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1 Introduction
For impulsive differential systems, most published papers deal with the problem with fixed
time impulses [1–3]. However, actual jumps do not always happen at fixed points but
usually at random points. The solutions of random impulsive differential equations is a
stochastic process. It is different from deterministic impulsive differential equations and
also it is different from stochastic differential equations. At present, the properties of solu-
tions to some integer order differential equations with random impulses have been studied
[4–8]. The existence, uniqueness, and stability of fractional differential equations without
random impulses have been shown by many authors [9–18]. However, the properties of
solutions to fractional delay differential equations with random impulses have not been
studied. In [19], the authors study the existence, uniqueness, and stability through con-
tinuous dependence on initial conditions and Hyers–Ulam–Rassias stability for random
impulsive fractional differential equations, but in that paper, the authors did not consider
delay. In some applications, besides impulsive effects, delay effects cannot be ignored.

Motivated by the above consideration, we consider fractional differential equations with
random impulses of the form

cDq
t x(t) = Ax(t) + f (t, xt), t �= ξk , t ≥ t0,

x(ξk) = bk(τk)x
(
ξ–

k
)
, k = 1, 2, . . . ,

xt0 = ϕ.

(1.1)

Let X be a real separable Hilbert space and � be a nonempty set. For the sake of sim-
plicity, we denote Rτ = [τ , +∞), R+ = [0, +∞). Assume that τk is a random variable defined
from � to Dk

def.= (0, dk) for k = 1, 2, . . . , where 0 < dk < +∞. Furthermore, assume that τi
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and τj are independent of each other as i �= j for i, j = 1, 2, . . . . A is the infinitesimal gen-
erator of a strongly continuous semigroup of bounded linear operators S(t) with domain
D(A) ⊂ X; the functional f : R+ × C → X, C = C([–r, 0], X) is the set of piecewise continu-
ous functions, r > 0; xt is a function when t is fixed, xt(θ ) = x(t + θ ), θ ∈ [–r, 0]; ξ0 = t0 and
ξk = ξk–1 + τk for k = 1, 2, . . . , here t0 ∈ Rτ is an arbitrary given real number. The impulse
moments ξk form a strictly increasing sequence, i.e., t0 = ξ0 < ξ1 < ξ2 < · · · < limk→∞ ξk ;
bk : Dk → X for each k = 1, 2, . . . ; x(ξ–

k ) = limt→ξk x(t) according to their paths with the
norm ‖x‖t = supt–r≤s≤t |x(s)| for each t satisfying t ≥ t0; ‖ · ‖ is any given norm in X; ϕ is a
function defined from [–r, 0] to X; cDq is the Caputo fractional derivative of order 0 < q < 1.

This paper studies the properties of solutions to system (1.1) by using the theory of func-
tional differential equation, fractional differential equation, and stochastic analysis tech-
niques. Firstly, we investigate the existence of a mild solution for (1.1) by using the Leray–
Schauder alternative fixed point theorem. Secondly, we study the exponential stability in
the quadratic mean of (1.1). Finally, an example is presented to illustrate our results.

2 Some preliminaries
In this section, we shall recall some basic definitions and lemma which will be used in this
paper.

Denote by {Bt , t ≥ 0} the simple counting process generated by {ξn}, that is, {Bt ≥ n} =
{ξn ≤ t}, and denote by Ft the σ -algebra generated by {Bt , t ≥ 0}. Then (�, P, {Ft}) is a
probability space. Let L2 = L2(�, Ft , X) denote the Hilbert space of all Ft-measurable square
integrable random variables with values in X.

Assume that T > t0 is any fixed time to be determined later and ß denotes the Banach
space ß([t0 – r, T], L2), the family of all Ft- measurable, C-valued random variables ϕ with
the norm

‖ϕ‖2
ß = sup

t0≤t≤T
E‖ϕ‖2

t .

Let L0
2(�, ß) denote the family of all F0-measurable, ß-valued random variables ϕ.

Definition 2.1 The fractional integral of order q with the lower limit 0 for a function f is
defined as

Iqf (t) =
1

�(q)

∫ t

0

f (s)
(t – s)1–q ds, t > 0, q > 0,

provided the right-hand side is pointwise defined on [0,∞), where � is the gamma func-
tion.

Definition 2.2 The Riemann–Liouville derivative of order q with the lower limit 0 for a
function f : [0,∞) → R can be written as

LDqf (t) =
1

�(n – q)
dn

dtn

∫ t

0

f (s)
(t – s)q+1–n ds, t > 0, n – 1 < q < n.
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Definition 2.3 The Caputo derivative of order q for a function f : [0,∞) → R can be
written as

cDqf (t) =L Dq

[

f (t) –
n–1∑

k=0

tk

k!
f (k)(0)

]

, t > 0, n – 1 < q < n.

Definition 2.4 A semigroup {S(t), t ≥ t0} is said to be uniformly bounded if ‖S(t)‖ ≤ M
for all t ≥ t0, where M ≥ 1 is some constant. If M = 1, then the semigroup is said to be
contraction semigroup.

