(
x1 – x∗∗

1
)

+ x1
(
x2 – x∗∗

2
))

+ k2
x2 – x∗∗

2
x2

β

x∗∗
2

(
x1

(
x∗∗

2 – x2
)

+ x2
(
x1 – x∗∗

1
))

– k2γ x2
x2 – x∗∗

2
x2

(
x2 – x∗∗

2
)

+ k2 dx2
x2 – x∗∗

2
x2

(
y – y∗∗)

– k3a2
(
y – y∗∗)2

= –
k1αx2

x1x∗∗
1

(
x1 – x∗∗

1
)2 +

(
k1α

x∗∗
1

+
k2β

x∗∗
2

)(
x1 – x∗∗

1
)(

x2 – x∗∗
2

)

–
k2βx1

x2x∗∗
2

(
x2 – x∗∗

2
)2 – k2γ

(
x2 – x∗∗

2
)2

+ k2 d
(
x2 – x∗∗

2
)(

y – y∗∗) – k3a2
(
y – y∗∗)2.
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Now let us choose k2 = 1, k1 = βx1∗
x2∗α

, k3 = d2

4γ a2
, then

D+V2(t) = –
βx2

x1x2∗
(x1 – x1∗)2 +

2β

x2∗
(x1 – x1∗)(x2 – x2∗)

–
βx1

x2x2∗
(x2 – x2∗)2 – γ (x2 – x2∗)2

+ d
(
x2 – x∗∗

2
)(

y – y∗∗) –
d2

4γ a2
a2

(
y – y∗∗)2

= –
β

x2∗

[√
x2

x1
(x1 – x1∗) –

√
x1

x2
(x2 – x2∗)

]2

– γ

[
(x2 – x2∗) –

d
2γ

(
y – y∗∗)

]2

. (3.11)

Hence, D+V2(t) < 0 strictly for all x1, x2, y > 0 except the positive equilibrium A4(x∗∗
1 , x∗∗

2 ,
y∗∗), where D+V2(t) = 0. Thus, V2(x1, x2, y) satisfies Lyapunov’s asymptotic stability theo-
rem, and the positive equilibrium A4(x∗∗

1 , x∗∗
2 , y∗∗) of system (1.1) is globally asymptotically

stable.
This completes the proof of Theorem 3.2. �

Remark 3.2 Condition (3.5) is necessary to ensure the existence of positive equilibrium.
Theorem 3.2 shows that if the positive equilibrium exists, it is globally asymptotically sta-
ble. Hence, it is impossible for the system to have a bifurcation phenomenon.

Remark 3.3 Assume that αβ > δ2(β + δ1) holds, then inequality (3.5) always holds. From
Lemma 2.1, we know that in this case system (1.12) admits a unique positive equilibrium.
That is, if system (1.12) admits the unique positive equilibrium, then for the commen-
salism model, the system still admits the unique positive equilibrium which is globally
asymptotically stable.

Remark 3.4 Assume that αβ < δ2(β + δ1) holds, then if db2
a2

is large enough, inequality (3.5)
still holds. From Lemma 2.1, we know that in this case the boundary equilibrium O(0, 0)
of system (1.12) is globally asymptotically stable, which means extinction of the species.
Then, for the commensalism model, if the cooperative effect is large enough, then the sys-
tem admits the unique positive equilibrium which is globally asymptotically stable, which
means the species is permanent. Therefore, for the endangered species, the intensity of
cooperation between the species plays the essential role in the persistence property of the
species.

Remark 3.5 Theorems 3.1 and 3.2 depict a very intuitive biological phenomenon. From
Zhang et al. [45], we can regard α

δ2
as a relative birth rate of the first mature species, β

β+δ1

as a relative transformation rate of the first immature species. Then conditions (3.1) and
(3.5) are equivalent to

α

δ2 – db2
a2

β

β + δ1
< 1 (3.12)
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and

α

δ2 – db2
a2

β

β + δ1
> 1, (3.13)

respectively. Hence, with the help of the second species, the relative birth rate of the first
mature species is increasing, this finally increases the chance of the survival of the first
species.

4 Numeric simulations
Now let us consider the following example.

Example 4.1 Let us consider the two species stage-structured commensalism model:

dx1

dt
= x2 – x1 – x1,

dx2

dt
= x1 – x2 – x2

2 + dx2y,

dy
dt

= y(1 – y).

(4.1)

Here we choose α = β = δ1 = δ2 = γ = a2 = b2 = 1. Hence

αβ = 1 < 2 = δ2(β + δ1).

It follows from Lemma 2.1 that the boundary equilibrium O(0, 0) of the following system
is globally asymptotically stable.

dx1

dt
= x2 – x1 – x1,

dx2

dt
= x1 – x2 – x2

2.
(4.2)

That is, without the cooperation of the second species, the first species will be driven to
extinction (Fig. 1 supports this assertion).

