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Abstract
In this paper, we firstly change the auxiliary second order ordinary differential
equation in the G′

G -polynomial expansion method to the Riccati equation. By solving
the Riccati equation, we obtain more exact solutions to the auxiliary equation and
thus obtain more new exact solutions to the Kudryashov–Sinelshchikov equation,
which mainly include three types of solutions with parameters: hyperbolic function
traveling wave solutions, trigonometric function traveling wave solutions, and
rational function traveling wave solutions. At last, some examples and figures are
given to demonstrate the solutions.
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1 Introduction
A mixture of liquid and gas bubbles of the same size may be considered as an example
of a classic nonlinear medium. The analysis of propagation of the pressure waves in a
liquid with gas bubbles is an important problem in mathematics and/or physics fields.
Indeed, there are solitary and periodic waves in such mixtures and they can be described
by nonlinear partial differential equations like the Burgers, Korteweg–de Vries, and the
Korteweg–de Vries–Burgers ones. In 2010, Kudryashov and Sinelshchikov [1, 2] obtained
a more general nonlinear partial differential equation to describe the pressure waves in
a liquid and gas bubbles mixture taking into consideration the viscosity of liquid and the
heat transfer. They introduced the equation

ut + γ uux + uxxx – ε(uuxx)x – κuxuxx – νuxx – δ(uux)x = 0, (1.1)

where u is a density and models heat transfer and viscosity; γ , ε, κ , ν and δ are real param-
eters, which describes pressure waves in the liquid with gas bubbles taking into account
the heat transfer and viscosity. Equation (1.1) is called the Kudryashov–Sinelshchikov (KS)
equation. Clearly, when ε = κ = ν = δ = 0, Eq. (1.1) reads

ut + γ uux + uxxx = 0, (1.2)
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which is known as the Korteweg–de Vries (KdV) equation [3]; while, when ε = κ = δ = 0,
Eq. (1.1) reads

ut + γ uux + uxxx – νuxx = 0, (1.3)

which is the Korteweg–de Vries–Burgers (KdVB) equation [4]. So, Eq. (1.1) is a general-
ization of the KdV equation and the KdVB equation and it is similar but not identical to
the Camassa–Holm (CH) equation (see [5] and the references therein). It is well known
that pressure waves in a gas–liquid mixture is characterized by the KdVB equation and
KdV equation [3, 6].

Equations (1.1), (1.2), (1.3) are called nonlinear evolution equations. Undistorted waves
are governed by a corresponding ordinary differential equation which is solved analytically
in [1] for special values of some integration constant. In [2], the authors derived partial
cases of nonlinear evolution equations of the fourth order for describing nonlinear pres-
sure waves in a mixture liquid and gas bubbles. They obtained some exact solutions and
discussed properties of nonlinear waves in a liquid with gas bubbles. In recent decades, to
find the exact solutions of nonlinear evolution equations arising in mathematical physics
plays an important role in the study of nonlinear physical phenomena. A class of impor-
tant solutions to nonlinear evolution equations, called traveling wave solutions, attracts
the interest of many mathematicians and physicists. The traveling wave solutions reduce
the two variables, namely, the space variable x and the time variable t, of a partial differ-
ential equation (PDE) to an ordinary differential equation (ODE) with one independent
variable ξ = x – ct where c ∈ (R– {0}) is the wave speed with which the wave travels either
to the right or to the left. There are many classical methods proposed to find exact trav-
eling wave solutions of PDE. For example, under conditions γ = ε = 1, ν = δ = 0, Eq. (1.1)
becomes

ut + uux + uxxx – (uuxx)x – κuxuxx = 0. (1.4)