Definition 2.5 A map f : [τ , T] × C → X is said to be L2-Carathéodory if
(i) t → f (t, u) is measurable for each u ∈ C;

(ii) u → f (t, u) is continuous for almost all t ∈ [τ , T];
(iii) for each positive integer m > 0, there exists αm ∈ L1([τ , T], R+) such that

sup
‖u‖ß≤m

∥∥f (t, u)
∥∥2 ≤ αm(t) for t ∈ [τ , T], a.e.

Definition 2.6 For a given T ∈ (t0, +∞), a stochastic process {x(t) ∈ ß, t0 – r ≤ t ≤ T} is
called a mild solution to Eq. (1.1) in (�, P, {Ft}) if

(i) x(t) ∈ ß is Ft-adapted for t ≥ t0;
(ii) x(t0 + s) = ϕ(s) ∈ L0

2(�, ß) , when s ∈ [–r, 0], and

x(t) =
+∞∑

k=0

[ k∏

i=1

bi(τi)S(t – t0)ϕ(0)

+
1

�(q)

k∑

i=1

k∏

j=i

bj(τj)
∫ ξi

ξi–1

(t – s)q–1S(t – s)f (s, xs) ds

+
1

�(q)

∫ t

ξk

(t – s)q–1S(t – s)f (s, xs) ds

]

I[ξk ,ξk+1)(t), t ∈ [t0, T],

where
∏n

j=m(·) = 1 as m > n,
∏k

j=i bj(τj) = bk(τk)bk–1(τk–1) · · ·bi(τi), and IA(·) is the
index function, i.e.,

IA(t) =

⎧
⎨

⎩
1, if t ∈ A,

0, if t /∈ A.

Our existence and exponential stability theorems are based on the following theorem,
which is a version of the topological transversality theorem.

Lemma 2.1 Let E be a convex subset of a Banach space X, and assume that 0 ∈ E. Let
F : E → E be a completely continuous operator, and let

U(F) = {x ∈ E : x = λFx for some 0 < λ < 1},

then either U(F) is unbounded or F has a fixed point.
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3 Existence results
In this section, we prove the existence of a mild solution of system (1.1) by using the fol-
lowing hypotheses:

(H1) There exist a continuous non-decreasing function H : R+ → (0,∞) and δ ∈
L1([τ , T], R+) such that

E
∥∥f (t,ψt)

∥∥2 ≤ δ(t)H
(
E‖ψ‖2

t
)

for every t ∈ [τ , T] and for any stochastic process ψ ∈ C.
(H2) maxi,k{∏k

j=i ‖bj(τj)‖} is uniformly bounded, that is, there is B > 0 such that

max
i,k

{ k∏

j=i

∥∥bj(τj)
∥∥
}

≤ B

for all τj ∈ Dj, j = 1, 2, . . . .

Theorem 3.1 Assume (H1)–(H2) hold, then system (1.1) has a mild solution x(t), defined
on [t0, T], provided that the following inequality is satisfied:

M1

∫ T

t0

δ(s) ds <
∫ ∞

c1

ds
H(s)

, (3.1)

where M1 = 2M2 max{1, B2} (T–t0)2q–1

(2q–1)�(q) , c1 = 2M2B2E‖ϕ‖2, and MC ≥ 1√
2 .

Proof Let T be an arbitrary positive number t0 < T < +∞. Define an operator  : ß → ß

as follows:

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ϕ(t – t0), t ∈ [t0 – r, t0],
∑+∞

k=0[
∏k

i=1 bi(τi)S(t – t0)ϕ(0)

+ 1
�(q)

∑k
i=1

∏k
j=i bj(τj)

∫ ξi
ξi–1

(t – s)q–1S(t – s)f (s, xs) ds

+ 1
�(q)

∫ t
ξk

(t – s)q–1S(t – s)f (s, xs) ds]I[ξk ,ξk+1)(t), t ∈ [t0, T].

First we establish the a priori estimates for the solutions of the integral equation and
λ ∈ (0, 1):

x(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λϕ(t – t0), t ∈ [t0 – r, t0],

λ
∑+∞

k=0[
∏k

i=1 bi(τi)S(t – t0)ϕ(0)

+ 1
�(q)

∑k
i=1

∏k
j=i bj(τj)

∫ ξi
ξi–1

(t – s)q–1S(t – s)f (s, xs) ds

+ 1
�(q)

∫ t
ξk

(t – s)q–1S(t – s)f (s, xs) ds]I[ξk ,ξk+1)(t), t ∈ [t0, T].

Thus by (H1)–(H2), we have

∥∥x(t)
∥∥2

≤ λ2

[ +∞∑

k=0

[∥∥
∥∥
∥

k∏

i=1

bi(τi)

∥∥
∥∥
∥

∥∥S(t – t0)
∥∥∥∥ϕ(0)

∥∥
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+
1

�(q)

k∑

i=1

∥
∥∥
∥∥

k∏

j=i

bj(τj)

∥
∥∥
∥∥

∫ ξi

ξi–1

(t – s)q–1∥∥S(t – s)f (s, xs)
∥∥ds

+
1

�(q)

∫ t

ξk

(t – s)q–1∥∥S(t – s)f (s, xs)
∥
∥ds

]

I[ξk ,ξk+1)(t)

]2

≤ 2
+∞∑

k=0

[∥
∥∥
∥∥

k∏

i=1

bi(τi)