(1) Now let us choose d = 0.25 in system (4.1), then

(β + δ1)
(

δ2 –
db2

a2

)
– αβ = 0.5 > 0, (4.3)

and it follows from Theorem 3.1 that A2(0, 0, 1) is globally asymptotically stable.
Figure 2–Fig. 4 support this assertion.

(2) Now let us choose d = 2 in system (4.1), then

–αβ – (β + δ1)
(

δ2 –
db2

a2

)
= 3 > 0, (4.4)

and it follows from Theorem 3.2 that A4( 3
4 , 3

2 , 1) is globally asymptotically stable.
Figure 5–Fig. 7 support this assertion.
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Figure 1 Dynamic behaviors of system (4.2), the initial conditions (x1(0), x2(0)) = (0.5, 2), (1, 2), and (1, 0.5),
respectively

Figure 2 Dynamic behaviors of the first component x1(t) of system (4.1), here we take d = 1/4 and the initial
conditions (x1(0), x2(0), y(0)) = (0.5, 0.5, 0.5), (0.1, 0.1, 0.1), (1, 1, 1), and (0.3, 0.3, 0.3), respectively

5 Conclusion
Recently, many scholars investigated the dynamic behaviors of the mutualism and com-
mensalism model [1–21]. The traditional Lotka–Volterra commensalism model was stud-
ied by many scholars, and in [15], by constructing some suitable Lyapunov function, Han
and Chen showed that system (1.2) admits the unique positive equilibrium. However, to
this day, still no scholar has proposed and studied the dynamic behaviors of the stage-
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Figure 3 ynamic behaviors of the second component x2(t) of system (4.1), here we take d = 1/4 and the
initial conditions (x1(0), x2(0), y(0)) = (0.5, 0.5, 0.5), (0.1, 0.1, 0.1), (1, 1, 1), and (0.3, 0.3, 0.3), respectively

Figure 4 Dynamic behaviors of the third component y(t) of system (4.1), here we take d = 1/4 and the initial
conditions (x1(0), x2(0), y(0)) = (0.5, 0.5, 0.5), (0.1, 0.1, 0.1), (1, 1, 1), and (0.3, 0.3, 0.3), respectively

structured commensalism model. This motivated us to propose system (1.1), which is the
most simple commensalism system with stage structure.

In system (1.1), without the cooperation of the second species, depending on the rela-
tionship of the coefficients, the species may be driven to extinction or become persistent
in the long run. Such dynamic behaviors are different to those of the stage-structured
system (1.8), which was introduced by Aeillo and Freedman. We argue that such kind of



Lei Advances in Difference Equations  (2018) 2018:301 Page 17 of 20

Figure 5 Dynamic behaviors of the first component x1(t) of system (4.1), here we take d = 2 and the initial
conditions (x1(0), x2(0), y(0)) = (0.5, 0.5, 0.5), (0.1, 0.1, 0.1), (1, 1, 1), and (2, 2, 2), respectively

Figure 6 Dynamic behaviors of the second component x2(t) of system (4.1), here we take d = 2 and the initial
conditions (x1(0), x2(0), y(0)) = (0.5, 0.5, 0.5), (0.1, 0.1, 0.1), (1, 1, 1), and (2, 2, 2), respectively

property (the species could be driven to extinction) is one of the new characters due to
the introduction of the stage structure.

For the extinction case, we show that depending on the intensity of cooperation, the
species may still be driven to extinction or become persistent. Therefore, the coopera-
tion between the two species is one of the essential factors that lead to the persistence
of species. Such a property is quite different to that of the stage-structured cooperative
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Figure 7 Dynamic behaviors of the third component y(t) of system (4.1), here we take d = 2 and the initial
conditions (x1(0), x2(0), y(0)) = (0.5, 0.5, 0.5), (0.1, 0.1, 0.1), (1, 1, 1), and (2, 2, 2), respectively

system (1.10), which was proposed by Chen et al. [34]. They showed that the cooperation
between species has no influence on the persistence property of the system.

To sum up, to increase the intensity of cooperation between the species is one of the
essential methods to avoid the extinction of the endangered species.

Acknowledgements
The author is grateful to two anonymous referees for their excellent suggestions, which have greatly improved the
presentation of the paper.

Funding
This work is supported by the National Natural Science Foundation of China under Grant (11601085) and the Natural
Science Foundation of Fujian Province (2017J01400).