In [7], the author found four families of solitary wave solutions of (1.4) when κ = –3, or
κ = –4 using a modification of the truncated expansion method [8, 9]. In [10], the au-
thors discussed the existence of different kinds of traveling wave solutions by using the
approach of dynamical systems, according to different phase orbits of the traveling wave
system (1.4), 26 kinds of exact traveling wave solutions are obtained under the parameter
choices κ = –3, –4, 1, 2. In [11], the author Randrüüt studied Eq. (1.4) under the condi-
tions κ > –2, κ = –2, and κ < –2. He obtained some exact solitary wave solutions and
discussed their dynamical behaviors. Some interesting phenomena of the solitary waves
are successfully explained. Particularly, a kind of new periodic wave solutions, called me-
andering solution type, was obtained. In [12], the authors obtained the most complete
family of evolutionary equations for describing nonlinear wave processes in a liquid con-
taining gas bubbles and they classified the effects of physical properties of the gas-bubble
system on the evolution of nonlinear waves. At the same time, the authors also obtained
a peakon solution of Eq. (1.1). In [13], the authors discussed the cases β ( �= –1) is an odd
number and α �= 0 of Eq. (1.1) by the bifurcation theory and the method of phase por-
traits analysis and they gave some new exact traveling wave solutions. In [14], the author
obtained some soliton solutions to the nonlinear (3+1)-dimensional variable-coefficient
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Kudryashov–Sinelshchikov model by using an auto-Bäcklund transformation. In [15], the
authors obtained all of the geometric vector fields of the equation and some new exact ex-
plicit solutions to the 3-dimensional Kudryashov–Sinelshchikov equation by using the Lie
symmetry analysis. In [16], the authors applied the Lie group method to derive the sym-
metries of the Kudryashov–Sinelshchikov equation. Then, by using the optimal system
of 1-dimensional subalgebras, they reduced the equation to ordinary differential equa-
tions. Finally, some exact wave solutions were obtained by applying the simplest equation
method. In [17], the authors, based on the power series theory, obtained a kind of explicit
power series solutions to the Kudryashov–Sinelshchikov equation. In [18], the authors
solved numerically the nonlinear time-fractional Kudryashov–Sinelshchikov equation by
using radial basis function (RBF) method. In [19], the authors considered the Kudryashov–
Sinelshchikov equation, which contains nonlinear dispersive effects, and proved that as
the diffusion parameter tends to zero, the solutions of the dispersive equation converge
to the entropy ones of the Burgers equation. In [20], the authors used Hermite transform
for transforming the Wick-type stochastic Kudryashov–Sinelshchikov equation to deter-
ministic partial differential equation and obtained exact solutions of Wick-type stochastic
Kudryashov–Sinelshchikov equation by using improved Sub-equation method.

Recently, more and more methods to find traveling wave solutions are made. For ex-
ample, the homogeneous balance method [21], the tanh method [22], the Jacobi elliptic
function expansion [23–26], the truncated Painlevé expansion [27], differential quadrature
method [28], Hirota bilinear method[29], Darboux transformations [30], the trial equation
method [31]. Seadawy et al. [32] proposed the sech-tanh method to solve the Olver equa-
tion and the fifth-order KdV equation and obtained traveling wave solutions; in [33–38]
was introduced a method called the G′

G -expansion method and one obtained a traveling
solution for the four well established nonlinear evolution equations. In [5], the authors
obtained traveling wave solutions for the generalized Camassa–Holm equation by poly-
nomial expansion methods. Those methods are very efficient, reliable, simple in solving
many PDEs.

In this paper, on the basis of the G′
G -expansion method [5, 33–38], we use the solutions

of the Riccati equation [39] to extend the auxiliary equation G′′ + λG′ + μG = 0 and ob-
tain more exact solutions of the auxiliary equation [40], thus we derive more new exact
solutions of Eq. (1.1).

This paper is organized as follows. In Sect. 1, an introduction is presented. In Sect. 2,
we give a brief description of the modification of the G′

G -polynomial expansion method. In
Sect. 3, the exact solutions of the KS equation are obtained. Finally, the paper ends with a
conclusion and remark in Sect. 4.

2 Preliminaries
In this section we describe the modified G′

G -polynomial expansion method for finding the
exact solutions of nonlinear evolution equation. Suppose a nonlinear equation which has
independent space variable x and time variable t is given by

P(u, ux, ut , uxx, uxt , utt , . . .) = 0, (2.1)

where u = u(x, t) is an unknown function, P is a polynomial of u and its partial derivatives
and the polynomial P includes the highest order derivatives and the nonlinear terms. In
the following, we will describe the modified G′

G -polynomial expansion method.
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Suppose that u(x, t) = φ(x – ct) = φ(ξ ), where c is the wave speed and ξ = x – ct. Equation
(2.1) can be reduced to an ODE with variable φ(ξ )

P
(
φ,φ′,φ′′, . . .

)
= 0, (2.2)

where the prime is the derivative with respect to ξ .

2.1 Algorithm of the modified G′
G -polynomial expansion method

The aim of this subsection is to present the algorithm of the modified G′
G -polynomial ex-

pansion method for finding exact solutions of the KS equation.
Step 1. Determination of the dominant terms. To find dominant terms we substitute

φ = z–P

into all terms of Eq. (3.4), then we compare degrees of all terms in Eq. (3.4) and choose two
or more with the smallest degree. The minimum value of p defines the pole of the solution
of Eq. (3.4) and we denote it N .