∥
∥∥
∥∥

2
∥
∥S(t – t0)

∥
∥2∥∥ϕ(0)

∥
∥2I[ξk ,ξk+1)(t)

]

+ 2

[ ∞∑

k=0

[
1

�(q)

k∑

i=1

∥∥
∥∥
∥

k∏

j=i

bj(τj)

∥∥
∥∥
∥

∫ ξi

ξi–1

(t – s)q–1∥∥S(t – s)f (s, xs)
∥
∥ds

+
1

�(q)

∫ t

ξk

(t – s)q–1∥∥S(t – s)f (s, xs)
∥∥ds

]

I[ξk ,ξk+1)(t)

]2

≤ 2M2B2∥∥ϕ(0)
∥∥2 + 2M2 max

{
1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

∥∥f (s, xs)
∥∥2 ds,

‖x‖2
t ≤ 2M2B2‖ϕ‖2 + 2M2 max

{
1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

∥
∥f (s, xs)

∥
∥2 ds,

E‖x‖2
t

≤ 2M2B2E
[‖ϕ‖2] + 2M2 max

{
1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

E
[∥∥f (s, xs)

∥∥2]ds

≤ 2M2B2E
[‖ϕ‖2] + 2M2 max

{
1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

δ(s)H
(
E
[‖x‖2

s
])

ds,

sup
t0≤υ≤t

E‖x‖2
υ

≤ 2M2B2E
[‖ϕ‖2]

+ 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

δ(s)H
(

sup
t0≤υ≤s

E
[‖x‖2

υ

])
ds.

Let

�(t) = sup
t0≤υ≤t

E
[‖x‖2

υ

]
, t ∈ [t0, T].

Then, for any t ∈ [t0, T], it follows that

�(t) ≤ 2M2B2E
[‖ϕ‖2] + 2M2 max

{
1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

δ(s)H
(
�(s)

)
ds.

Denoting by u(t) the right-hand side of the above inequality, we obtain that

�(t) ≤ u(t), t ∈ [t0, T],

u(t0) = 2M2B2E‖ϕ‖2 = c1
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and

u′(t) = 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)
δ(t)H

(
�(t)

)

≤ 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)
δ(t)H

(
u(t)

)
, t ∈ [t0, T].

Then

u′(t)
H(u(t))

≤ 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)
δ(t), t ∈ [t0, T].

Integrating the above inequality from t0 to t and making use of the change of variable,
we obtain

∫ u(t)

u(t0)

ds
H(s)

≤ 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

δ(s) ds

≤ 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ T

t0

δ(s) ds

<
∫ ∞

c1

ds
H(s)

=
∫ ∞

u(t0)

ds
H(s)

.

From the above inequality and by the mean value theorem, there is a constant K such
that u(t) ≤ K , and hence �(t) ≤ K . Since supt0≤υ≤t E[‖x‖2

υ] = �(t) holds for every t ∈ [t0, T],
we have supt0≤υ≤T E[‖x‖2

υ] ≤ K , where K only depends on T and the functions δ and H ,
consequently

E‖x‖2
ß = sup

t0≤υ≤T
E‖x‖2

υ ≤ K .

In the next steps, we will prove that  is continuous and completely continuous.
Step 1. We prove that  is continuous.
Let {xn} be a convergent sequence of elements of x in ß. Then, for each t ∈ [t0, T], we

have

xn(t) =
+∞∑

k=0

[ k∏

i=1

bi(τi)S(t – t0)ϕ(0)

+
1

�(q)

k∑

i=1

k∏

j=i

bj(τj)
∫ ξi

ξi–1

(t – s)q–1S(t – s)f (s, xns ) ds

+
1

�(q)

∫ t

ξk

(t – s)q–1S(t – s)f (s, xns ) ds

]

I[ξk ,ξk+1)(t).

Thus

xn(t) – x(t) =
+∞∑

k=0

[
1

�(q)

k∑

i=1

k∏

j=i

bj(τj)
∫ ξi

ξi–1

(t – s)q–1S(t – s)
{

f (s, xns ) – f (s, xs)
}

ds



Zhang and Jiang Advances in Difference Equations        (2018) 2018:404 Page 7 of 17

+
1

�(q)

∫ t

ξk

(t – s)q–1S(t – s)
{

f (s, xns ) – f (s, xs)
}

ds

]

I[ξk ,ξk+1)(t),

and

E‖xn – x‖2
t ≤ M2 max

{
1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

E
∥∥f (s, xns ) – f (s, xs)

∥∥2 ds.

