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Abstract
We consider the following nonlinear biharmonic equations:

�2u –�u + Vλ(x)u = f (x,u), in R
N ,

where Vλ(x) is allowed to be sign-changing and f is an indefinite function. Under
some suitable assumptions, the existence of nontrivial solutions and the high energy
solutions are obtained by using variational methods. Moreover, the phenomenon of
concentration of solutions is explored. The results extend the main conclusions in
recent literature.
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1 Introduction and main results
This paper concerns the existence results and the phenomenon of concentration of solu-
tions for the following biharmonic equation:

�2u – �u + Vλ(x)u = f (x, u), in R
N , (1.1)

where �2 = �(�) is the biharmonic operator, f is an indefinite function and the poten-
tial Vλ(x) = λV +(x) – V –(x) with V + having a bounded potential well � whose depth is
controlled by λ and V –(x) ≥ 0 for all x ∈ R

N . Such an equation may arise in many fields
of physics, such as describing the traveling waves in suspension bridge [17] and describ-
ing the static deflection of an elastic plate in fluid [7]. For more physical background of
problem (1.1), we refer the readers to [11] and the references therein.

In the last two decades, the existence of bound states, ground states, semi-classical states
(where �2 is replaced by ε4�2 for ε > 0 small), and infinitely many nontrivial solutions of
biharmonic equations have been widely discussed under various conditions no matter on a
bounded domain or on the whole space. Here we just give some references which are close
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to the problem we consider in this paper. For instance, Yin and Wu [25] studied problem
(1.1) with various sets of assumptions on the nonlinearity f (x, u) (superquadraticity, sub-
criticality, etc.) and under the following conditions imposed on the potential V (x):

(V ′
1) V ∈ C1(RN ,R), infx∈RN V (x) ≥ a > 0, where a is a constant;

(V ′
2) For each b > 0, meas{x ∈ R

N : V (x) ≤ b} < ∞, where meas denotes the Lebesgue
measure in R

N .
They obtained the existence and infinitely many nontrivial solutions via variational meth-
ods. Soon after, Ye and Tang [23] improved these results. Here, we emphasize that con-
ditions (V ′

1) and (V ′
2) are usually assumed to guarantee the compact embedding of the

working space [33]. However, if (V ′
2) is replaced by the following more general condition

(V ′′
2 ), the compactness of the embedding fails and this situation becomes more delicate.
(V ′′

2 ) There exists b > 0 such that the set {x ∈ R
N : V (x) ≤ b} is nonempty and has finite

measure.
As far as we observe, there are few papers concerning this case. We mention that the

authors in [16] investigated the existence and multiplicity results of problem (1.1) when
conditions (V ′

1) and (V ′′
2 ) hold and the nonlinearity f (x, u) is superlinear at infinity and

subcritical. Motivated by [16], Ye and Tang [24] studied problem (1.1) under the following
more general case imposed on the potential V (x):

(V ′′
1 ) V (x) ≥ 0 for all x ∈R

N ;
(V ∗

2 ) There exists b > 0 such that the set {x ∈R
N : V (x) ≤ b} has finite measure.

Under conditions (V ′′
1 ) and (V ∗

2 ) and more generic superlinear condition upon f (x, u), the
authors obtained some results which unify and significantly improve the results in [16].
Moreover, by applying a new version of the symmetric mountain pass lemma, they also
investigated infinitely many small-energy solutions of problem (1.1) when the nonlinearity
f (x, u) is sublinear with mild assumptions different from [16]. For other interesting results
on biharmonic equations, we refer readers to [4, 6, 8, 13–15, 19, 21, 22, 26–30, 32] and the
references therein.

However, for most of these papers, the potential V (x) is always assumed to be positive.
To the authors’ knowledge, there seems to be no result on the existence of solutions to
problem (1.1) with sign-changing potential Vλ. Indeed, this is an interesting question, and
we mainly consider the following two problems in the present paper:

(i) The existence results of problem (1.1) when f is indefinite and satisfies the
superquadratic linear conditions;

(ii) The phenomenon of concentration of nontrivial solutions.
In order to give positive answers to the above problems, we shall assume that the po-

tential function Vλ(x) = λV +(x) – V –(x), where V ± = max{±V , 0} satisfies the following
conditions, which is quite different from the above cited papers.

(V 1) Vλ(x) ∈ C(RN ,R) and Vλ(x) is bounded from below;
(V 2) There exists b > 0 such that {x ∈ R

N | V +(x) < b} is nonempty and has finite mea-
sure;

(V 3) � = int{x ∈ R
N | V +(x) = 0} is nonempty and has smooth boundary with � = {x ∈

R
N | V +(x) = 0};

(V 4) There exists a constant μ0 > 1 such that

μ1(λ) := inf
u∈H2(RN )\{0}

∫
RN [|�u|2 + |∇u|2 + λV +(x)u2] dx

∫
RN V –(x)u2 dx

≥ μ0 for all λ > 0.
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Here, we point out that conditions (V 1)–(V 3), which imply that λV +(x) represents a
potential well whose depth is controlled by λ, were firstly introduced by Bartsch and Wang
[3], in which the authors studied the nonlinear Schrödinger equations. For λ > 0 large, one
expects to find solutions which localize near its bottom �. Since the work [3], there have
been many papers dealing with problems with potential well in different equations, see
e.g. [1, 2, 9, 10, 31]. However, to the best of our knowledge, there seems to be no result on
this case of problem (1.1) with sign-changing potential. This is the reason why we explore
the phenomenon of concentration of solution in this paper as well.