Step 2. Suppose the solution of Eq. (2.2) can be expressed by a polynomial in G′
G as fol-

lows:

φ(ξ ) =
N∑

i=–N

ai

(
G′

G

)i

, (2.3)

where ai are real constants to be determined, and at least one of aN and a–N is not equal
to zero. The function G(ξ ) is the solutions of the auxiliary linear ODE

G′′(ξ ) + λG′(ξ ) + μG(ξ ) = 0, (2.4)

where λ and μ are real constants to be determined.
Step 3. Changing the auxiliary linear equation (2.4). From auxiliary equation (2.4), we

can obtain

(
G′

G

)′
= –μ – λ

(
G′

G

)
–

(
G′

G

)2

. (2.5)

Letting ω = G′
G , then Eq. (2.4) is equivalent to

ω′ = –μ – λω – ω2, (2.6)

which is the Riccati equation. By solving the Riccati equation (2.6), we can get all the so-
lutions to Eq. (2.4).

Step 4. Substitution of derivatives for function ϕ(ξ ) with resect to ξ and the expression
for ϕ(ξ ) into Eq. (2.2).

Step 5. Substituting (2.3) into (2.2), collecting all terms with the same powers of the func-
tion G′

G and finding the algebraic system of equations for coefficients ai and for parameters
λ, μ. Solving this system we get the values of the unknown parameters.

Step 6. Substituting the solutions of Eq. (2.6) into (2.3), we obtain the exact traveling
wave solutions to PDE (1.1).
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2.2 The solutions to Riccati equation (2.6)
Considering differential equation

dy
dx

= r(x) + q(x)y + p(x)y2, (2.7)

where the functions p(x), q(x) and r(x) are continuous and p(x) �≡ 0. Equation (2.7) is called
the Riccati equation.

At first, we give some properties of the Riccati equation (2.7) and its elementary inte-
gration method.

Lemma 2.1 Assume r(x) ≡ 0, then Eq. (2.7) can be solved by elementary integration
method.

Proof Since r(x) ≡ 0, then Eq. (2.7) is

dy
dx

= q(x)y + p(x)y2,

which is a Bernoulli equation with n = 2, and it can be solved by elementary integration
method to get solutions to Eq. (2.7). �

Lemma 2.2 Assume y = ϕ(x) is a special solution to Eq. (2.7), then Eq. (2.7) can be solved
by elementary integration method.

Proof Suppose y = u(x) + ϕ(x), substituting it into Eq. (2.7), we have

du
dx

+
dϕ

dx
= r(x) + q(x)

(
u(x) + ϕ(x)

)
+ p(x)

(
u(x) + ϕ(x)

)2. (2.8)

Because y = ϕ(x) is a special solution to Eq. (2.7), Eq. (2.8) can be simplified to

du
dx

= q(x)u + p(x)u2,

which is a Bernoulli equation with n = 2, and it can be solved by elementary integration
method, so we can obtain solutions to Eq. (2.7). �

Lemma 2.3 If r(x), q(x) and p(x) all are constant numbers, then Eq. (2.7) can be solved by
elementary integration method.

Proof If r(x), q(x) and p(x) all are constant numbers, then Eq. (2.7) is an independent vari-
able equation, which can be solved by elementary integration method. �

Next, we solve Eq. (2.6), which is a Riccati equation with r(x) = –μ, q(x) = –λ and p(x) =
–1. According to Lemma 2.3, Eq. (2.6) can be solved by an elementary integration method.

Let q = 4μ – λ2, the solutions of the equation (2.6) have the following three cases.
Case i: If q > 0, then Eq. (2.6) has the general solutions

ω1 = –
√q
2

tan
√q(ξ + k1)

2
–

λ

2
,
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where k1 is an arbitrary constant. According to Lemma 2.2, suppose k1 = 0, then

ω1 = –
√q
2

tan
√qξ

2
–

λ

2

is a special solution to Eq. (2.6). So we assume that ω11 = u + ω1 is a solution to Eq. (2.6),
then

du
dx

=
√

q tan
√qξ

2
u – u2. (2.9)

Solving Eq. (2.9), we obtain

u1 =
√q

sin
√qξ – k11

√q cos2
√qξ

2

,

where k11 is an arbitrary constant. Thus, the general solutions to Eq. (2.6) are

ω11 =
√q

sin
√qξ – k11

√q cos2
√qξ

2

–
√q
2

tan
√q(ξ + k1)

2
–

λ

2
,

where k1, k11 are arbitrary constants.
Case ii: If q < 0, then Eq. (2.6) has a general solutions

ω2 =
√–q

2
tanh

√–q(ξ + k2)
2

–
λ

2
,

where k2 is an arbitrary constant. According to Lemma 2.2, similarly to Case i, we obtain
the general solutions to Eq. (2.6),

