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Abstract
In this paper, exponential stability of nonlinear systems with impulse time window,
disturbance input and bounded gain error is investigated. By means of the above
result and the construction of a linear stabilizing feedback controller, another criterion
of exponential stability is established. A numerical example is given to demonstrate
the effectiveness of the theoretical results.
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1 Introduction
Customarily, R+ denotes the set of positive real numbers. Rn is an n-dimensional real
Euclidean space with the norm ‖ · ‖. Rm×n refers to the set of all m × n-dimensional
real matrices. λM(A), λm(A), AT , and A–1 are the maximum, the minimum eigenvalue,
the transpose, and the inverse of matrix A, respectively. I represents the identity matrix
with proper dimension. The positive definite matrix A is represented by A > 0. Define
f (x(b–)) = limt→b– f (x(t)).

Over the past two decades, nonlinear systems have been paid considerable attention be-
cause many systems in many practical applications can be modeled by nonlinear systems,
for instance, robotics, information science, artificial intelligence, automatic control sys-
tems, and so forth [8, 14, 15, 17, 24]. Due to impulsive effects, the stability of systems will
become oscillations and instability. Therefore, it is significant to discuss stability of non-
linear systems with impulsive effects [9, 10, 19, 21, 22]. In recent years, many sufficient
criteria on the asymptotic stability for impulsive control of nonlinear systems have been
published under some conditions [1, 16]. We consider not only the asymptotic satiability
of the nonlinear impulsive control systems but other aspects in the design of nonlinear
impulsive control systems. In particular, it is often desirable that nonlinear impulsive con-
trol systems converge fast enough in order to reach fast response. Obviously, exponential
stability is a fast convergence rate to the equilibrium point [7, 11, 13].

Many scholars just assume that impulses occur at fixed-time points [12, 18, 20]. How-
ever, in many practical applications, impulses occur stochastically. Therefore, it is neces-
sary to study a more practical impulsive scheme which concerns the above case. In what
follows, we will discuss the following nonlinear impulsive control systems with impulse
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time window, disturbance input and bounded gain error:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = Ax(t) + Bw(t) + Cu(t) + f (x(t)), kT ≤ t < kT + τk ,

x(t) = x(t–) + Qx(t–) + φ(x(t–)), t = kT + τk ,

ẋ(t) = Ax(t) + Bw(t) + Cu(t) + f (x(t)), kT + τk < t < (k + 1)T ,

(1.1)

where x(t) ∈ Rn is the state variable, w(t) ∈ Rr denotes the disturbance input, u(t) ∈ Rp

is the control input, φ(x(t)) is the gain error, f : Rn → Rn and φ : Rn → Rn are said to be
continuous nonlinear functions satisfying f (0) = 0 and φ(0) = 0, respectively, T > 0 rep-
resents the control period, τk ∈ (kT , (k + 1)T) is unknown. A ∈ Rn×n, B ∈ Rn×r , C ∈ Rn×p,
and Q ∈ Rn×n are constant matrices. In general, let

∥
∥f

(
x(t)

)∥
∥ ≤ l

∥
∥x(t)

∥
∥,

∥
∥w(t)

∥
∥ ≤ l1

∥
∥x(t)

∥
∥,

∥
∥φ

(
x(t)

)∥
∥ ≤ l2

∥
∥x(t)

∥
∥,

where l, l1, and l2 are nonnegative constants. In system (1.1), the impulse is stochastic in
an impulse time window, which is wider than an impulse occurring at fixed-time points.
For more information on an impulse time window, the reader is referred to [3–5, 23].

In order to obtain exponential stability, a linear feedback controller u(t) = Gx(t) is con-
sidered, where G ∈ Rr×n is a constant matrix. We rewrite system (1.1) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = (A + CG)x(t) + Bw(t) + f (x(t)), kT ≤ t < kT + τk ,

x(t) = x(t–) + Qx(t–) + φ(x(t–)), t = kT + τk ,

ẋ(t) = (A + CG)x(t) + Bw(t) + f (x(t)), kT + τk < t < (k + 1)T .

