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Abstract

Rossby waves, belonging to the most important waves in the atmosphere and ocean,
can affect the energy transfer of the atmosphere and ocean and have significant
theoretical meaning and research value. In previous research performed with the
theory and calculation method limit, the dissipation effect was commonly ignored.
However, under the conditions of the weak linear approximation, the magnitude
difference between nonlinear and dissipation is small, and the dissipation effect must
be considered. In this paper, based on the classic Lie group approach, the

(3 + 1)-dimensional quasi-geodetiophic vorticity equation with dissipation effect is
solved. With the help of the solutions, we can better comprehend the influence of the
dissipation effect on the propagation of Rossby waves.
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1 Introduction

Rossby waves, which are caused by the rotation of the earth and the influence of the sphere
effect, are long and large-scale permanent waves in the ocean and atmosphere, such as the
huge red spots in Jupiter’s atmosphere and eddy currents in the gulf of Mexico. Rossby
waves determine the ocean’s response to the climate and atmospheric change and have
significant theoretical meaning and research value. However, in recent years, many re-
searchers have focused on the traveling-wave solutions for handling nonlinear problems
[1-3]. Few researchers have paid attention to the solution of the Rossby wave. Thus, with
the development of theory, the study of Rossby waves is an important research direction
[4-7].

Nonlinear partial differential equations [8—10] play an important role in the field of
Rossby waves. Many models have been derived [11-14], and many methods have been
used to solve the nonlinear partial differential equations, such as the algebro-geometric
method [15, 16], Hirota method [17], Painlevé analysis method [18], Darboux transfor-
mations [19-21], Lie symmetry method [22-24] and so on [25-29]. Based on the classic
Lie group method, the (2 + 1)-dimensional nonlinear inviscid barotropic nondivergent vor-
ticity equation was studied by Huang and Lou [30], and the (3 + 1)-dimensional nonlinear
Charney—Obukhov equation was studied by Kudryavtsev and Myagkov [31]. However,
the dissipation effect was ignored in these studies of Rossby waves. Friction dissipation,
one of the external forces in the atmosphere and ocean, plays an increasingly vital role in
atmospheric circulation. Under the conditions of weak linear approximation, the magni-
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tude difference between nonlinear and dissipation is very small, i.e., the dissipation effect
should be considered in the research of Rossby waves.
In this paper, we consider the (3 + 1)-dimensional quasi-geodetiophic vorticity equation

with dissipation effect
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where the three-dimensional Laplacian can be expressed by A = :7 +25 + 2 the dimen-
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sionless stream function can be described by u, the Jacobian operator c(;yn beaintroduced by
J(a,b) = 3¢ % - 3—;’ 38, B = Bo(L*/U) and By = (wo/Ro) cos ¢o, in which wy is the angular fre-
quency of the Earth’s rotation, L depicts the characteristic horizontal length, U expresses
the velocity scales, ¢y and Ry are the latitude and the Earth’s radius, respectively, and « Au
denotes the dissipation effect, in which « is the dissipation coefficient.

The structure of the full paper is as follows. We apply the classic Lie group method to
acquire the solution of a (3 + 1)-dimensional dissipation Rossby wave in Sect. 2. In Sect. 3,
we discuss the approximate analytical solution of a (2 + 1)-dimensional dissipation Rossby
wave. Finally, the dissipation effect is researched, and some conclusions are reported in

Sect. 4.

2 (3 + 1)-Dimensional dissipation Rossby wave
To discuss the dissipation effect of three-dimensional dissipation Rossby waves, we first

study the solution of Eq. (1). In the following, we introduce the vector field
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The first-order propagator is defined as
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and the second-order propagator is defined as
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Similarly, the third-order propagator has the form
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According to the Lie group method, by substituting (2) into (1), we obtain
¢xxt + ¢yyt + d)xxy + ¢yyyux + ¢yzzux + d’x(”xxy + Uyyy + uyzz) _ (¢xxx + ¢xyy + ¢xzz)uy
(9™ @7 + ) 4 B(8°+ 7+ 6) =0, 3)
where
¢x = Dx(¢ - gux - nuy - )\uz - 7:l'tt) + guxx + nuxxy + }\uxz + Tlyt,
P = D;Zc(¢ —Euy — nuy — Mty = TUy) + Elhyry + NUXxxy + Alhrz + Tlhyts
¢ = Di(qb —&Euy —nuy — A, — TUy) + & Ugnx + NUXxxxy + Agxnz + Tlhyar
It is important to emphasize that
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and that u, uy, thy, ts, g, Uszs Uy, Uyyz, ... are not independent.
According to a complicated calculation and the above transformation, we obtain
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In addition, we can obtain the following coefficients:
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By comparing the coeflicients of i1, 14y, ty, 11, Uy, Unzs Usys Usyzs - -«