ω21 =
√–q

2 sinh
√–qξ

2 + k21
√–q cosh2

√–qξ

2

+
√–q

2
tanh

√–q(ξ + k2)
2

–
λ

2
,

where k2, k21 are arbitrary constants.
Specially, if μ = 0,

ω22 =
k22λ

eλξ – k22
,

where k22 is an arbitrary constant.
Case iii: If q = 0, i.e., μ = λ2

4 , then Eq. (2.6) can be changed as

ω′ = –
(

ω +
λ

2

)2

, (2.10)

Solving Eq. (2.10), we obtain the solutions

ω3 =
1

ξ + k3
–

λ

2
,

where k3 is an arbitrary constant.
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3 Main results
In this section, we obtain the exact traveling wave solutions to Eq. (3.1).

3.1 Analysis of the modified G′
G -polynomial expansion method

In this section, we will employ the proposed G′
G -polynomial expansion methods to solve

the KS equation (1.1). At first, we simplify Eq. (1.1). Let u = ũ
ε

, and substitute it into
Eq. (1.1), we obtain

1
ε

ũt +
γ

ε2 ũũx +
1
ε

ũxxx –
1
ε

(ũũxx)x –
κ

ε2 ũxũxx –
ν

ε
ũũxx –

δ

ε2 (ũũx)x = 0,

multiplying ε to the above equation and let α = γ

ε
, β = κ

ε
, η = δ

ε
, then Eq. (1.1) can be

written as

ũt + αũũx + ũxxx – (ũũxx)x – βũxũxx – νũũxx – η(ũũx)x = 0.

For simplifying, we write ũ as u, so Eq. (1.1) can be written as

ut + αuux + uxxx – (uuxx)x – βuxuxx – νuxx – η(uux)x = 0. (3.1)

Substituting u(x, t) = φ(x – ct) = φ(ξ ) into (3.1) and integrating it once, we have

–cφ +
α

2
φ2 + φ′′ – φφ′′ –

β

2
(
φ′)2

νφ′ – ηφφ′ = 0, (3.2)

where primes denote the derivatives with respect to ξ and the integration constant is taken
to zero.

From step 1, the pole order of Eq. (3.2) is N = 1. Therefore, we can write the solutions
of Eq. (3.2) in the form

φ(ξ ) = a–1

(
G′

G

)–1

+ a0 + a1

(
G′

G

)
= a–1ω

–1 + a0 + a1ω, (3.3)

where a2
–1 + a2

1 �= 0 and G = G(ξ ) satisfies the auxiliary LODE (2.4).
From Eqs. (2.5) and (3.3), we obtain

φ′(ξ ) = μa–1

(
G′

G

)–2

– λa–1

(
G′

G

)
+ a–1

– μa1 – λa1

(
G′

G

)
– a1

(
G′

G

)2

= μa–1ω
–2 – λa–1ω + a–1 – μa1 – λa1ω – a1ω

2

= μa–1ω
–2 – λ(a–1 + a1)ω + (a–1 – μa1) – a1ω

2, (3.4)

φ′′(ξ ) = 2μ2a–1ω
–3 + 2μλa–1ω

–2 + 2μa–1ω
–1 + μλ(a–1 + a1)

+ λ2(a–1 + a1 + 2μa1)ω + λ(a–1 + a1 + 2λa1)ω2 + 2a1ω
3. (3.5)

Substituting (2.6), (3.3), (3.4), and (3.5) into Eq. (3.2), we obtain the polynomial of ω.
Collecting all terms with the same power of ω and equate this expressions to zero, thus
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we obtain the coefficients of ωi (i = –4, –3, –2, –1, 0, 1, 2, 3, 4) be zero, and get the algebraic
equation system for a–1, a0, a1, c, α, β , λ and μ as follows:

ω4 : –
1
2

a2
1(β + 4) = 0;

ω3 : –
((

(β + 3)λ – η
)
a1 + 2a0 – 2

)
a1 = 0;

ω2 :
(((

–
1
2
β – 1

)
λ2 + λη – (β + 2)μ +

1
2
α

)
a1 + (β – 2)a–1

– 3(a0 – 1)λ + a0η + ν

)
a1 = 0;

ω1 :
(
–μ

(
(β + 1)λ – η

)
a1 + 2λ(β – 2)a–1 – (a0 – 1)λ2 + (a0η + ν)λ

–
(
2(a0 – 1)

)
μ – a0α + c

)
a1 = 0;