(1.2)

The main purpose of this paper is to investigate the exponential stability of system (1.1).
By employing the obtained result, system (1.2) is exponentially stable via constructing a
linear feedback gain matrix G. A numerical example is given to demonstrate the effective-
ness of the theoretical results.

2 Main results
We need the following definitions and lemmas which play a major role in the proof of the
theorems.

Definition 2.1 ([11]) The function V : [t0 – α,∞) × Rn → R+ belongs to class v0 if
(1) V is continuous on each of the sets [τk–1, τk) × Rn and lim(t,y)→(τ–

k ,x) V (t, y) = V (τ–
k , x)

exists;
(2) V (t, x) is locally Lipschitzian in x ∈ Rn and V (t, 0) ≡ 0.

Definition 2.2 ([11]) For V ∈ v0, the right and upper Dini’s derivative of V is defined as

D+V
(
t, x(t)

)
= lim

h→0+
sup

1
h
[
V

(
t + h, x(t) + hf

(
t, x(t)

))
– V

(
t, x(t)

)]
.
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Lemma 2.1 ([6]) Let x, y ∈ Rn and η > 0, then

2xT y ≤ ηxT x + η–1yT y.

Lemma 2.2 ([2]) The following linear matrix inequality (LMI)

[
Q S
ST G

]

< 0,

where QT = Q, GT = G, is equivalent to

G < 0, Q – SG–1ST < 0.

Lemma 2.3 ([6]) Let x ∈ Rn and A ∈ Rn×n be a symmetric matrix, then

λm(A)xT x ≤ xT Ax ≤ λM(A)xT x.

Theorem 2.1 Let the assumptions about w(t), f (x(t)), φ(x(t)) be satisfied and u(t) = 0. If
there exist positive numbers ε,η and 0 < P ∈ Rn×n satisfying conditions as follows:

(1)

[
AT P + PA + (l2 + ηl2

1)I P
P (–I – η–1BBT )–1

]

< 0,

(2) lnγ + T(h + ε) ≤ 0,

where β = λM(P–1(I + Q)T P(I + Q)), β1 = λM(P), β2 = λm(P), h = λM(P–1(PA + AT P +
η–1PBBT P + P2 + (l2 + ηl2

1)I)), γ = (
√

β +
√

β2
β3

l2)2. Then system (1.1) is exponentially stable
at origin.

Proof Define

V
(
x(t)

)
= xT (t)Px(t).

Let t ∈ [kT , kT + τk), we have

D+(
V

(
x(t)

))
= 2xT (t)P

(
Ax(t) + Bw(t) + f

(
x(t)

))

= xT (t)
(
PA + AT P

)
x(t) + 2xT (t)P

(
Bw(t) + f

(
x(t)

))
. (2.1)

By Lemma 2.1, it is clear that

2xT (t)PBw(t) ≤ η–1xT (t)PBBT Px(t) + ηwT (t)w(t) (2.2)

and

2xT (t)Pf
(
x(t)

) ≤ xT (t)P2x(t) + f T(
x(t)

)
f
(
x(t)

)
. (2.3)
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From the assumptions about f (x(t)), w(t), substituting (2.2) and (2.3) into (2.1) yields

D+(
V

(
x(t)

)) ≤ xT (t)
(
PA + AT P

)
x(t) + η–1xT (t)PBBT Px(t)

+ ηwT (t)w(t) + xT (t)P2x(t) + f T(
x(t)

)
f
(
x(t)

)

≤ xT (t)
(
PA + AT P + η–1PBBT P + P2 +

(
l2 + ηl2

1
)
I
)
x(t). (2.4)

By Lemma 2.2, condition (1) and inequality (2.4), we have

D+(
V

(
x(t)

)) ≤ hV
(
x(t)

)
,

which yields that

V
(
x(t)

) ≤ V
(
x(kT)

)
eh(t–kT). (2.5)

In the same way, let t ∈ (kT + τk , (k + 1)T), we also have

D+(
V

(
x(t)

)) ≤ hV
(
x(t)

)
,

which leads to

V
(
x(t)

) ≤ V
(
x(kT + τk)

)
eh(t–kT–τk ). (2.6)

Let t = kT + τk , we obtain

V
(
x(t)