Remark 1.1 Inspired by [20], we impose condition (V 4) in this paper. Obviously, there
are cases when condition (V 4) is easily verifiable. For example, if one takes a function
V – ∈ L

2∗
2∗–2 (RN ) with ‖V –‖

L
2∗

2∗–2
< ¯̄S2, then a direct calculation from (V 1)–(V 3), the fact

H2(RN ) ↪→ H1(RN ), and the Hölder and Sobolev inequalities show that
∫
RN [|�u|2 + |∇u|2 + λV +u2] dx

∫
RN V –u2 dx

≥
∫
RN [|�u|2 + |∇u|2 + λV +u2] dx

‖V –‖
L

2∗
2∗–2

(
∫
RN u2∗ dx)

2
2∗

≥
∫
RN |∇u|2 dx

‖V –‖
L

2∗
2∗–2

(
∫
RN u2∗ dx)

2
2∗

≥
¯̄S2

‖V –‖
L

2∗
2∗–2

for all λ ≥ 0,

which implies that

μ1(λ) ≥
¯̄S2

‖V –‖
L

2∗
2∗–2

> 1 for all λ ≥ 0,

where 2∗ = 2N
N–2 for N ≥ 3, 2∗ = +∞ for N = 1, 2 and ¯̄S denotes the best Sobolev constant

for the embedding of D1,2(RN ) in L2∗ (RN ).

Before stating our main results, we also need to make some assumptions for the nonlin-
earity f and its primitive F(x, u) =

∫ u
0 f (x, s) ds.

(F1) f ∈ C(RN ×R,R), and there exist c1 > 0, p ∈ (2, 2∗) such that
∣
∣f (x, u)

∣
∣ ≤ c1

(
1 + |u|p–1), for all (x, u) ∈ (

R
N ×R

)
,

here and hereafter 2∗ = 2N
N–4 for N ≥ 5, 2∗ = +∞ for N < 5;

(F2) lim|u|→0
f (x,u)

u = 0 uniformly for x ∈R
N ;

(F3) lim|u|→∞ F(x,u)
|u|q = +∞ uniformly for q ∈ (2, p) and x ∈R

N ;
(F4) There exist τ > 2 and C2 > 0 such that

F̃(x, u) :=
1
τ

f (x, u) – F(x, u) → +∞, as |u| → +∞ uniformly in x ∈R
N ,

and

F̃(x, un) ≥ –C2|un|2, ∀x ∈R
N .

(F5) f (x, –u) = –f (x, u) for all (x, u) ∈ (RN ×R).
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Remark 1.2 There are functions f (x, u) satisfying conditions (F1)–(F5) in this paper. For
example, let

f (x, u) =

⎧
⎨

⎩

g(x)2 ln 2|u|p–2u + u
2 for |u| > 1,

g(x)2u ln(1 + |u|) + |u|u
1+|u| for |u| ≤ 1,

where 2 < p < 2∗ and g(x) ∈ C(RN ×R) is a bounded function with infx∈RN g(x) > 0. Then

F(x, u) =

⎧
⎨

⎩

g(x) 2 ln 2
p |u|p + u2

4 – 1
4 + p–2

p ln 2 for |u| > 1,

g(x)u2 ln(1 + |u|) for |u| ≤ 1.

Hence, it is easy to check that conditions (F1)–(F5) are satisfied.

Now, we give the main results as follows.

Theorem 1.1 Assume that (V 1)–(V 4) and (F1)–(F4) are satisfied. There exists a constant
� > 0 such that problem (1.1) possesses a nontrivial solution for λ > �.

Theorem 1.2 Assume that (V 1)–(V 4) and (F1)–(F5) are satisfied. There exists a constant
� > 0 such that, for λ > �, problem (1.1) possesses infinitely many solutions {uk} satisfying

1
2

∫

RN

[|�u|2 + |∇u|2 + Vλ(x)u2]dx –
∫

RN
F(x, u) dx → +∞ as k → +∞.

For λ → ∞, we have further information on the solution uλ which is obtained in Theo-
rem 1.1.

Theorem 1.3 Let uλ be the solution obtained by Theorem 1.1. Then uλ → u0 in H2(RN )
as λ → ∞, where u0 ∈ H2

0 (�) is the nontrivial solution of

⎧
⎨

⎩

�2u – �u – V –(x)u = f (x, u), x ∈ �,

u = 0, x ∈ ∂�.
(1.2)

It is worth emphasizing that under conditions (V ′
1) and (V ′

2), motivated by Lemma 3.4
in [33], we can prove that the working space E ↪→ Ls(RN ) is compact for any s ∈ [2, 2∗),
where E := {u ∈ H2(RN ) :

∫
RN V +(x)u2 dx < ∞}. Hence, the corresponding results in the

present paper have been obtained by using variational techniques in a standard way [23,
25]. However, under conditions (V 1) and (V 2), the embedding lacks the compactness.
This leads to a difficulty in using variational methods to get solutions of problem (1.1)
since some techniques in compact cases do not work. To overcome this obstacle we have
to search for other methods. Motivated by Brezis–Lieb lemma [5], we prove that the func-
tional Iλ and its derivative I ′

λ possess BL-splitting property (see Lemma 3.2). This impor-
tant proposition paves the way for us to verify the boundedness of a Cerami sequence.
Also, the term

∫
RN V –(x)u2 dx is an issue for employing the variational methods. To get

over this difficulty, some new inequalities are established. In addition, we consider the
problem with more general potential, which includes the positive case in the aforemen-
tioned references. Moreover, from conditions (F1)–(F4), one can see that the nonlinearity
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f (x, u) and its primitive F(x, u) may change signs. That are the reasons why we say the sign-
changing potential and indefinite nonlinearity on the title. Therefore, the corresponding
results in the related papers are extended.

The remainder of this paper is organized as follows: In Sect. 2, some preliminaries and
variational setting are presented; in Sect. 3, some important lemmas are given while the
proofs of the main results are presented in Sect. 4.