Thus  is continuous.
Step 2. We prove that  is a completely continuous operator.
Denote

Bm =
{

x ∈ ß | ‖x‖2
ß ≤ m

}

for some m ≥ 0.
Step 2.1. We show that  maps Bm into an equicontinuous family.
Let x ∈ Bm and t1, t2 ∈ [t0, T]. If t0 < t1 < t2 < T , then by using (H1)–(H2) and condition

(3.1), we have

x(t2) – x(t1)

=
+∞∑

k=0

[ k∏

i=1

bi(τi)S(t2 – t0)ϕ(0)

+
1

�(q)

k∑

i=1

k∏

j=i

bj(τj)
∫ ξi

ξi–1

(t2 – s)q–1S(t2 – s)f (s, xs) ds

+
1

�(q)

∫ t2

ξk

(t2 – s)q–1S(t2 – s)f (s, xs) ds

]

I[ξk ,ξk+1)(t2)

–
+∞∑

k=0

[ k∏

i=1

bi(τi)S(t1 – t0)ϕ(0)

+
1

�(q)

k∑

i=1

k∏

j=i

bj(τj)
∫ ξi

ξi–1

(t1 – s)q–1S(t1 – s)f (s, xs) ds

+
1

�(q)

∫ t1

ξk

(t1 – s)q–1S(t1 – s)f (s, xs) ds

]

I[ξk ,ξk+1)(t1)

=
+∞∑

k=0

[ k∏

i=1

bi(τi)S(t2 – t0)ϕ(0)

+
1

�(q)

k∑

i=1

k∏

j=i

bj(τj)
∫ ξi

ξi–1

(t2 – s)q–1S(t2 – s)f (s, xs) ds

+
1

�(q)

∫ t2

ξk

(t2 – s)q–1S(t2 – s)f (s, xs) ds

]
(
I[ξk ,ξk+1)(t2) – I[ξk ,ξk+1)(t1)

)

+
+∞∑

k=0

[ k∏

i=1

bi(τi)
[
S(t2 – t0) – S(t1 – t0)

]
ϕ(0)
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+
1

�(q)

k∑

i=1

k∏

j=i

bj(τj)
∫ ξi

ξi–1

[
(t2 – s)q–1S(t2 – s) – (t1 – s)q–1S(t1 – s)

]
f (s, xs) ds

+
1

�(q)

∫ t1

ξk

[
(t2 – s)q–1S(t2 – s) – (t1 – s)q–1S(t1 – s)

]
f (s, xs) ds

+
1

�(q)

∫ t2

t1

(t2 – s)q–1S(t2 – s)f (s, xs) ds

]

I[ξk ,ξk+1)(t1).

Then

E
∥∥x(t2) – x(t1)

∥∥2 ≤ 2E‖I1‖2 + 2E‖I2‖2,

where

I1 =
+∞∑

k=0

[ k∏

i=1

bi(τi)S(t2 – t0)ϕ(0)

+
1

�(q)

k∑

i=1

k∏

j=i

bj(τj)
∫ ξi

ξi–1

(t2 – s)q–1S(t2 – s)f (s, xs) ds

+
1

�(q)

∫ t2

ξk

(t2 – s)q–1S(t2 – s)f (s, xs) ds

]
(
I[ξk ,ξk+1)(t2) – I[ξk ,ξk+1)(t1)

)

and

I2 =
+∞∑

k=0

[ k∏

i=1

bi(τi)
[
S(t2 – t0) – S(t1 – t0)

]
ϕ(0)

+
1

�(q)

k∑

i=1

k∏

j=i

bj(τj)
∫ ξi

ξi–1

[
(t2 – s)q–1S(t2 – s) – (t1 – s)q–1S(t1 – s)

]
f (s, xs) ds

+
1

�(q)

∫ t1

ξk

[
(t2 – s)q–1S(t2 – s) – (t1 – s)q–1S(t1 – s)

]
f (s, xs) ds

+
1

�(q)

∫ t2

t1

(t2 – s)q–1S(t2 – s)f (s, xs) ds

]

I[ξk ,ξk+1)(t1).

Furthermore,

E‖I1‖2 ≤ E

( +∞∑

k=0

[ k∏

i=1

∥∥bi(τi)
∥∥∥∥S(t2 – t0)

∥∥∥∥ϕ(0)
∥∥

+
1

�(q)

k∑

i=1

∥
∥∥∥
∥

k∏

j=i

bj(τj)

∥
∥∥∥
∥

∫ ξi

ξi–1

(t2 – s)q–1∥∥S(t2 – s)
∥
∥
∥
∥f (s, xs)

∥
∥ds

+
1

�(q)

∫ t2

ξk

(t2 – s)q–1∥∥S(t2 – s)
∥∥∥∥f (s, xs)

∥∥ds

]
(
I[ξk ,ξk+1)(t2) – I[ξk ,ξk+1)(t1)

)
)2

≤ 2M2B2E
∥∥ϕ(0)

∥∥2E
(
I[ξk ,ξk+1)(t2) – I[ξk ,ξk+1)(t1)

)
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+ 2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)
E

∫ t2

t0

∥
∥S(t2 – s)

∥
∥
∥
∥f (s, xs)

∥
∥dsE

(
I[ξk ,ξk+1)(t2)

– I[ξk ,ξk+1)(t1)
)

≤ 2M2B2E
∥∥ϕ(0)

∥∥2E
(
I[ξk ,ξk+1)(t2) – I[ξk ,ξk+1)(t1)

)

+ 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t2

t0

δ(s)H
(
E‖x‖2

s
)

dsE
(
I[ξk ,ξk+1)(t2)

– I[ξk ,ξk+1)(t1)
)

≤ 2M2B2E
∥∥ϕ(0)

∥∥2E
(
I[ξk ,ξk+1)(t2) – I[ξk ,ξk+1)(t1)

)

+ 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t2

t0

M∗H
(
E(m)

)
dsE

(
I[ξk ,ξk+1)(t2)

– I[ξk ,ξk+1)(t1)
)

→ 0, as t1 → t2,

where M∗ = sup{δ(t) : t ∈ [t0, T]}.