)
=

(
(I + Q)x

(
t–)

+ φ
(
x
(
t–)))T P

(
(I + Q)x

(
t–)

+ φ
(
x
(
t–)))

= xT(
t–)

(I + Q)T P(I + Q)x
(
t–)

+ φT(
x
(
t–))

Pφ
(
x
(
t–))

+ 2xT(
t–)

(I + Q)T Pφ
(
x
(
t–))

≤ xT(
t–)

(I + Q)T P(I + Q)x
(
t–)

+ φT(
x
(
t–))

Pφ
(
x
(
t–))

+ 2
√

xT
(
t–

)
(I + Q)T P(I + Q)x

(
t–

)
φT

(
x
(
t–

))
Pφ

(
x
(
t–

))

=
(√

xT
(
t–

)
(I + Q)T P(I + Q)x

(
t–

)
+

√

φT
(
x
(
t–

))
Pφ

(
x
(
t–

)))2

≤
(

√
β +

√
β2

β3
l2

)2

V
(
x
(
t–))

= γ V
(
x
(
t–))

. (2.7)

(2.6) and (2.7) can lead to

V
(
x(t)

) ≤ γ V
(
x
(
(kT + τk)–))

eh(t–kT–τk ), (2.8)

where t ∈ [kT + τk , (k + 1)T).
When k = 0, let t ∈ [0, τ0), from (2.5), we obtain

V
(
x(t)

) ≤ V
(
x(0)

)
eht .
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Thus

V
(
x
(
τ–

0
)) ≤ V

(
x(0)

)
ehτ0 . (2.9)

Let t ∈ [τ0, T), from (2.8) and (2.9), we have

V
(
x(t)

) ≤ γ V
(
x
(
τ–

0
))

eh(t–τ0) ≤ γ V
(
x(0)

)
eht . (2.10)

When k = 1, let t ∈ [T , T + τ1), from (2.5) and (2.10), we have

V
(
x(t)

) ≤ V
(
x(T)

)
eh(t–T)

≤ γ V
(
x
(
τ–

0
))

eh(T–τ0)eh(t–T)

= γ V
(
x
(
τ–

0
))

eh(t–τ0)

≤ γ V
(
x(0)

)
eht . (2.11)

Let t ∈ [T + τ1, 2T), from (2.8) and (2.11), we get

V
(
x(t)

) ≤ γ V
(
x
(
(T + τ1)–))

eh(t–T–τ1)

≤ γ 2V
(
x
(
τ–

0
))

eh(T+τ1–τ0)eh(t–T–τ1)

≤ γ 2V
(
x(0)

)
eht . (2.12)

When k = 2, let t ∈ [2T , 2T + τ2), from (2.5) and (2.12), we get

V
(
x(t)

) ≤ V
(
x(2T)

)
eh(t–2T)

≤ γ 2V
(
x
(
τ–

0
))

eh(2T–τ0)eh(t–2T)

≤ γ 2V
(
x(0)

)
eht . (2.13)

Let t ∈ [τ0, T + τ1), from (2.10) and (2.11), we get

V
(
x(t)

) ≤ γ V
(
x(0)

)
eht .

Let t ∈ [T + τ1, 2T + τ2), from (2.12) and (2.13), we get

V
(
x(t)

) ≤ γ 2V
(
x(0)

)
eht .

By induction, for t ∈ [kT + τk , (k + 1)T + τk+1), we get

V
(
x(t)

) ≤ γ k+1V
(
x(0)

)
eht .

Let kT + τk = τ ′
k . Since lnγ + T(h + ε) ≤ 0, we get

V
(
x(t)

) ≤ γ k+1V
(
x(0)

)
eht

= γ k+1V
(
x(0)

)
e(h+ε)te–εt
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≤ γ k+1V
(
x(0)

)
e(h+ε)τ ′

k e–εt

≤ γ k+1V
(
x(0)

)
e(h+ε)kT e–εt

= γ V
(
x(0)

)
ek(lnγ +(h+ε)T)e–εt

≤ γ V
(
x(0)

)
e–εt . (2.14)

By Lemma 2.3 and (2.14), we obtain

λm(P)
∥
∥x

(
t, τ0, x(0)

)∥
∥2 ≤ V

(
x(t)

) ≤ γ V
(
x(0)

)
e–εt ≤ ∥

∥x(0)
∥
∥2

λM(P)e–εt .