2 Preliminaries and variational setting
In the present paper, we use the following notations:

• For any ρ > 0 and for any z ∈R
N , Bρ(z) denotes the ball of radius ρ centered at z.

• C and Ci denote various positive constants, which may vary from line to line.
• → denotes the strong convergence and ⇀ denotes the weak convergence.
• o(1) denotes any quantity which tends to zero when n → ∞.
• If we take a subsequence of a sequence {un}, we shall denote it again by {un}.
• Lq(RN ) denotes the weighted space of measurable functions u : RN →R satisfying

‖u‖q =
(∫

RN
|u|q dx

) 1
q

< ∞.

• H2(RN ) := W 2,2(RN ) denotes the space with the inner product and norm

〈u, v〉H2 =
∫

RN
[�u�v + ∇u∇v + uv] dx, ‖u‖H2 = 〈u, u〉 1

2
H2 .

Followed by [31], set

E :=
{

u ∈ H2(
R

N)
:
∫

RN
V +(x)u2 dx < ∞

}

be equipped with the inner product and norm

〈u, v〉E =
∫

RN

[
�u�v + ∇u∇v + V +(x)uv

]
dx, ‖u‖E = 〈u, u〉 1

2
E .

Under conditions (V 1) and (V 2), Lemma 2.1 in [24] shows that E ↪→ H2(RN ) is continu-
ous, i.e., there exists a positive constant CE such that

‖u‖H2 ≤ CE‖u‖E . (2.1)

For λ > 0, we also need the following inner product and norm:

〈u, v〉λ =
∫

RN

[
�u�v + ∇u∇v + λV +(x)uv

]
dx, ‖u‖λ = 〈u, u〉 1

2
λ .

Obviously, ‖u‖λ ≥ ‖u‖E for all λ ≥ 1. Furthermore, it follows from condition (V 4) that

∫

RN

[|�u|2 + |∇u|2 + Vλ(x)u2]dx ≥ μ0 – 1
μ0

‖u‖2
λ for all λ ≥ 0. (2.2)
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Set Eλ = (E,‖u‖λ). For any r ∈ [2, 2∗] and λ ≥ 1, applying (2.1), (V 1), (V 2), the Hölder and
Sobolev inequalities yields that

∫

RN
|u|r dx ≤

(∫

{V +(x)≥b}
|u|2 dx +

∫

{V +(x)<b}
|u|2 dx

) 2∗–r
2∗–2

(∫

RN
|u|2∗ dx

) r–2
2∗–2

≤
[

1
λb

∫

{V +(x)≥b}
λV +(x)|u|2 dx +

∣
∣{V + < b

}∣∣
2∗–2

2∗
(∫

RN
|u|2∗ dx

) 2
2∗

] 2∗–r
2∗–2

·
[

S̄–2∗
(∫

RN

[|�u|2 + |∇u|2 + u2]dx
) 2∗

2
] r–2

2∗–2

≤
(

1
λb

‖u‖2
λ +

∣
∣{V +(x) < b

}∣∣
2∗–2

2∗ S̄–2C2
E‖u‖2

λ

) 2∗–r
2∗–2 (

S̄–2∗C2∗
E ‖u‖2∗

λ

) r–2
2∗–2

=
(

1
λb

+
∣
∣{V +(x) < b

}∣∣
2∗–2

2∗ S̄–2C2
E

) 2∗–r
2∗–2 (

S̄–2∗C2∗
E

) r–2
2∗–2 ‖u‖r

λ, (2.3)

which means that Eλ ↪→ Lr(RN ) is continuous for r ∈ [2, 2∗], where S̄ is the best Sobolev
constant for the imbedding of H2(RN ) ↪→ L2∗ (RN ).

Define a functional Iλ on Eλ by

Iλ(u) =
1
2

∫

RN

[|�u|2 + |∇u|2 + Vλ(x)u2]dx –
∫

RN
F(x, u) dx

=
1
2
‖u‖2

λ –
1
2

∫

RN
V –(x)u2 dx –

∫

RN
F(x, u) dx, ∀u ∈ Eλ. (2.4)

Followed by [24], the functional Iλ is of class C1(Eλ,R) and

〈
I ′
λ(u),ϕ

〉
=

∫

RN

[�u�ϕ + ∇u∇ϕ + Vλ(x)uϕ
]

dx –
∫

RN
f (x, u)ϕ dx, ∀u,ϕ ∈ Eλ. (2.5)

Hence, if u ∈ Eλ is a critical point of Iλ, then u is a solution of problem (1.1).
We shall end this section by giving the following definition and propositions which are

applied to prove the main results.

Definition 2.1 Let X be a real Banach space and I ∈ C1(X,R). For some c ∈ R, we say I
satisfies the (C)c condition if any sequence {un} ⊂ X such that I(un) → c and ‖I ′(un)‖(1 +
‖un‖) → 0 as n → ∞ has a convergent subsequence.

Proposition 2.1 (Mountain Pass Theorem [18]) Let X be a real Banach space, I ∈
C1(X,R) satisfies the (C)c condition for any c > 0, I(0) = 0 and

(i) there exist ρ,α > 0 such that I|∂Bρ ≥ α;
(ii) there exists e ∈ E \ Bρ such that I(e) ≤ 0.

Then I has a critical value c ≥ α.

Proposition 2.2 (Symmetric Mountain Pass Theorem [18]) Let X be an infinite dimen-
sional Banach space, and let I ∈ C1(X,R) be even, satisfy (C)c condition and I(0) = 0. If
X = V ⊕ W , where V is finite dimensional, and I satisfies

(A1) there are constants ρ,α > 0 such that I|∂Bρ∩W ≥ α, and
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(A2) for each finite dimensional subspace X̃ ⊂ X , there is R = R(X̃) such that I ≤ 0 on
X̃ \ BR(X̃).

Then I possesses an unbounded sequence of critical values.