ω0 : –
1
2
μ2βa2

1 +
((

(β – 2)λ2 + (2β – 4)μ + α
)
a–1 –

(
(a0 – 1)λ – a0η

– ν
)
μ

)
a1 – a2

–1β –
(

1
2
(
(a0 – 1)λ – a0η – ν

))
a–1 +

1
2

a2
0α – ca0 = 0;

ω–1 :
(
2λμ(β – 2)a1 –

(
(β + 1)λ + η

)
a–1 – (a0 – 1)λ2 – (a0η + ν)λ

– 2(a0 – 1)μ + a0α – c
)
a–1 = 0;

ω–2 :
(

μ2(β – 2)a1 –
((

1
2

(β + 2)
)

λ2 + λη + (β + 2)μ – α

)
a–1

–
((

3(a0 – 1)
)
λ + a0η + ν

)
μ

)
a–1 = 0;

ω–3 : –
((

(β + 3)λ + η
)
a–1 + 2μ(a0 – 1)

)
μa–1 = 0;

ω–4 : –
1
2

(β + 4)μ2a–1 = 0.

Solving the algebraic equation system by Maple we obtained ten types of solutions:

I : β = –4, a1 = 0, a0 =
λ(α – c) + cη

αη
, a–1 =

λ2(α – c)2 – c2η2

2ηα(α – c)
,

μ = λ2 –
c2η2

4(α – c)2 , ν =
(α – c)2 – cη2

η(α – c)
,

(3.6)

where α, λ, η and c are arbitrary constants.

II : β = –4, a–1 = 0, a0 = –
λ(α – c) – cη

αη
, a1 =

2(α – c)
αη

,

μ =
(α – c)2 – cη2

η(α – c)
, ν =

(α – c)2 – cη2

η(α – c)
,

(3.7)

where α, λ, η and c are arbitrary constants.

III : β = –4, μ = 0, a0 =
8λ

4λ2 – α
, a1 =

4λ

4λ2 – α
,

a–1 =
4λ3

4λ2 – α
, c = –6λ2, η =

2λ2α

2λ
,ν = 5λ,

(3.8)
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where α and λ are arbitrary constants.

IV : β = –4, μ = 0, a0 =
4λ2(α – 12λ2)

(α2 – 4λ2)(α + 12λ2)
,

a1 = –
4αλ

(α2 – 4λ2)(α + 12λ2)
, a–1 = –

4αλ3

(α2 – 4λ2)(α + 12λ2)
,

c =
6αλ2

α + 12λ2 , η =
α + 2λ2

2λ
, ν = –λ,

(3.9)

where α and λ are arbitrary constants.

V : β = –4, λ = η = 0, a0 = 1, α = –
2(a1ν – 2)

a2
1

,

a–1 =
1

4a1
, c = –

2(a1ν – 2)
a2

1
, μ = –

1
4a2

1
,

(3.10)

where a1 and ν are arbitrary constants.

VI : β = –4, λ = η = 0, a0 = 1, a1 =
6
ν

, a–1 = 0,

α = –
2
9
ν2, μ = –

1
36

ν2, c = –
2
9
ν2,

(3.11)

where a1 and ν are arbitrary constants.

VII : β = –4, λ = η = 0, a0 = 1, a–1 = –
1

36
a1ν

2 +
1
6
ν,

c = –
2
9
ν2, μ = –

1
36

ν2,
(3.12)

where a1 and ν are arbitrary constants.

VIII : β = –4, λ = η = –
1
4
ν, a0 = 1, a1 = 0, α = –

1
2
ν2,

a–1 =
1
8
ν, c = –

5
16

ν2, μ = –
1

16
ν2,

(3.13)

where ν is an arbitrary constant.

IX : β = –4, α = μ = 0, λ = η = –
1
4
ν, a0 = 5, a1 = –

16
ν

,

a–1 =
1
8
ν, c =

3
16

ν2,
(3.14)

where ν is an arbitrary constant.

X : a1 = μ = 0, a–1 =
2(λ2 – λν – ν)((βc + α)λ2 – ναλ + α(c – ν))λ

(βλ2 + α)2(c – ν)
,

a0 =
2(λ2 – λν – ν)((βν + α)λ – να)λ

(βλ2 + α)2(c – ν)
, η = –

(β + 2)λ2 + α

2λ
,

(3.15)

where α, β , λ, ν and c are arbitrary constants.
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Remark: these ten types of solutions to the algebraic equation system are different from
each other.

3.2 The exact traveling wave solutions of the KS equation
Now, we use the solution sets from I to X and the solutions of (2.6) to obtain the solutions
of (3.1).