That is,

∥
∥x

(
t, τ0, x(0)

)∥
∥ ≤

√
λM(P)
λm(P)

∥
∥x(0)

∥
∥e

–εt
2 .

This completes the proof. �

Theorem 2.2 Let the assumptions about w(t), f (x(t)), φ(x(t)) be satisfied. If there exist
positive numbers ε,η, matrices H , W with 0 < H ∈ Rn×n satisfying conditions as follows:

(1)

[
I + (AH + CW )T + (AH + CW ) + η–1BBT

√
l2 + ηl2

1H
√

l2 + ηl2
1H –I

]

< 0,

(2)
√

β +

√
β2

β3
l2 < 1,

where β = λM(H(I + Q)T H–1(I + Q)), β1 = λM(H–1), β2 = λm(H–1), h = λM(H(H–1(A +
CG) + (A + CG)T H–1 + η–1H–1BBT H–1 + (H–1)2 + (l2 + ηl2

1)I)), γ = (
√

β +
√

β2
β3

l2)2. Then
system (1.2) is exponentially stable at origin and we have the following linear feedback con-
troller:

u(t) = Gx(t), G = WH–1.

Proof By Lemma 2.2, condition (1) of Theorem 2.2 is equivalent to

I + (AH + CW )T + (AH + CW ) + η–1BBT +
(
l2 + ηl2

1
)
H2 < 0. (2.15)

Let

P = H–1, G = WH–1.

Multiplying both sides of (2.15) by P, we have

P2 + P(AH + CW )T P + P(AH + CW )P + η–1PBBT P +
(
l2 + ηl2

1
)
I < 0.

That is,

P2 + (A + CG)T P + P(A + CG) + η–1PBBT P +
(
l2 + ηl2

1
)
I < 0. (2.16)
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By Lemma 2.2 and (2.16), we have

[
(A + CG)T P + P(A + CG) + (l2 + ηl2

1)I P
P (–I – η–1BBT )–1

]

< 0.

Thus, condition (1) of Theorem 2.1 holds. Since

√
β +

√
β2

β3
l2 < 1,

which implies

lnγ + T(h + ε) ≤ 0,

namely, condition (2) of Theorem 2.1 is satisfied, too. Then system (2.2) is exponentially
stable at origin.

This completes the proof. �

3 A numerical example
In this section, we demonstrate and verify the effectiveness of our theoretical results em-
ploying a nonlinear impulsive system as follows:

A =

[
2 1
2 3

]

, B =

[
1.5 1.3
1.2 0

]

, C =

[
1.8 0.8
1 1.7

]

, f
(
x(t)

)
=

[
sin x1

sin x2

]

and

Q = –

[
0.58 0

0 0.58

]

, φ
(
x(t)

)
= 0.3

[
sin x1

sin x2

]

, ω(t) =

[
x1 sin 20π t
x2 sin 20π t

]

.

Then we can choose

η = l = l1 = 1, l2 = 0.3.

By condition (1) of Theorem 2.2, we obtain

H =

[
0.2565 0

0 0.2565

]

, W =

[
–25.7414 –49.9086
53.3876 27.8104

]

.

Simple calculations show that γ = 0.72 < 1. Thus, the nonlinear impulsive system is expo-
nentially stable because the conditions of Theorem 2.2 are satisfied.

4 Conclusions
In this paper, we discuss exponential stability of nonlinear systems with impulse time win-
dow, disturbance input, and bounded gain error. In [3], the authors did not consider the
disturbance input and bounded gain error of nonlinear impulsive control systems. In [25],
the authors did not consider the disturbance input of nonlinear impulsive control systems.
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Obviously, system (1.1) is more general and more applicable than [3, 25]. Using Theo-
rem 2.1 and the construction of a linear stabilizing feedback controller, a new criterion of
exponential stability is obtained. Finally, a numerical example demonstrates the effective-
ness of the theoretical results.
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