E‖I2‖2 ≤ E

( +∞∑

k=0

[ k∏

i=1

∥∥bi(τi)
∥∥∥∥S(t2 – t0) – S(t1 – t0)

∥∥∥∥ϕ(0)
∥∥

+
1

�(q)

k∑

i=1

k∏

j=i

∥∥bj(τj)
∥∥

∫ ξi

ξi–1

∥∥(t2 – s)q–1S(t2 – s)

– (t1 – s)q–1S(t1 – s)
∥∥∥∥f (s, xs)

∥∥ds

+
1

�(q)

∫ t1

ξk

∥∥(t2 – s)q–1S(t2 – s) – (t1 – s)q–1S(t1 – s)
∥∥∥∥f (s, xs)

∥∥ds

+
1

�(q)

∫ t2

t1

(t2 – s)q–1∥∥S(t2 – s)
∥∥∥∥f (s, xs)

∥∥ds

]

I[ξk ,ξk+1)(t1)

)2

≤ 3B2∥∥S(t2 – t0) – S(t1 – t0)
∥
∥2E

∥
∥ϕ(0)

∥
∥2

+ 3 max
{

1, B2}(t1 – t0)
1

�(q)
E

∫ t1

t0

∥
∥(t2 – s)q–1S(t2 – s)

– (t1 – s)q–1S(t1 – s)
∥
∥2∥∥f (s, xs)

∥
∥2 ds

+ 3M2 (T – t0)2q–1

�(q)(2q – 1)
E

∫ t2

t1

∥∥f (s, xs)
∥∥2 ds

≤ 3B2∥∥S(t2 – t0) – S(t1 – t0)
∥∥2E

∥∥ϕ(0)
∥∥2

+ 3 max
{

1, B2}(t1 – t0)
1

�(q)

∫ t1

t0

∥∥(t2 – s)q–1S(t2 – s)

– (t1 – s)q–1S(t1 – s)
∥
∥2M∗H(m) ds

+ 3M2 (T – t0)2q–1

�(q)(2q – 1)

∫ t2

t1

M∗H(m) ds

→ 0, as t1 → t2.
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Thus,  maps Bm into an equicontinuous family of functions.
Step 2.2. We show that Bm is uniformly bounded.
From (3.1), ‖x‖2

ß ≤ m, by (H1)–(H2), we obtain

∥∥x(t)
∥∥2 ≤

( +∞∑

k=0

[ k∏

i=1

∥∥bi(τi)
∥∥∥∥S(t – t0)

∥∥∥∥ϕ(0)
∥∥

+
1

�(q)

k∑

i=1

k∏

j=i

∥∥bj(τj)
∥∥

∫ ξi

ξi–1

(t – s)q–1∥∥S(t – s)
∥∥∥∥f (s, xs)

∥∥ds

+
1

�(q)

∫ t

ξk

(t – s)q–1∥∥S(t – s)
∥
∥
∥
∥f (s, xs)

∥
∥ds

]

I[ξk ,ξk+1)(t)

)2

≤ 2M2B2∥∥ϕ(0)
∥
∥2 + 2M2 max

{
1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

∥
∥f (s, xs)

∥
∥2 ds.

Thus

E
∥∥x(t)

∥∥2 ≤ 2M2B2E
∥∥ϕ(0)

∥∥2 + 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

E
∥∥f (s, xs)

∥∥2 ds

≤ 2M2B2E
∥∥ϕ(0)

∥∥2 + 2M2 max
{

1, B2} (T – t0)2q

�(q)(2q – 1)
‖αm‖L1 .

This yields that the set {(x)(t),‖x‖2
ß ≤ m} is uniformly bounded, so {Bm} is uniformly

bounded, by the Arzela–Ascoli theorem,  maps Bm into a precompact set in X.
Step 2.3. We show that Bm is compact.
Let t0 < t ≤ T be fixed, and let ε be a real number satisfying ε ∈ (0, t – t0), for x ∈ Bm, we

define

(εx)(t) =
+∞∑

k=0

[ k∏

i=1

bi(τi)S(t – t0)ϕ(0)

+
1

�(q)

k∑

i=1

k∏

j=i

bj(τj)
∫ ξi

ξi–1

(t – s)q–1S(t – s)f (s, xs) ds

+
1

�(q)

∫ t–ε

ξk

(t – s)q–1S(t – s)f (s, xs) ds

]

I[ξk ,ξk+1)(t), t ∈ (t0, t – ε).

Since S(t) is a compact operator, the set

Hε(t) =
{

(εx)(t) : x ∈ Bm
}

is precompact in X for every ε ∈ (0, t – t0). Moreover, for every x ∈ Bm, we have

(x)(t) – (εx)(t) =
+∞∑

k=0

[
1

�(q)

∫ t

ξk

(t – s)q–1S(t – s)f (s, xs) ds
]

I[ξk ,ξk+1)(t)

–
+∞∑

k=0

[
1

�(q)

∫ t–ε

ξk

(t – s)q–1S(t – s)f (s, xs) ds
]

I[ξk ,ξk+1)(t).
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By using (H1)–(H2), condition (3.1), and ‖x‖2
ß ≤ m, we have

E
∥
∥(x)(t) – (εx)(t)

∥
∥2

t ≤ M2 (T – t0)2q–1

�(q)(2q – 1)

∫ t

t–ε

M∗H(m) ds.