For I, substituting the solution set (3.6) and the corresponding solutions of (2.6) into
(3.1), we obtain the corresponding traveling wave solutions of (3.1) as follows, respectively.

If q > 0, the solutions of Eq. (3.1) are

φI
1(ξ ) = –

λ2(α – c)2 – c2η2

2αη(α – c)

(√q
2

tan
√q(ξ + k1)

2
+

λ

2

)–1

+
λ(α – c) + cη

αη
, (3.16)

or

φI
11(ξ ) =

λ2(α – c)2 – c2η2

2αη(α – c)

( √q

sin
√qξ – k11

√q cos2
√qξ

2

–
√q
2

tan
√q(ξ + k1)

2
–

λ

2

)–1

+
λ(α – c) + cη

αη
, (3.17)

where ξ = x – ct and α, η, c, λ, k1 and k11 are arbitrary constants.
If q < 0, the solutions of Eq. (3.1) are

φI
2(ξ ) =

λ2(α – c)2 – c2η2

2αη(α – c)

(√–q
2

tanh
√–q(ξ + k2)

2
–

λ

2

)–1

+
λ(α – c) + cη

αη
, (3.18)

or

φI
21(ξ ) =

λ2(α – c)2 – c2η2

2αη(α – c)

( √–q

sinh
√–qξ – k21

√–q cosh2
√–qξ

2

+
√–q

2
tanh

√–q(ξ + k2)
2

–
λ

2

)–1

+
λ(α – c) + cη

αη
, (3.19)

where ξ = x – ct and α, η, c, λ, k2 and k21 are arbitrary constants.
Specially, if μ = 0, then q < 0, the solutions of Eq. (3.1) are

φI
22(ξ ) =

λ2(α – c)2 – c2η2

2αη(α – c)

(
k22λ

eλξ – k22

)–1

+
λ(α – c) + cη

αη
, (3.20)

where ξ = x – ct and α, η, c, λ and k22 are arbitrary constants.
If q = 0, the solutions of Eq. (3.1) are

φI
3(ξ ) =

λ2(α – c)2 – c2η2

2αη(α – c)

(
1

ξ + k3
–

λ

2

)–1

+
λ(α – c) + cη

αη
, (3.21)

where ξ = x – ct and α, η, c, λ and k3 are arbitrary constants.
Similarly, according to the sign of q, we can obtain all the solutions of Eq. (3.1) and all

the figures of the solutions.
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For II, the solutions of Eq. (3.1) are as follows: if q > 0,

φII
1 (ξ ) = –

λ(α – c) – cη
αη

–
2(α – c)

αη

(√q
2

tan
√q(ξ + k1)

2
+

λ

2

)
, (3.22)

or

φII
11(ξ ) = –

λ(α – c) – cη
αη

+
2(α – c)

αη

( √q

sin
√qξ – k11

√q cos2
√qξ

2

–
√q
2

tan
√q(ξ + k1)

2
–

λ

2

)
. (3.23)

If q < 0,

φII
2 (ξ ) = –

λ(α – c) – cη
αη

+
2(α – c)

αη

(√–q
2

tanh
√–q(ξ + k2)

2
–

λ

2

)
, (3.24)

or

φII
21(ξ ) = –

λ(α – c) – cη
αη

+
2(α – c)

αη

( √–q

sinh
√–qξ – k21

√–q cosh2
√–qξ

2

+
√–q

2
tanh

√–q(ξ + k2)
2

–
λ

2

)
. (3.25)

If μ = 0,

φII
22(ξ ) = –

λ(α – c) – cη
αη

+
2(α – c)

αη

(
k22λ

eλξ – k22

)
. (3.26)

If q = 0,

φII
3 (ξ ) = –

λ(α – c) – cη
αη

+
2(α – c)

αη

(
1

ξ + k3
–

λ

2

)
, (3.27)

where ξ = x – ct and α, η, c, λ, k1, k11, k2, k21, and k3 are arbitrary constants.
For III, because μ = 0, the solutions to Eq. (3.1) are

φIII
1 (ξ ) =

4λ3

4λ2 – α

(
k22λ

eλξ – k22

)–1

+
4λ

8λ2 – α
+

4λ

8λ2 – α

k22λ

eλξ – k22
, (3.28)

where ξ = x + 6λ2t and α, λ, k22 are arbitrary constants.
For IV, the solutions to Eq. (3.1) are

φIV
1 (ξ ) = –

4αλ3

(α – 4λ2)(α + 12λ2)

(
k22λ

eλξ – k22

)–1

+
4λ2(α – 12λ2)

(α – 4λ2)(α + 12λ2)