3 Some lemmas
To verify the main results, we need the following lemmas first.

Lemma 3.1 Assume that (V 1)–(V 4) and (F1)–(F3) hold. Let e ∈ Eλ with e �= 0. Then
(i) there exist ρ,α > 0 such that Iλ|∂Bρ ≥ α;

(ii) Iλ(te) → –∞ as t → ∞.

Proof From (F1) and (F2), for any ε > 0, there exists C(ε) > 0 such that

∣
∣f (x, u)

∣
∣ ≤ ε|u| + C(ε)|u|p–1, (3.1)

then

∣
∣F(x, u)

∣
∣ ≤ ε|u|2 + C(ε)|u|p. (3.2)

It deduces from (2.2), (2.3), (2.4), and (3.2) that

Iλ(u) =
1
2

∫

RN

[|�u|2 + |∇u|2 + Vλ(x)u2]dx –
∫

RN
F(x, u) dx

≥ μ0 – 1
2μ0

‖u‖2
λ –

∫

RN
F(x, u) dx

≥ μ0 – 1
2μ0

‖u‖2
λ –

∫

RN

[
ε|u|2 + C(ε)|u|p]dx

≥
[

μ0 – 1
2μ0

– ε

(
1
λb

+
∣
∣{V +(x) < b

}∣∣
2∗–2

2∗ S̄–2C2
E

)]

‖u‖2
λ – CC(ε)‖u‖p

λ. (3.3)

Therefore, the conclusion (i) follows from taking 0 < ε < μ0–1
2μ0

( 1
λb + |{V +(x) < b}| 2∗–2

2∗ S̄–2 ×
C2

E)–1 and choosing ‖u‖λ = ρ sufficiently small since p > 2.
Next, we shall show the conclusion (ii). From (F3), for any M > 0, there exists δ = δ(M) >

0 such that

F(x, u) ≥ M|u|q for all x ∈R
N and |u| > δ. (3.4)

By (F1) and (F2), there exists M1 = M1(M) > 0 such that

|f (x, u)u|
|u|2 ≤ M1 for all x ∈R

N and 0 < |u| ≤ δ,

which combining with the mean value theorem gives that

∣
∣F(x, u)

∣
∣ ≤ M1

2
|u|2 for all x ∈R

N and 0 < |u| ≤ δ. (3.5)
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Denote M̄ = M|δ|q–2 + M1
2 . Then (3.4) and (3.5) imply that

F(x, u) ≥ M|u|q – M̄|u|2 for all (x, u) ∈ (
R

N ×R
)
. (3.6)

Therefore, for any given e ∈ Eλ, it follows from (2.4) and (3.6) that

Iλ(te) =
t2

2

∫

RN

[|�e|2 + |∇e|2 + Vλ(x)e2]dx –
∫

RN
F(x, te) dx

≤ t2

2
‖e‖2

λ –
∫

RN

[
tqM|e|q – t2M̄|e|2]dx

≤ t2

2
‖e‖2

λ – tqM‖e‖q
q + t2M̄‖e‖2

2

→ –∞, as t → ∞,

which means that the conclusion (ii) holds. This completes the proof. �

Lemma 3.2 Suppose that (V 1)–(V 4), (F1) and (F2) are satisfied. Moreover, if un ⇀ u in
Eλ, then passing to a subsequence, the following conclusions

Iλ(un – u) = Iλ(un) – Iλ(u) + o(1) (3.7)

and

I ′
λ(un – u) = I ′

λ(un) – I ′
λ(u) + o(1) (3.8)

as n → ∞ are satisfied.

Proof It follows from the assumption un ⇀ u in Eλ that 〈un, u〉λ → 〈u, u〉λ as n → ∞,
which yields that

‖un‖2
λ = 〈un, un〉λ

= 〈un – u, un – u〉λ + 〈u, un〉λ + 〈un – u, u〉λ
= ‖un – u‖2

λ + ‖u‖2
λ + o(1).

For all ϕ ∈ Eλ, it is clear that

〈un,ϕ〉λ = 〈un – u,ϕ〉λ + 〈u,ϕ〉λ.

Note that conditions (V 1) and (V 2) imply that V –(x) ≥ 0 for all x ∈ R
N and V –(x) ∈

L∞(RN ). Moreover, from condition (V 2) it follows that {V +(x) = 0} has finite measure,
which implies that {V –(x) > 0} has finite measure. Hence, applying the facts un ⇀ u in Eλ

and un → u in L2
loc(RN ) gives that

∣
∣
∣
∣

∫

RN
V –(x)(un – u)2 dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

supp V –
V –(x)(un – u)2 dx

∣
∣
∣
∣

≤ ∥
∥V –∥

∥∞

∫

supp V –
(un – u)2 dx → 0 (3.9)
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and
∣
∣
∣
∣

∫

RN
V –(x)

(
u2

n – u2)dx
∣
∣
∣
∣ =

∣
∣
∣
∣

∫

supp V –
V –(x)(un – u)(un + u) dx

∣
∣
∣
∣

≤ ∥
∥V –∥

∥∞

∫

supp V –
|un – u||un + u|dx

≤ ∥
∥V –∥

∥∞

(∫

supp V –
|un – u|2 dx

) 1
2
(∫

supp V –
|un + u|2 dx

) 1
2

→ 0. (3.10)

An easy calculation from (3.9) and (3.10) shows that
∫

RN
V –(x)(un – u)2 dx =

∫

RN
V –(x)u2

n dx –
∫

RN
V –(x)u2 dx + o(1).

Similarly, for any ϕ ∈ Eλ, one can also obtain that
∫

RN
V –(x)(un – u)ϕ dx =

∫

RN
V –(x)unϕ dx –

∫

RN
V –(x)uϕ dx + o(1).