be written as

§=C1+Csx+Cr [ y(t)dt,

n=Cs+ Csy+ Cio [ hs(t) dt,

A=0Cs+Csz,

T = Cy — Cst,

¢ =3Csu + Cohy(t) — Crhy(t)y + Cshs(z) + Coha(t)z
+ Crolhs(t)x — Bhs(6)2? + S22,

where Ci, Gy, ..., Cyp are arbitrary constants, and /;(t), ha(2), ...

tions of ¢.

Thus, we obtain the Lie algebra basis of the classic symmetry group for Eq. (1):

_ 9 _ 9 _ 9 _ 0

Vi= o Vz—@ Vs=g  Va=gp
J L) 9
Vs=x5. +y +Zaz iy +3u V6=h1(t)ﬁ,

V7 = ([ hy(t) dt 3 — Mot )J’@r
Vs =h3(2) 2, Vo = hy(t)z:,
Vio = ([ hs(®)dt) 2 + ls(e)x - Lhs(0)22 + 2221,

where hy, hy, h3, ha, hs are continuous functions.
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, the general solutions can

(4)

,hs(t) are arbitrary func-

If z is eliminated in Vs, operators Vi, Vi, Vs, Vi, Vs, Vi, V7 are the Lie algebra basis of

the classic symmetry group for the (2 + 1)-dimensional case. Specifically, Vg, Vo, V1o can

be extended to the classic symmetry group for the (3 + 1)-dimensional case.

When we know a particular solution, a new solution of the differential equation can be

acquired by the classic Lie symmetry group method [32—34]. Suppose that a solution of

Eq. (1) is expressed by u,(¢, x,y, z). It is easy to infer that operators Vg, V7, Vg, Vo, V1o have

the following formulas for the new solution uney (£, %, 7y, 2):

hi1(8) + us(t, %, 9, 2),
= —hy )y + us(t,x + [ ho(2) dt, y,2),

Unew(Z, X,),Z

Unew(t, X, 9,2

Unew t} x)y) h4(t)z + us(t %Y Z)

( z)=
( z)
Unew(t, %, 7, 2) = h3(2) + uy(t, %, 9, 2),
( z) =
( z)=

Unew(Z, X,),Z

(a)
(b)
()
()

hs(t)x — —h5(t)z + e t22 + ug(t, x,y+fh5 t)dt,z). (e)

According to the nontrivial transformations (6b), (6d), and (6e), we obtain

Unew(ts 0,0,2) = hs(t)x — Iy (£)y + ha(t)z — ghs(t)z2 + %e‘tz2

+us(t,x+/h2(t)dt,y+/h5(t)dt,z).
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Clearly, Eq. (7) has the following transformations for the component velocities:

Lhew(t,%,9,2) = —hao(8) + Li(t,x + [ha(t) dt,y + [ hs(¢) dt, z), (a)
Mnew(t,%,9,2) = —=hs(t) + my(t,x + [ ho(t) dt,y + [ hs(t)dt,z), (b)

8)
nnew(t:x:y: Z) = —[h4(t) — gl’ls(t)z + %e"z]
+n(t,x + [ ha(t) dt,y + [ hs(t) dt, 2), (c)
where
L(t,3,9,2) =~
my(t,%,y,2) = 222,

3\ dus (%,
ny(t,%,9,2) = —(Z + L(x,,2) & + ms(x,y,z)a"—y)%.

Based on Egs. (7)—(8), we can note that in order to get the new form of a (3 + 1)-
dimensional dissipation Rossby wave, we need to find the solution of a (2 + 1)-dimensional
dissipation Rossby wave.