–
4αλ

(α – 4λ2)(α + 12λ2)
k22λ

eλξ – k22
, (3.29)

where ξ = x – 6αλ2

α+12λ2 t and α, λ, k22 are arbitrary constants.
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For V, because μ = – 1
4a2

1
, thus q < 0, then

φV
2 (ξ ) = –

1
4a1

(
1

2|a1| tanh
ξ + k2

2|a1| –
λ

2

)–1

+ 1

+ a1

(
1

2|a1| tanh
ξ + k2

2|a1| –
λ

2

)
, (3.30)

or

φV
21(ξ ) =

1
4a1

(
1

2|a1| sinh ξ

2|a1| + k21 cosh2 ξ

2|a1|

+
1

2|a1| tanh
ξ + k2

2|a1| –
λ

2

)–1

+ 1

+ a1

(
1

2|a1| sinh ξ

2|a1| + k21 cosh2 ξ

2|a1|

+
1

2|a1| tanh
ξ + k2

2|a1| –
λ

2

)
, (3.31)

where ξ = x + 2(a1ν–2)
a2

1
t and a1, ν , k2, k21 are arbitrary constants.

For VI, because μ = – 1
36ν2, thus q < 0, then

φVI
2 (ξ ) = 1 +

6
ν

( |ν|
6

tanh
|ν|(ξ + k2)

6
–

λ

2

)
, (3.32)

or

φVI
21 (ξ ) = 1 +

6
ν

( |ν|
3 sinh |ν|ξ

3 + k21|ν| cosh2 |ν|ξ
6

+
|ν|
6

tanh
|ν|(ξ + k2)

6
–

λ

2

)
, (3.33)

where ξ = x + 2ν2

9 t and ν , k2, k21 are arbitrary constants.
For VII, because μ = – 1

36ν2, thus q < 0, then

φVII
2 (ξ ) =

(
–

1
36

a1ν
2 +

1
6
ν

)( |ν|
6

tanh
|ν|(ξ + k2)

6
–

λ

2

)–1

+ 1 +
6
ν

( |ν|
6

tanh
|ν|(ξ + k2)

6
–

λ

2

)
, (3.34)

or

φVII
21 (ξ ) =

(
–

1
36

a1ν
2 +

1
6
ν

)( |ν|
3 sinh |ν|ξ

3 + k21|ν| cosh2 |ν|ξ
6

+
|ν|
6

tanh
|ν|(ξ + k2)

6
–

λ

2

)–1

+ 1

+
6
ν

( |ν|
3 sinh |ν|ξ

3 + k21|ν| cosh2 |ν|ξ
6

+
|ν|
6

tanh
|ν|(ξ + k2)

6
–

λ

2

)
, (3.35)

where ξ = x + 2ν2

9 t and a1, ν , k2, k21 are arbitrary constants.
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For VIII, because μ = – 1
16ν2, λ = – 1

4ν , thus q = 4ν – λ2 = – 5
16ν2 < 0, then

φVIII
2 (ξ ) =

ν

8

(√
5|ν|
8

tanh

√
5|ν|(ξ + k2)

8
–

λ

2

)–1

+ 1, (3.36)

or

φVIII
21 (ξ ) =

ν

8

( √
5|ν|

4 sinh
√

5|ν|ξ
4 +

√
5k21|ν| cosh2

√
5|ν|ξ
8

+
√

5|ν|
8

tanh

√
5|ν|(ξ + k2)

8
–

λ

2

)–1

+ 1, (3.37)

where ξ = x + 5ν2

16 t and ν , k2, k21 are arbitrary constants.
For IX, because μ = 0, λ = – 1

4ν , thus q = 4ν – λ2 = – 1
16ν2 < 0, then

φIX
2 (ξ ) =

ν

8

( |ν|
8

tanh
|ν|(ξ + k2)

8
–

λ

2

)–1

+ 5

–
16
ν

( |ν|
8

tanh
|ν|(ξ + k2)

8
–

λ

2

)–1

, (3.38)

or

φIX
21 (ξ ) =

ν

8

( |ν|
4 sinh |ν|ξ

4 + k21|ν| cosh2 |ν|ξ
8

+
|ν|
8

tanh
|ν|(ξ + k2)

8
–

λ

2

)–1

,

+ 5 –
16
ν

( |ν|
4 sinh |ν|ξ

4 + k21|ν| cosh2 |ν|ξ
8

+
|ν|
8

tanh
|ν|(ξ + k2)

8
–

λ

2

)
, (3.39)

where ξ = x – 3ν
16 t and ν , k2, k21 are arbitrary constants.