Therefore, to prove (3.7) and (3.8), it suffices to check that
∫

RN

[
F(x, un) – F(x, un – u) – F(x, u)

]
dx = o(1) (3.11)

and

sup
ϕ∈Eλ ,‖ϕ‖λ=1

∫

RN

[
f (x, un) – f (x, un – u) – f (x, u)

]
ϕ dx = o(1). (3.12)

Here, we only show (3.11) since the verification of (3.12) is similar. Inspired by [5, 24],
let wn := un – u. Then wn ⇀ 0 in Eλ and wn(x) → 0 a.e. x ∈ R

N . It follows from (3.1) that

∣
∣F(x, wn + u) – F(x, wn)

∣
∣ ≤

∫ 1

0

∣
∣f (x, wn + su)u

∣
∣ds

≤
∫ 1

0

(
ε|wn + su||u| + C(ε)|wn + su|p–1|u|)ds

≤ C
(
ε|wn||u| + εu2 + C(ε)|wn|p–1|u| + C(ε)|u|p).

Then Young’s inequality implies that

∣
∣F(x, wn + u) – F(x, wn)

∣
∣ ≤ C

(
ε|wn|2 + ε|u|2 + C(ε)|wn|p + C(ε)|u|p),

which combining with (3.2) yields that

∣
∣F(x, wn + u) – F(x, wn) – F(x, u)

∣
∣ ≤ C

(
ε|wn|2 + ε|u|2 + C(ε)|wn|p + C(ε)|u|p), n ∈N.

Let

Hn(x) := max
{∣∣F(x, wn + u) – F(x, wn) – F(x, u)

∣
∣ – Cε

(|wn|2 + |wn|p
)
, 0

}
.
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Then

0 ≤ Hn(x) ≤ Cε
(|wn|2 + |u|p) ∈ L1(

R
N)

.

Thus, the Lebesgue dominated convergence theorem implies that

∫

RN
Hn(x) dx → 0 as n → ∞. (3.13)

Furthermore, by the definition of Hn(x), we have

∣
∣F(x, wn + u) – F(x, wn) – F(x, u)

∣
∣ ≤ Cε

(|wn|2 + |wn|p
)

+ Hn(x), ∀n ∈N,

which together with (2.3), (3.1), and (3.13) shows that

∫

RN

∣
∣F(x, wn + u) – F(x, wn) – F(x, u)

∣
∣dx ≤ Cε

(‖wn‖2
2 + ‖wn‖p

p
)

+ ε

≤ Cε
(‖wn‖2

λ + ‖wn‖p
λ

)
+ ε

≤ Cε

for n sufficiently large. Hence, (3.11) holds. This completes the proof. �

Lemma 3.3 Assume that (V 1)–(V 4) and (F1)–(F4) hold. Then any (C)c sequence of Iλ is
bounded in Eλ.

Proof Let {un} ⊂ Eλ be a (C)c sequence of Iλ, that is,

Iλ(un) → c,
∥
∥I ′

λ(un)
∥
∥(

1 + ‖un‖λ

) → 0, as n → ∞. (3.14)

To prove the boundedness of {un} in Eλ, arguing by contradiction, we suppose that
‖un‖λ → ∞ as n → ∞. Hence, for n sufficiently large, there exists a positive constant
C1 such that

C1 + ‖un‖λ ≥ Iλ(un) –
1
τ

〈
I ′
λ(un), un

〉

≥ μ0 – 1
μ0

(
1
2

–
1
τ

)

‖un‖2
λ +

∫

RN
F̃(x, u) dx,

which implies that

C1 ≥ μ0 – 1
μ0

(
1
2

–
1
τ

)

‖un‖2
λ – ‖un‖λ +

∫

RN
F̃(x, u) dx ≥

∫

RN
F̃(x, u) dx (3.15)

for n sufficiently large. Set wn = un
‖un‖λ

. Then ‖wn‖λ = 1. For λ ≥ 1, noting that

∫
RN [|�un|2 + |∇un|2 + Vλ(x)u2

n] dx
‖un‖q

λ

≤
∫
RN [|�un|2 + |∇un|2 + V +(x)u2

n] dx
‖un‖q

λ

≤ 1
‖un‖q–2

λ
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and

〈I ′
λ(un), un〉
‖un‖q

λ

=
∫
RN [|�un|2 + |∇un|2 + Vλ(x)u2

n] dx
‖un‖q

λ

–
∫

RN

f (x, un)un

‖un‖q
λ

dx,

one has

lim
n→+∞

∫

RN

f (x, un)un

‖un‖q
λ

dx = 0.

Note that ‖wn‖λ = 1. Then up to a subsequence, we may assume wn ⇀ w in Eλ and
wn → w a.e. RN . Set

B =
{

x ∈R
N | w(x) �= 0

}
.

Now, we show that meas(B) = 0. Otherwise, |un(x)| → +∞ for a.e. x ∈ B. For any constant
M1 > 0, (F1), (F2), and (F3) imply that

f (x, un)un ≥ M1|un|q – C(M1)|un|2 for all x ∈R
N .

Then

∫

RN

f (x, un)un

‖un‖q
λ

dx ≥ M1‖wn‖q
q – C(M1)

‖wn‖2
2

‖un‖q–2
λ

.