Competing interests
The authors declare that there is no conflict of interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 May 2018 Accepted: 13 August 2018

References
1. Yang, K., Miao, Z.S., et al.: Influence of single feedback control variable on an autonomous Holling-II type cooperative

system. J. Math. Anal. Appl. 435(1), 874–888 (2016)
2. Chen, F., Xie, X., et al.: Extinction in two species nonautonomous nonlinear competitive system. Appl. Math. Comput.

274, 119–124 (2016)
3. Yang, K., Xie, X.D., et al.: Global stability of a discrete mutualism model. Abstr. Appl. Anal. 2014, Article ID 709124

(2014)
4. Chen, L.J., Xie, X.D.: Feedback control variables have no influence on the permanence of a discrete N-species

cooperation system. Discrete Dyn. Nat. Soc. 2009, Article ID 306425 (2009)
5. Chen, F.D.: Permanence for the discrete mutualism model with time delays. Math. Comput. Model. 47(3–4), 431–435

(2008)
6. Chen, F.D., Yang, J.H., et al.: On a mutualism model with feedback controls. Appl. Math. Comput. 214, 581–587 (2009)
7. Chen, L.J., Chen, L.J., et al.: Permanence of a delayed discrete mutualism model with feedback controls. Math.

Comput. Model. 50, 1083–1089 (2009)



Lei Advances in Difference Equations  (2018) 2018:301 Page 19 of 20

8. Xie, X.D., Chen, F.D., et al.: Note on the stability property of a cooperative system incorporating harvesting. Discrete
Dyn. Nat. Soc. 2014, Article ID 327823 (2014)

9. Xie, X.D., Chen, F.D., et al.: Global attractivity of an integrodifferential model of mutualism. Abstr. Appl. Anal. 2014,
Article ID 928726 (2014)

10. Lin, Q.F.: Dynamic behaviors of a commensal symbiosis model with non-monotonic functional response and
non-selective harvesting in a partial closure. Commun. Math. Biol. Neurosci. 2018, Article ID 4 (2018)

11. Han, R., Chen, F., et al.: Global stability of May cooperative system with feedback controls. Adv. Differ. Equ. 2015,
Article ID 360 (2015)

12. Wu, R.X., Li, L., et al.: A Holling type commensal symbiosis model involving Allee effect. Commun. Math. Biol. Neurosci.
2018, Article ID 6 (2018)

13. Wu, R.X., Li, L., et al.: A commensal symbiosis model with Holling type functional response. Int. J. Math. Comput. Sci.
16, 364–371 (2016)

14. Yang, L., Xie, X., et al.: Permanence of the periodic predator–prey-mutualist system. Adv. Differ. Equ. 2015, Article ID
331 (2015)

15. Han, R.Y., Chen, F.D.: Global stability of a commensal symbiosis model with feedback controls. Commun. Math. Biol.
Neurosci. 2015, Article ID 15 (2015)

16. Xie, X.D., Miao, Z.S., Xue, Y.: Positive periodic solution of a discrete Lotka–Volterra commensal symbiosis model.
Commun. Math. Biol. Neurosci. 2015, Article ID 2 (2015)

17. Xue, Y.L., Xie, X.D., et al.: Almost periodic solution of a discrete commensalism system. Discrete Dyn. Nat. Soc. 2015,
Article ID 295483 (2015)

18. Chen, J.H., Wu, R.X.: A commensal symbiosis model with non-monotonic functional response. Commun. Math. Biol.
Neurosci. 2017, Article ID 5 (2017)

19. Deng, H., Huang, X.Y.: The influence of partial closure for the populations to a harvesting Lotka–Volterra
commensalism model. Commun. Math. Biol. Neurosci. 2018, Article ID 10 (2018)

20. Zhao, L., Bin, Q., et al.: Permanence and global stability of a May cooperative system with strong and weak
cooperative partners. Adv. Differ. Equ. 2018, Article ID 172 (2018)

21. Li, T.T., Lin, Q.X., et al.: Positive periodic solution of a discrete commensal symbiosis model with Holling II functional
response. Commun. Math. Biol. Neurosci. 2016, Article ID 22 (2016)

22. Wu, R.: Dynamic behaviors of a nonlinear amensalism model. Adv. Differ. Equ. 2018, Article ID 187 (2018)
23. Chen, B.: Dynamic behaviors of a commensal symbiosis model involving Allee effect and one party can not survive

independently. Adv. Differ. Equ. 2018, Article ID 212 (2018)
24. Lin, Q.: Allee effect increasing the final density of the species subject to the Allee effect in a Lotka–Volterra

commensal symbiosis model. Adv. Differ. Equ. 2018, Article ID 196 (2018)
25. Lin, Q.: Stability analysis of a single species logistic model with Allee effect and feedback control. Adv. Differ. Equ.