Therefore, there are precompact sets arbitrarily close to the set {(x)(t) : x ∈ Bm}. Hence
the set {(x)(t) : x ∈ Bm} is precompact in X. Therefore,  is a completely continuous
operator.

Moreover, the set U() = {x ∈ ß : x = λx for some 0 < λ < 1} is bounded. Conse-
quently, by Lemma 2.1, the operator  has a fixed point in ß. Therefore, system (1.1) has
a mild solution. �

4 Exponential stability in the quadratic mean
In this section, we will study the exponential stability of the second moment of a mild
solution of system (1.1). For an Ft-adapted process, (t) : [–r,∞) → R is almost surely
continuous in t. For the purposes of stability, we may assume that f (t, 0) ≡ 0 for any t ≥ t0

so that system (1.1) admits a trivial solution. Moreover, (t) = ϕ(t – t0) for t ∈ [t0 – r, t0]
and E‖‖2

t → 0 as t → ∞.

Definition 4.1 System (1.1) is said to be exponentially stable in the quadratic mean if
there exist positive constants C1 > 0 and λ > 0 such that

E
∥∥x(t)

∥∥ ≤ C1E‖ϕ‖2e–λ(t–t0), t ≥ t0.

Now we introduce the following hypotheses used in our discussion:
(H3) μH(ψ) ≤ H(μψ) for all ψ ∈ R+, where μ > 1.
(H4) ‖S(t)‖ ≤ Me–r(t–t0), t ≥ t0, where M ≥ 1, r > 0.

Theorem 4.1 Assume that the hypotheses of Theorem 3.1 and (H3)–(H4) hold. If the fol-
lowing inequality is satisfied, then system (1.1) is exponentially stable in the quadratic
mean:

M2

∫ T

t0

δ(s) ds <
∫ ∞

c2

ds
H(s)

, (4.1)

where M2 = 2M2 max{1, B2} (T–t0)2q–1

�(q)(2q–1) , c2 = 2M2B2E[‖ϕ‖2], and MB ≥ 1√
2 .

Proof Let  be the map defined in Theorem 3.1. Using hypotheses (H1)–(H4), we have

∥
∥x(t)

∥
∥2

≤ λ2

[ +∞∑

k=0

[∥∥
∥∥
∥

k∏

i=1

bi(τi)

∥∥
∥∥
∥

∥
∥S(t – t0)

∥
∥
∥
∥ϕ(0)

∥
∥

+
1

�(q)

k∑

i=1

∥∥
∥∥∥

k∏

j=i

bj(τj)

∥∥
∥∥∥

∫ ξi

ξi–1

(t – s)q–1∥∥S(t – s)f (s, xs)
∥∥ds

+
1

�(q)

∫ t

ξk

(t – s)q–1∥∥S(t – s)f (s, xs)
∥
∥ds

]

I[ξk ,ξk+1)(t)

]2
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≤ 2
+∞∑

k=0

[∥
∥∥
∥∥

k∏

i=1

bi(τi)

∥
∥∥
∥∥

2

M2e–2r(t–t0)∥∥ϕ(0)
∥∥2I[ξk ,ξk+1)(t)

]

+ 2

[ ∞∑

k=0

[
1

�(q)

k∑

i=1

∥
∥∥
∥∥

k∏

j=i

bj(τj)

∥
∥∥
∥∥

∫ ξi

ξi–1

(t – s)q–1Me–r(t–s)∥∥f (s, xs)
∥
∥ds

+
1

�(q)

∫ t

ξk

(t – s)q–1Me–r(t–s)∥∥f (s, xs)
∥∥ds

]

I[ξk ,ξk+1)(t)

]2

≤ 2

[

max
k

{ k∏

j=i

∥
∥bj(τj)

∥
∥2

}]

M2e–2r(t–t0)∥∥ϕ(0)
∥
∥2

+ 2

[

max
i,k

{

1,
k∏

j=i

∥∥bj(τj)
∥∥
}]2

1
�(q)

+∞∑

k=0

∫ t

t0

(t – s)q–1Me–r(t–s)∥∥f (s, xs)
∥∥dsI[ξk ,ξk+1)(t)2

≤ 2M2B2e–2r(t–t0)∥∥ϕ(0)
∥∥2 + 2M2 max

{
1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

e–2r(t–s)∥∥f (s, xs)
∥∥2 ds,

‖x‖2
t ≤ 2M2B2e–2r(t–t0)‖ϕ‖2 + 2M2 max

{
1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

e–2r(t–s)∥∥f (s, xs)
∥∥2 ds,

E‖x‖2
t

≤ 2M2B2e–2r(t–t0)E
[‖ϕ‖2]

+ 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

e–2r(t–s)δ(s)H
(
E
[‖x‖2

s
])

ds

= 2M2B2e–2r(t–t0)E
[‖ϕ‖2]

+ 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)
e–2r(t–t0)

∫ t

t0

e2r(s–t0)δ(s)H
(
E
[‖x‖2

s
])

ds,

e2r(t–t0)E‖x‖2
t

≤ 2M2B2E
[‖ϕ‖2]

+ 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

δ(s)H
(
e2r(s–t0)E

[‖x‖2
s
])

ds,

sup
t0≤υ≤t

e2r(υ–t0)E‖x‖2
υ

≤ 2M2B2E
[‖ϕ‖2]

+ 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

δ(s)H
(

sup
t0≤υ≤s

e2r(υ–t0)E
[‖x‖2

υ

])
ds.