Consequently,

0 = lim
n→+∞

∫

RN

f (x, un)un

‖un‖q
λ

dx ≥ M1‖w‖q
q = M1

∫

B
|w|q dx > 0,

which is absurd. Hence, meas(B) = 0. Therefore, w(x) = 0 for a.e. x ∈ R
N . Then it follows

from (2.2), (2.4), (3.14), and (F4) that

c + o(1)
‖un‖2

λ

=
1

‖un‖2
λ

[

Iλ(un) –
1
τ

〈
I ′
λ(un), un

〉
]

≥ μ0 – 1
μ0

(
1
2

–
1
τ

)

+
∫

RN

F̃(x, un)
‖un‖2

λ

dx

≥ μ0 – 1
μ0

(
1
2

–
1
τ

)

– C2‖wn‖2
2,

which implies 0 ≥ μ0–1
μ0

( 1
2 – 1

τ
) as n → ∞. This is a contradiction with μ–1

μ0
( 1

2 – 1
τ

) > 0.
Therefore, {un} is bounded in Eλ. We complete the proof. �

Lemma 3.4 Assume that (V 1)–(V 4), (F1), (F2), and (F4) are satisfied. Then there exists
a constant � such that any (C)c sequence of Iλ possesses a convergent subsequence in Eλ for
λ > �.
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Proof Let {un} be a (C)c sequence. By the boundedness of {un}, there exist a subsequence
{un} and u0 such that

un ⇀ u0, in Eλ;

un → u0, in Lp
loc

(
R

N)
, for 2 ≤ p < 2∗;

un → u0, a.e. RN .

In what follows, we shall prove that un → u0 in Eλ. Let vn := un – u0. Then vn ⇀ 0 in Eλ.
It deduces from (V 2) that

∫

RN
v2

n dx =
∫

{x∈RN :V (x)+≥b}
v2

n dx +
∫

{x∈RN :V +(x)<b}
v2

n dx

≤ 1
λb

∫

RN
λV +(x)v2

n dx +
∫

{x∈RN :V +<b}
v2

n dx

≤ 1
λb

‖vn‖2
λ + o(1). (3.16)

Set

�0 := max

{
C2

b

[(
1
2

–
1
τ

)
μ0 – 1

μ0

]–1

, 1
}

,

where C2 is defined in (F4). Then, for λ > �0, a direct calculation from (2.2), (3.16), and
the Hölder and Sobolev inequalities gives that

∫

RN
|vn|r dx ≤

(∫

RN
|vn|2 dx

) 2∗–r
2∗–2

(∫

RN
|vn|2∗ dx

) r–2
2∗–2

≤
(

1
λb

‖vn‖2
λ

) 2∗–r
2∗–2

[

S̄–2∗C2
E

(∫

RN

[|�u|2 + |∇u|2 + |vn|2
]

dx
) 2∗

2
] r–2

2∗–2

+ o(1)

≤
(

1
λb

) 2∗–r
2∗–2 (

S̄–2∗C2∗
E

) r–2
2∗–2 ‖vn‖r

λ + o(1). (3.17)

Moreover, for any given c > 0, let M2 := c – Iλ(u0), then there exists C3 > 0 such that C3 >
M2. So, combining (F4), (3.17), and Lemma 3.2 gives that

C3 ≥ c – Iλ(u0) = Iλ(vn) + o(1) = Iλ(vn) –
1
τ

〈
I ′
λ(vn), vn

〉
+ o(1)

≥ μ0 – 1
μ0

(
1
2

–
1
τ

)

‖vn‖2
λ +

∫

RN
F̃(x, vn) dx + o(1)

≥ μ0 – 1
μ0

(
1
2

–
1
τ

)

‖vn‖2
λ – C2

∫

RN
|vn|2 dx + o(1)

≥
[

μ0 – 1
μ0

(
1
2

–
1
τ

)

–
C2

λb

]

‖vn‖2
λ + o(1).
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This means that

‖vn‖2
λ ≤

[
μ0 – 1

μ0

(
1
2

–
1
τ

)

–
C2

λb

]–1

C3 + o(1) for λ > �0,

which together with (2.3) yields that

∫

RN
|vn|r dx ≤

(
1
λb

+
∣
∣
{

V +(x) < b
}∣
∣

2∗–2
2∗ S̄–2C2

E

) 2∗–r
2∗–2 (

S̄–2∗C2∗
E

) r–2
2∗–2 ‖vn‖r

λ

≤
(

1
λb

+
∣
∣{V +(x) < b

}∣∣
2∗–2

2∗ S̄–2C2
E

) 2∗–r
2∗–2 (

S̄–2∗C2∗
E

) r–2
2∗–2

·
[(

μ0 – 1
μ0

(
1
2

–
1
τ

)

–
C2

λb

)–1

C3

] r
2

+ o(1). (3.18)

Therefore, from (2.2), (3.1), (3.17), and (3.18), we have

o(1) =
∫

RN

[|�vn|2 + |∇vn|2 + Vλ(x)v2
n
]

dx –
∫

RN
f (x, vn)vn dx

≥ μ0 – 1
μ0

‖vn‖2
λ – ε

∫

RN
|vn|2 dx – C(ε)

∫

RN
|vn|p dx

≥
(

μ0 – 1
μ0

–
ε

λb

)

‖vn‖2
λ – C(ε)

(∫

RN
|vn|p dx

) p–2
p

(∫

RN
|vn|p dx

) 2
p

≥
(

μ0 – 1
μ0

–
ε

λb

)

‖vn‖2
λ

– C(ε)
[(

1
λb

+
∣
∣
{

V +(x) < b
}∣
∣

2∗–2
2∗ S̄–2C2

E

) 2∗–r
2∗–2 (

S̄–2∗C2∗
E

) r–2
2∗–2

] p–2
p

≥ ‖vn‖2
λ

{(
μ0 – 1

μ0
–

ε

λb

)

– C(ε)
[(

1
λb

+
∣
∣{V +(x) < b

}∣∣
2∗–2

2∗ S̄–2C2
E

) 2∗–r
2∗–2 (

S̄–2∗C2∗
E

) r–2
2∗–2

] p–2
p

·
[(

μ0 – 1
μ0

(
1
2

–
1
τ

)

–
C2

λb

)–1

C3

] p–2
2

[(
1
λb

) 2∗–r
2∗–2 (

S̄–2∗C2∗
E

) p–2
2∗–2

] 2
p
}

+ o(1).