2018, Article ID 190 (2018)
26. Chen, F.D., Chen, W.L., et al.: Permanence of a stage-structured predator–prey system. Appl. Math. Comput. 219(17),

8856–8862 (2013)
27. Chen, F.D., Xie, X.D., et al.: Partial survival and extinction of a delayed predator–prey model with stage structure. Appl.

Math. Comput. 219(8), 4157–4162 (2012)
28. Chen, F.D., Wang, H.N., et al.: Global stability of a stage-structured predator–prey system. Appl. Math. Comput. 223,

45–53 (2013)
29. Lin, Q., Xie, X., et al.: Dynamical analysis of a logistic model with impulsive Holling type-II harvesting. Adv. Differ. Equ.

2018, 112 (2018)
30. Li, T.T., Chen, F.D., et al.: Stability of a mutualism model in plant–pollinator system with stage-structure and the

Beddington–DeAngelis functional response. J. Nonlinear Funct. Anal. 2017, Article ID 50 (2017)
31. Li, Z., Chen, F.D.: Extinction in periodic competitive stage-structured Lotka–Volterra model with the effects of toxic

substances. J. Comput. Appl. Math. 231, 143–153 (2009)
32. Li, Z., Han, M.A., Chen, F.: Global stability of stage-structured predator–prey model with modified Leslie–Gower and

Holling-type II schemes. Int. J. Biomath. 5(6), Article ID 1250057 (2012). https://doi.org/10.1142/S179352451250057X
33. Li, Z., Han, M., et al.: Global stability of a predator–prey system with stage structure and mutual interference. Discrete

Contin. Dyn. Syst., Ser. B 19(1), 173–187 (2014)
34. Chen, F.D., Xie, X.D., et al.: Dynamic behaviors of a stage-structured cooperation model. Commun. Math. Biol.

Neurosci. 2015, Article ID 4 (2015)
35. Lin, X., Xie, X., et al.: Convergences of a stage-structured predator–prey model with modified Leslie–Gower and

Holling-type II schemes. Adv. Differ. Equ. 2016, 181 (2016)
36. Chen, F.D., You, M.S.: Permanence, extinction and periodic solution of the predator–prey system with

Beddington–DeAngelis functional response and stage structure for prey. Nonlinear Anal., Real World Appl. 9(2),
207–221 (2008)

37. Liu, Y., Xie, X., et al.: Permanence, partial survival, extinction, and global attractivity of a nonautonomous harvesting
Lotka–Volterra commensalism model incorporating partial closure for the populations. Adv. Differ. Equ. 2018, Article
ID 211 (2018)

38. Xue, Y.L., Xie, X.D., Lin, Q., Chen, F.: Global attractivity and extinction of a discrete competitive system with infinite
delays and single feedback control. Discrete Dyn. Nat. Soc. 2018, Article ID 1893181 (2018).
https://doi.org/10.1155/2018/1893181

39. Song, X., Cai, L., et al.: Ratio-dependent predator–prey system with stage structure for prey. Discrete Contin. Dyn.
Syst., Ser. B 4(3), 747–758 (2012)

40. Wu, H.L., Chen, F.D.: Harvesting of a single-species system incorporating stage structure and toxicity. Discrete Dyn.
Nat. Soc. 2009, Article ID 290123 (2009)

41. Khajanchi, S., Banerjee, S.: Role of constant prey refuge on stage structure predator–prey model with ratio dependent
functional response. Appl. Math. Comput. 314, 193–198 (2017)

42. Aiello, W.G., Freedman, H.I.: A time-delay model of single-species growth with stage structure. Math. Biosci. 101(2),
139–144 (1990)

https://doi.org/10.1142/S179352451250057X
https://doi.org/10.1155/2018/1893181


Lei Advances in Difference Equations  (2018) 2018:301 Page 20 of 20

43. Xiao, A., Lei, C.Q.: Dynamic behaviors of a non-selective harvesting single species stage structure system
incorporating partial closure for the populations. Adv. Differ. Equ. 2018, Article ID 245 (2018).
https://doi.org/10.1186/s13662-018-1709-5

44. Lei, C.Q.: Dynamic behaviors of a stage structure amensalism system with a cover for the first species. Adv. Differ. Equ.
2018, Article ID 272 (2018). https://doi.org/10.1186/s13662-018-1729-1

45. Zhang, X., Chen, L., Neumann, A.U.: The stage-structured predator–prey model and optimal harvesting policy. Math.
Biosci. 168(2), 201–210 (2000)

https://doi.org/10.1186/s13662-018-1709-5
https://doi.org/10.1186/s13662-018-1729-1

	Dynamic behaviors of a stage-structured commensalism system
	Abstract
	MSC
	Keywords

	Introduction
	Local stability of the equilibria
	Global stability
	Numeric simulations
	Conclusion
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Publisher's Note
	References