For X, because μ = 0, then q = 4ν – λ2 = –λ2 < 0, thus

φX
2 (ξ ) =

2(λ2 – λν – ν)((βc + α)λ2 – ναλ + α(c – ν))λ
(βλ2 + α)2(c – ν)

·
( |λ|

2
tanh

|λ|(ξ + k2)
2

–
λ

2

)–1

+
2(λ2 – λν – ν)((βν + α)λ – να)λ

(βλ2 + α)2(c – ν)
, (3.40)

or

φX
21(ξ ) =

2(λ2 – λν – ν)((βc + α)λ2 – ναλ + α(c – ν))λ
(βλ2 + α)2(c – ν)

·
( |λ|

2 sinh |λ|ξ
2 + k21|λ| cosh2 |λ|ξ

2

+
|λ|
2

tanh
|λ|(ξ + k2)

2
–

λ

2

)–1

+
2(λ2 – λν – ν)((βν + α)λ – να)λ

(βλ2 + α)2(c – ν)
, (3.41)

where ξ = x – ct and α, β , λ, ν , c, k2, k21 are arbitrary constants.
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4 Illustrative examples and the corresponding figures
Here we provide simple numerical examples to confirm our main results and demonstrate
the system (3.1) as follows.

Example 1 In this example, we assume the following parameters:

μ = 2, λ = 2, α = 2, c =
1
2

,

η = 2, k1 = 0, k11 = 1,

which satisfy set (3.6) and q = 4 > 0, so the solutions to the system (3.1) are φI
1(ξ ) and

φI
11(ξ ). The figures of φI

1(ξ ) and φI
11(ξ ) are like Fig. 1.

Example 2 In this example, we assume the following parameters:

μ = 1, λ = 3, α = 2, c =
1
2

,

η = 2, k2 = 0, k21 = 1,

which satisfy set (3.6) and q = –5 < 0, so the solutions to the system (3.1) are φI
2(ξ ) and

φI
21(ξ ). The figures of φI

2(ξ ) and φI
21(ξ ) are like Fig. 2.

Figure 1 The figure of φI
1(ξ ) as shown in the left figure and the figure of φI

11(ξ ) as shown in the right figure

Figure 2 The figure of φI
2(ξ ) as shown in the left figure and the figure of φI

21(ξ ) as shown in the right figure
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Figure 3 The figure of φI
22(ξ )

Figure 4 The figure of φI
3(ξ )

Example 3 In this example, we assume the following parameters:

μ = 0, λ = 3, α = 2, c =
1
2

,

η = 2, k22 = 1,

which satisfy set (3.6) and q = –9 < 0, so the solutions to the system (3.1) are φI
22(ξ ) and

the figures of φI
22(ξ ) are like Fig. 3.

Example 4 In this example, we assume the following parameters:

μ = 1, λ = 2, α = 2, c =
1
2

,

η = 2, k3 = 1,

which satisfy set (3.6) and q = 0, so the solutions to the system (3.1) are φI
3(ξ ) and the

figures of φI
3(ξ ) are like Fig. 4.

Unfortunately, it does not seem mathematically tractable to determine the figures of the
other nine types solutions to Eq. (3.1), thus, we omit the examples and the figures about
them.

5 Conclusions and remarks
We proposed the efficient modified polynomial expansion method and obtain more new
exact traveling wave solutions to the Kudryashov–Sinelshchikov equation. By the modified
polynomial expansion method we obtain hyperbolic function traveling wave solutions,
trigonometric function traveling wave solutions, and rational function traveling wave so-
lutions. On comparing with the modified polynomial expansion method and other meth-
ods to find the traveling wave for PDEs, the modified polynomial expansion method is
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more effective, more powerful and more convenient. Moreover, the modified polynomial
expansion method can be used to solve any high-order degree PDEs.

Remark: In [5, 33–37], the solutions “G” of the auxiliary equation are directly obtained
according to the method of solving the second ordinary differential equation, and by the
expression of G, the authors obtained the expression of G′

G . In [33–37], there are only two
kinds of solutions G corresponding to the discriminant of the second ordinary differential
equation which is larger than zero and less than zero, respectively; and in [5], the authors
obtain three kinds of solutions corresponding to the discriminant of the second ordinary
differential equation which is larger than zero, equal to zero and less than zero, respec-
tively. However, it is difficult to solve the second order ordinary differential equation,
sometimes it cannot get the simple expression of its solution or cannot obtain its solu-
tions. In this paper, the auxiliary equation is transformed into a Riccati equation for G′

G ,
the corresponding solutions G′

G are directly easily obtained by the Riccati equation. More-
over, the solutions of the auxiliary equation by the Riccati obtained include the results in
[5, 33–37].
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