Therefore, there exists � = �(C3) ≥ �0 such that vn → 0 in Eλ for λ > �. This completes
the proof. �

4 Proofs of the main results
In this section, we devote ourselves to giving the proofs of Theorems 1.1–1.3.

Proof of Theorem 1.1 Lemma 3.1 shows that the functional Iλ satisfies the geometric prop-
erty of the mountain pass theorem. Moreover, Lemmas 3.3 and 3.4 imply that Iλ satisfies
the (C)c condition for any c ∈ R. Then Theorem 1.1 follows from Proposition 2.1. This
completes the proof. �



Xiao et al. Advances in Difference Equations        (2018) 2018:384 Page 14 of 18

Proof of Theorem 1.2 Noting that p > 2 for λ > � (where � is defined in Lemma 3.4), ε

and ‖u‖λ sufficiently small, one has

[
μ0 – 1

2μ0
– ε

(
1
λb

+
∣
∣{V +(x) < b

}∣∣
2∗–2

2∗ S̄–2C2
E

)]

‖u‖2
λ

≥ 2C(ε)
(

1
λb

+
∣
∣
{

V +(x) < b
}∣
∣

2∗–2
2∗ S̄–2C2

E

) 2∗–p
2∗–2 (

S̄–2∗C2∗
E

) p–2
2∗–2 ‖u‖p

λ. (4.1)

Set

Bρ :=
{

u ∈ Eλ : ‖u‖λ < ρ
}

.

Then, for any u ∈ Bρ , ε and ρ sufficiently small, it follows from (2.1), (2.3), (2.4), (3.2), and
(4.1) that

Iλ(u) ≥ μ0 – 1
2μ0

‖u‖2
λ –

∫

RN
F(x, u) dx

≥ μ0 – 1
2μ0

‖u‖2
λ –

∫

RN

[
ε|u|2 + C(ε)|u|p]dx

≥
[

μ0 – 1
2μ0

– ε

(
1
λb

+
∣
∣
{

V +(x) < b
}∣
∣

2∗–2
2∗ S̄–2C2

E

)]

‖u‖2
λ

– C(ε)
(

1
λb

+
∣
∣
{

V +(x) < b
}∣
∣

2∗–2
2∗ S̄–2C2

E

) 2∗–p
2∗–2 (

S̄–2∗C2∗
E

) p–2
2∗–2 ‖u‖p

λ

≥ 1
2

[
μ0 – 1

2μ0
– ε

(
1
λb

+
∣
∣{V +(x) < b

}∣∣
2∗–2

2∗ S̄–2C2
E

)]

‖u‖2
λ.

Hence,

Iλ|∂Bρ ≥ 1
2

[
μ0 – 1

2μ0
– ε

(
1
λb

+
∣
∣
{

V +(x) < b
}∣
∣

2∗–2
2∗ S̄–2C2

E

)]

ρ2 := α > 0.

Since Eλ is a separable Hilbert space, Eλ has a countable orthogonal basis {ej}. Let Ek
λ :=

span{e1, . . . , ek} and Zk
λ = (Ek

λ)⊥. Then Eλ = Ek
λ ⊕Zk

λ. Therefore, for ε and ρ sufficiently small,
we obtain

Iλ|∂Bρ∩Zk
λ
≥ α > 0.

Moreover, for any finite dimensional subspace E ⊂ Eλ, there is a positive integral number
m such that E ⊂ Em

λ . Note that all norms are equivalent in a finite dimensional space, then
a direct calculation from (2.4) and (3.6) gives that

Iλ(u) =
1
2
‖u‖2

λ –
1
2

∫

RN
V –(x)u2 dx –

∫

RN
F(x, u) dx

≤ 1
2
‖u‖2

λ –
∫

RN

∣
∣F(x, u)

∣
∣dx

≤ 1
2
‖u‖2

λ – M‖u‖q
λ + M̄‖u‖2

λ.

≤ C4‖u‖2
λ – C5‖u‖q

λ.
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Consequently, there is large γ > 0 such that Iλ(u) ≤ 0 on E \ Bγ . Therefore, there is a point
e ∈ Eλ with ‖e‖λ > ρ such that Iλ(e) < 0.

Obviously, Iλ(0) = 0 and condition (F5) implies that the functional Iλ is even. Therefore,
combining the arguments above with Lemmas 3.3 and 3.4, Proposition 2.2 implies that the
functional Iλ possesses an unbounded sequence of critical values, that is, problem (1.1) has
infinitely many high energy solutions. �

Proof of Theorem 1.3 Following the argument in [1] (or see [31]), for any sequence λn →
∞, we let un := uλn be the critical points of Iλ obtained in Theorem 1.1. By similar argu-
ments of Lemma 3.3, we get that ‖un‖λn is bounded in Eλ, that is,

‖un‖λn ≤ C6, (4.2)

where C6 is independent of λn. Therefore, we may assume that un ⇀ u0 in E and un → u0

in Ls
loc(RN ) for 2 ≤ s < 2∗. Then Fatou’s lemma implies that

∫

RN
V +(x)u2

0 dx ≤ lim inf
n→∞

∫

RN
V +(x)u2

n dx ≤ lim inf
n→∞

‖un‖2
λn

λn
= 0,

which implies that u0 = 0 a.e. in R
N \ V –1(0) and u0 ∈ H2

0 (�) by (V 3). For any ϕ ∈ C∞
0 (�),

it follows from 〈I ′
λ(un),ϕ〉 = 0 that

∫

RN

[�u0�ϕ + ∇u0∇ϕ – V –(x)u0ϕ
]

dx =
∫

RN
f (x, u0)ϕ dx,

which means that u0 is a weak solution of problem (1.2) by the density of C∞
0 (�) in H2

0 (�).
Now, we show that un → u0 in Ls(RN ) for 2 ≤ s < 2∗. If not, by Lions’ vanishing lemma

[12], there exist δ0 > 0, R0 > 0, and xn ∈R
N such that

∫

BR0 (xn)
(un – u0)2 dx ≥ δ0.