3 (2 + 1)-Dimensional dissipation Rossby wave
In this section, we consider the (2 + 1)-dimensional approximate analytical solution of

Eq. (1)
3V2u+](u Vzu)+aV2u+,33u=0 9)
at ’ dx ’

a . P a2 a2
where the Jacobian operator can be introduced by J(a, b) = 3—: % - ‘3—‘; %, and V2 =2 9

depicts the two-dimensional Laplacian.
First, when dissipation does not exist, we introduce the following transform:

E=x—y—ct, (10)

where ¢ expresses the phase speed of the wave. Substituting (10) into (9), we obtain

—ci |:282_u - Eu] =0. (11)
a& c

It is easy to write the general solution of (11)

Ve e
u=Ce v¢ +Cre V< . (12)

Equation (12) can be rewritten as

= com( VR o e Y220 ) )

+ C2<c0sh<W) —sech(@)), (13)

where Ci, C, are constants.
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Then, we consider the impact of dissipation on Eq. (9). Assume @ < 1 and @ < 8, and
take a new space coordinate:

p=X+Yy— /amo (14)

Suppose that ug = uo(at) varies slowly with time; we then obtain

9 [ 3%u 3 (3%u ?u  du
2—|\ — )-—auwp—| — )| +20— + B— =0, (15)
ot \ 0p2 dp \ 9p2 0p? ap

by substituting (14) into (9). Let

T =t n = at, (16)
and the solution has the following form:

up,t) = u1(p, T,m) + auz(p,T) + -+ . (17)

Substituting (17) into (15), we have
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a (02 d (932 a 9 a2
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Then, let
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We have
3 (02 d
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T\ dp ap
3 (92 d 3 (02 9?2
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The solution of (21) is

)
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where uy = C; C,. By using (14) and (20), we obtain
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Next, setting
uy = M(N), N=¢-vt. (25)

By substituting (25) into (22), we obtain

*M oM
—2V—— — =W , 26
vasss + B = W) (26)

where

9 (9 92
W(u1)=—2—( ”1>—2 “
an
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The solvability condition of Eq. (26) is

/ - F(N)W (u1)dN =0, (27)
where
a3F E ~ (28)
ons PPN =0

The solution of Eq. (28) is easy to obtain:
e e R )
-G cos NG + sec NG
Uo V2BN V28BN
+ a (cosh( NG ) - sech( NG )), (29)
in the case of G(+00) = 0. Equation (29) can be rewritten as
F= ) <cosh<7m(§ — vr)) + sech(—\/ﬁ(; — VT)))
G Ve Ve

+Z_?(co (J_(j; ”))_sech(@)). (30)

Substituting (30) into (27), we obtain

Uy = I:toeiat, (31)

where i1y = ug. Therefore, we get
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It is easy to cheek that (32) is the approximate analytical solution of Eq. (9). According
to (7) and (32), we obtain the new solution of the (3 + 1)-dimensional quasi-geodetiophic

vorticity equation with dissipation

Unew(t, %, 9, 2) = h5(£)x — hay(£)y + ha(t)z - §h5(t)22 + %e’tz2

—at

. Ijloe—at (Cosh(\/—ﬂ X+y— ft auoe dt))
Je

—at

+Sech<J_ﬂx+yJé““0§ dt)))

fipe=ot ( <x/_(x +y-Jy Moe - )
+ —| cosh
C1 \/E

—at

V2B(x+y - [y HE— d)
—sech( NG )) (33)

2

4 Results and discussion

Based on the classic Lie group method, the solution of the (3 + 1)-dimensional quasi-
geodetiophic vorticity equation with dissipation is derived. On the one hand, the small
dissipation effect can result in a decrease in amplitude e™*, where « is the dissipation co-
efficient from (33). On the other hand, the small dissipation effect can result in a decrease
in velocity of a Rossby wave in the process of propagation. Hence, with the help of the new
solution (33) and Fig. 1, we can better comprehend the influence of the dissipation effect

on the propagation of Rossby waves.

Figure 1 The solution of (3 + 1)-dimensional
quasi-geodetiophic vorticity equation with
dissipation represented by (33), where hs(t) = cos(t),
hy(t) = sin(t), ha(t) = cos(t)
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