Let

�1(t) = sup
t0≤υ≤t

e2r(υ–t0)E‖x‖2
υ , t ∈ [t0, T].

Then, for any t ∈ [t0, T], it follows that

�1(t) ≤ 2M2B2E
[‖ϕ‖2] + 2M2 max

{
1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

δ(s)H
(
�1(s)

)
ds.
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Denoting by u1(t) the right-hand side of the above inequality, we obtain that

�1(t) ≤ u1(t), t ∈ [t0, T],

u1(t0) = 2M2B2E‖ϕ‖2 = c2

and

u′
1(t) = 2M2 max

{
1, B2} (T – t0)2q–1

�(q)(2q – 1)
δ(t)H

(
�1(t)

)

≤ 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)
δ(t)H

(
u1(t)

)
, t ∈ [t0, T].

Then

u′
1(t)

H(u1(t))
≤ 2M2 max

{
1, B2} (T – t0)2q–1

�(q)(2q – 1)
δ(t), t ∈ [t0, T].

Integrating the above inequality from t0 to t and making use of the change of variable,
we obtain

∫ u1(t)

u1(t0)

ds
H(s)

≤ 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ t

t0

δ(s) ds

≤ 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ T

t0

δ(s) ds

<
∫ ∞

c2

ds
H(s)

=
∫ ∞

u1(t0)

ds
H(s)

, t ∈ [t0, T].

From the above inequality and by the mean value theorem, there is a constant K1 such
that u1(t) ≤ K1, and hence �1(t) ≤ K1. Since supt0≤υ≤t e2r(υ–t0)E‖x‖2

υ = �1(t) holds for ev-
ery t ∈ [t0, T], we have supt0≤υ≤t e2r(υ–t0)E‖x‖2

υ ≤ K1, where K1 depends only on δ and H.
Consequently,

e2r(t–t0)E‖x‖2
ß = sup

t0≤υ≤T
e2r(υ–t0)E‖x‖2

υ ≤ K1.

In the following, we proceed as in the previous theorem. Now, we will show that  is a
completely continuous operator using a two-step proof.

Step 1. We prove that  is continuous.
Let {xn} be a convergent sequence of elements of x in ß. Then, for each t ∈ [t0, T], we

have

E‖xn – x‖2
t

≤ M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)
e–2r(t–t0)

∫ t

t0

e2r(s–t0)E
∥∥f (s, xns ) – f (s, xs)

∥∥2 ds

→ 0, as n → ∞.

Thus  is continuous.
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Step 2. We prove that  is a completely continuous operator.
Denote

Bm1 =
{

x ∈ ß | ‖x‖2
ß ≤ m1

}

for some m1 ≥ 0.
Step 2.1. We show that  maps Bm1 into an equicontinuous family.
Let x ∈ Bm and let t1, t2 ∈ [t0, T]. If t0 < t1 < t2 < T , then by using (H1)–(H4) and condition

(4.1) and then by following a process similar to Step 2.1 of Theorem 3.1, we get

E
∥∥x(t2) – x(t1)

∥∥2 → 0 as t2 → t1.

Thus,  maps Bm1 into an equicontinuous family of functions.
Step 2.2. We show that Bm1 is uniformly bounded.
From condition (4.1) and (H1)–(H4), we obtain

∥
∥x(t)

∥
∥2 ≤ 2

[

max
k

{ k∏

j=i

∥
∥bj(τj)

∥
∥2

}]

M2e–2r(t–t0)∥∥ϕ(0)
∥
∥2

+ 2

[

max
i,k

{

1,
k∏

j=i

∥∥bj(τj)
∥∥
}]2

×
(

1
�(q)

+∞∑

k=0

∫ t

t0

(t – s)q–1Me–r(t–s)∥∥f (s, xs)
∥∥ds

)

I[ξk ,ξk+1)(t)2.

Thus

E
∥∥x(t)

∥∥2 ≤ 2M2B2e–2r(t–t0)E
∥∥ϕ(0)

∥∥2

+ 2M2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)
e–2r(t–t0)

×
∫ t

t0

e2r(s–t0)M∗H(m) ds,

where M∗ = sup{δ(t) : t ∈ [t0, T]}. Since e–2r(t–t0) → 0, the right-hand side of the above
inequality tends to 0 as t → ∞. That is,

∥
∥(x)

∥
∥2

ß → 0 as t → ∞.