Moreover, xn → ∞, hence |BR0 (xn) ∩ {x ∈R
N | V +(x) < b}| → 0. By the Hölder inequality,

we have
∫

BR0 (xn)∩{x∈RN |V +(x)<b}
(un – u0)2 dx → 0.

Consequently,

‖un‖2
λ ≥ λnb

∫

BR0 (xn)∩{x∈RN |V +(x)≥b}
u2

n dx

≥ λnb
∫

BR0 (xn)∩{x∈RN |V +(x)≥b}
(un – u0)2 dx

= λnb
(∫

BR0 (xn)
(un – u0)2 dx –

∫

BR0 (xn)∩{x∈RN |V +(x)<b}
(un – u0)2 dx + o(1)

)

→ ∞,
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which contradicts (4.2). Therefore, un → u0 in Ls(RN ) for 2 ≤ s < 2∗. Furthermore, apply-
ing (F1), (F2) and un → u0 in Ls(RN ) gives that

∫

RN
f (x, un)un dx →

∫

RN
f (x, u0)u0 dx. (4.3)

For ε ∈ (0, μ0–1
μ0

( 1
λb + |{V +(x) < b}| 2∗–2

2∗ S̄–2C2
E)–1), (3.1) implies that

∣
∣
∣
∣

∫

RN
f (x, un)un dx

∣
∣
∣
∣ ≤

∫

RN

[
ε|un|2 + C(ε)|un|p

]
dx, (4.4)

which combining with the facts un �= 0, (2.1), (2.3), and (4.3) yields that

μ0 – 1
μ0

‖un‖2
λn ≤

∫

RN

[|�un|2 + |∇un|2 + Vλn (x)u2
n
]

dx =
∫

RN
f (x, un)un dx

≤
∫

RN

[
ε|un|2 + C(ε)|un|p

]
dx

≤ ε

(
1
λb

+
∣
∣{V +(x) < b

}∣∣
2∗–2

2∗ S̄–2C2
E

)

‖un‖2
λn

+ C(ε)
(

1
λb

+
∣
∣
{

V +(x) < b
}∣
∣

2∗–2
2∗ S̄–2C2

E

) 2∗–p
2∗–2 (

S̄–2∗C2∗
E

) p–2
2∗–2 ‖u‖p

λn ,

which implies that

‖un‖λn ≥
[ μ0–1

μ0
– ε( 1

λb + |{V +(x) < b}| 2∗–2
2∗ S̄–2C2

E)

C(ε)( 1
λb + |{V +(x) < b}| 2∗–2

2∗ S̄–2C2
E)

2∗–p
2∗–2 (S̄–2∗C2∗

E )
p–2

2∗–2

] 1
p–2

> 0. (4.5)

Moreover, it follows from 〈I ′
λn (un), un〉 = 0 that

∫

RN
f (x, un)un dx =

∫

RN

[|�un|2 + |∇un|2 + Vλn (x)u2
n
]

dx ≥ μ0 – 1
μ0

‖un‖2
λn . (4.6)

Then, a direct calculation from (4.4), (4.5), and (4.6) shows that

∫

RN
f (x, u0)u0 dx ≥ μ0 – 1

μ0

[ μ0–1
μ0

– ε( 1
λb + |{V +(x) < b}| 2∗–2

2∗ S̄–2C2
E)

C(ε)( 1
λb + |{V +(x) < b}| 2∗–2

2∗ S̄–2C2
E)

2∗–p
2∗–2 (S̄–2∗C2∗

E )
p–2

2∗–2

] 2
p–2

> 0,

which means that u0 �= 0.
In what follows, we shall show that un → u0 in E. Since 〈I ′

λn (un), un〉 = 〈I ′
λn (un), u0〉 = 0,

we have

‖un‖2
λn –

∫

RN
V –(x)u2

n dx =
∫

RN
f (x, un)un dx (4.7)

and

〈un, u0〉λn –
∫

RN
V –(x)unu0 dx =

∫

RN
f (x, un)u0 dx. (4.8)
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Similar to the proof of (3.10), we have

∫

RN
V –(x)

(
u2

n – unu0
)

dx ≤
∣
∣
∣
∣

∫

RN
V –(x)

(
u2

n – unu0
)

dx
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

supp V –
V –(x)un(un – u0) dx

∣
∣
∣
∣

≤ ∥
∥V –∥

∥∞

(∫

supp V –
|un – u0|2 dx

) 1
2
(∫

RN
|un|2

) 1
2

→ 0, (4.9)

since un → u0 in L2
loc(RN ) and {un} is bounded in L2(RN ). Moreover, combining (4.4) with

(4.7)–(4.9) shows that

lim
n→∞‖un‖2

λn = lim
n→∞〈un, u0〉λn = lim

n→∞〈un, u0〉 = ‖u0‖2.

On the other hand, weak lower semi-continuity of norm implies that

lim
n→∞‖un‖2

λn ≥ lim inf
n→∞ ‖un‖2 ≥ ‖u0‖2.

Thus, un → u0 in E as n → ∞. Therefore, u0 is a nontrivial solution of problem (1.2). We
complete the proof. �

5 Conclusions
A class of biharmonic equations with sign-changing potentials and an indefinite nonlin-
earity is studied in the present paper. Under some suitable conditions, the existence of
nontrivial solutions and the high energy solutions are obtained by using variational meth-
ods. Moreover, the phenomenon of concentration of solutions is explored. The results
extend the main conclusions in recent literature.
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