This yields that the set {(x)(t),‖x‖2
ß ≤ m1} is uniformly bounded, so {Bm1} is uni-

formly bounded.
Step 2.3. We show that Bm1 is compact.
Let t0 < t ≤ T be fixed and let ε be a real number satisfying ε ∈ (0, t – t0), for x ∈ Bm1 , we

define

(εx)(t) =
+∞∑

k=0

[ k∏

i=1

bi(τi)S(t – t0)ϕ(0)
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+
1

�(q)

k∑

i=1

k∏

j=i

bj(τj)
∫ ξi

ξi–1

(t – s)q–1S(t – s)f (s, xs) ds

+
1

�(q)

∫ t–ε

ξk

(t – s)q–1S(t – s)f (s, xs) ds

]

I[ξk ,ξk+1)(t), t ∈ (t0, t – ε).

Since S(t) is a compact operator, the set

Hε(t) =
{

(εx)(t) : x ∈ Bm1

}

is precompact in X for every ε ∈ (0, t – t0).
Making use of hypotheses (H1)–(H4), condition (4.1), and the fact that ‖x‖2

ß ≤ m1, we
have

E
∥∥(x)(t) – (εx)(t)

∥∥2
t ≤ M2 (T – t0)2q–1

�(q)(2q – 1)
e–2r(t–t0)

∫ t

t–ε

e2r(s–t0)M∗H
(
E‖x‖2

s
)

ds.

Therefore, there are precompact sets arbitrarily close to the set {(x)(t) : x ∈ Bm1}. Hence
the set {(x)(t) : x ∈ Bm1} is precompact in X. Therefore,  is a completely continuous
operator.

Moreover, the set U() = {x ∈ ß : x = λx for some 0 < λ < 1} is bounded. Consequently,
by Lemma 2.1, the operator  has a fixed point in ß. Therefore, system (1.1) has a mild
solution with (t) = ϕ(t – t0) when t ∈ [t0 –r, t0] and E‖‖2

t → 0 as t → ∞. This completes
the proof. �

5 Example
In this section, we provide an example to illustrate our main results. Consider the following
random impulsive fractional differential system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDq
t u(t, x) = ∂2

∂x2 u(t, x) + au(x, t – r)u(x, t), t �= ξk ,

u(x, ξk) = q(k)τku(x, ξ–
k ), t = ξk ,

u(t, 0) = u(t,π ) = 0,

u(t, x) = φ(t, x), –r < t ≤ 0, 0 ≤ x ≤ π .

(5.1)

Let X = L2([0,π ]) and τk be a random variable defined on Dk ≡ (0, dk) for k = 1, 2, . . . ,
where 0 < dk < +∞. Furthermore, assume that τk follows the Erlang distribution, where
k = 1, 2, . . . and τi and τj are independent of each other as i �= j for i, j = 1, 2, . . . ; q is a function
of k; ξ0 = t0 and ξk = ξk–1 + τk for k = 1, 2, . . . , here t0 ∈ Rτ is an arbitrary given real number.

Define A an operator on X by Au = ∂2u
∂x2 with the domain D(A) = {u ∈ X | u and ∂u

∂x are
absolutely continuous, ∂2u

∂x2 ∈ X, u(0) = 0 = u(π )}.
It it well known that A generates a strongly continuous semigroup S(t) which is compact,

analytic, and self-adjoint. Moreover, the operator A can be expressed as

Au =
∞∑

n=1

n2(u, un)un, u ∈ D(A),
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where un(ζ ) =
√

2
π

sin nζ , n ∈ N is the orthogonal set of eigenvectors of A, and for every
u ∈ X, S(t)u =

∑∞
n=1 exp(–n2t)(u, un)un, which satisfies

∥
∥S(t)

∥
∥ ≤ exp

(
–π2(t – t0)

)
, t ≥ t0.

Hence S(t) is a contraction semigroup.
Equation (5.1) can be reformulated as the following abstract equation in X = L2([0,π ]):

cDq
t z(t) = Az(t) + f (t, zt), t �= ξk , t ≥ τ ,

z(ξk) = bk(τk)z
(
ξ–

k
)
, k = 1, 2, . . . ,

zt0 = ϕ,

where z(t) = u(·, t), i.e., z(t)(x) = u(x, t), zt(θ )(x) = u(x, t + θ ), t ∈ [t0, T], θ ∈ [–r, 0], z(t, x) =
ϕ(t, x), t ∈ [–r, 0], x ∈ [0,π ]. The operator A is defined as above. The functions f : [τ , T] ×
C → X and bk : Dk → X are given by

f (t, zt) = au(x, t – r)u(x, t), bk(τk) = q(k)τk ,

where a > 0.
It is easy to check that system (5.1) has a mild solution if hypotheses (H1), (H2) and the

inequality

2 max
{

1, B2} (T – t0)2q–1

(2q – 1)�(q)

∫ T

t0

δ(s) ds <
∫ ∞

c1

ds
H(s)

hold, where c1 = 2B2E‖ϕ‖2.
Furthermore, by Theorem 4.1, if the following conditions hold

2 max
{

1, B2} (T – t0)2q–1

�(q)(2q – 1)

∫ T

t0

δ(s) ds <
∫ ∞

c2

ds
H(s)

,

where c2 = 2B2E[‖ϕ‖2], then system (5.1) is exponentially stable in the quadratic mean.
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