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Abstract
The paper is devoted to an investigation of the existence of a positive periodic
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1 Introduction
In this paper, we consider the following fourth-order p-Laplacian singular Rayleigh equa-
tion with time-dependent deviating argument:

(
φp

(
x′′(t)

))′′ + f
(
t, x′(t)

)
+ g

(
t, x

(
t – δ(t)

))
= e(t), (1.1)

where φp : R → R is given by φp(s) = |s|p–2s, and p > 1 is a constant; f : R × R → R is a
continuous T-periodic function about t and f (t, 0) = 0; e : R →R is a continuous periodic
functions with e(t + T) ≡ e(t); δ ∈ C1(R,R) is a T-periodic function; g : R× (0, +∞) → R

is a L2-Carathéodory function defined on R
2, and g(t, ·) = g(t + T , ·); it is said that Eq. (1.1)

is singularity of attractive type (resp. repulsive type) if g(t, x) → +∞ (resp. g(t, x) → –∞)
as x → 0+ for t ∈R.

As is well known, the Rayleigh equation can be derived from many fields, such as en-
gineering technique, physics and mechanics fields, and an important question is whether
we have periodic solutions to the Rayleigh equation. Gaines and Mawhin [1] in 1977 intro-
duced continuation theorems and applied this theorem to prove the existence of a periodic
solutions for the Rayleigh equation ([1], p. 99)

x′′(t) + f
(
x′(t)

)
+ g

(
t, x(t)

)
= 0. (1.2)
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Gaines and Mawhin’s work has attracted the attention of many scholars to the Rayleigh
equation. More recently, the method of lower and upper solutions [2], Mawhin’s continu-
ous theorem [3–5], topological degree and time maps [6, 7], and the Manásevich–Mawhin
continuation theorem [8–10] have been employed to investigate the existence of a periodic
solution of Rayleigh equations.

On the other hand, the existence of a periodic solutions for a singular differential equa-
tion was extensively studied (see [11–20]). Among these, there are some results on the
Liénard equation with a singularity of repulsive type [14, 15, 19, 20]. Zhang [19] in 1996
introduced the problem of periodic solutions of the following Liénard equation with a
repulsive singularity:

x′′(t) + f
(
x(t)

)
x′(t) + g

(
t, x(t)

)
= 0, (1.3)

where the nonlinear term g has a singularity of repulsive type at the origin and satisfies
semilinear condition at x = ∞, the author proved that Eq. (1.3) has at least one positive
T-periodic solution by using Mawhin’s continuous theorem. Wang [20] in 2014 improved
Eq. (1.3) and proved the existence of a positive periodic solution of the following Liénard
equation with a singularity of repulsive type and a deviating argument:

x′′(t) + f
(
x(t)

)
x′(t) + g

(
t, x(t – δ)

)
= 0, (1.4)

where δ is a constant and δ ∈ [0, T].
Nowadays, a good deal of work has been performed on the existence of a positive pe-

riodic solution of the Rayleigh equation with a singularity [21–24]. Wang and Ma [24] in
2015 discussed a kind of singular Rayleigh equation as follows:

x′′(t) + f
(
t, x′(t)

)
+ g

(
x(t)

)
= p(t), (1.5)

where the nonlinear term g has a singularity of repulsive type at the origin and satisfies
semilinear condition. The authors obtained the existence of a positive periodic solution
for Eq. (1.5) by applications of the limit properties of time map. Lu and Chen [21] in 2017
studied the following Rayleigh equation with singularity of repulsive type:

x′′ + f
(
t, x′(t)

)
+ ϕ(t)x(t) –

1
xγ (t)

= p(t), (1.6)

where γ ≥ 1. By using topological degree theory, the authors proved Eq. (1.6) has at least
one positive T-periodic solution.

Inspired by the above paper [1, 19–21, 24], in this paper, we further consider the ex-
istence of a positive T-periodic solution for Eq. (1.1) with singularities of attractive and
repulsive type. By applications of coincidence degree theory, we obtain the following con-
clusions.

Theorem 1.1 Assume that the following conditions hold:
(H1) There exists a positive constant N such that

∣
∣f (t, u)

∣
∣ ≤ N , for (t, u) ∈ [0, T] ×R.
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(H2) There exist two positive constants D1, D2 with D1 < D2 such that g(t, x) – e(t) < –N
for all (t, x) ∈ [0, T] × (0, D1), and g(t, x) – e(t) > N for all (t, x) ∈ [0, T] × (D2, +∞).

(H3) There exist positive constants a, b such that

g(t, x) ≤ axp–1 + b, for all (t, x) ∈ [0, T] × (0, +∞).

(H4) g(t, x) = g0(x) + g1(t, x), where g0 ∈ C((0,∞);R) and g1 : [0, T] × [0,∞) → R is an
L2-Carathéodory function.

(H5) (Singularity of repulsive type)

∫ 1

0
g0(x) dx = –∞.

Then Eq. (1.1) has at least one positive T-periodic solution if

0 <
aT

1 – δ′

(
T
πp

)2p–1

< 1,

where δ′ =: maxt∈[0,T] |δ(t)|, and 1 ≤ p < ∞, πp = 2
∫ (p–1)/p

0
ds

(1– sp
p–1 )1/p = 2π (p–1)1/p

p sin(π/p) .

Remark 1.2 The friction term f (x(t))x′(t) in Eqs. (1.3) and (1.4) satisfy
∫ T

0 f (x(t))x′(t) dt = 0,
which is crucial to estimate a priori bounds of a positive T-periodic solution for these
equations. However, in this paper, the friction term f (t, x′) may not satisfy

∫ T
0 f (t, x′(t)) dt =

0. For example, let

f
(
t, x′) =

(
cos2(2t) + 100

)
sin x′(t).

Obviously,
∫ T

0 (cos2(2t) + 100) sin x′(t) 	= 0. This implies that our methods to estimate a
priori bounds of a positive T-periodic solution for Eq. (1.1) is more complex than Eqs. (1.3)
and (1.4).

Remark 1.3 From Eqs. (1.3), (1.4), (1.5), (1.6) in [19–21, 24], the nonlinear term g has
a deviating argument (i.e., δ is a positive constant and 0 ≤ δ < T ). But, in this paper, the
nonlinear term g satisfies a time-dependent deviating argument. For example, let

δ(t) =
1
4

sin 2t.

Obviously, the work on estimating a lower bounds of a positive T-periodic solution for
Eq. (1.1) is more difficult than the corresponding work on Eqs. (1.3), (1.4), (1.5), (1.6).
Therefore, we have to find another way to get over the difficulty.

Remark 1.4 If Eq. (1.1) satisfies singularity of attractive type, i.e.,
∫ 1

0 g0(x) dx = +∞. Ob-
viously, attractive condition and (H2), (H3), (H5) are contradiction. Therefore, the above
method and conditions are no long applicable to the proof of existence of a positive peri-
odic solution for Eq. (1.1) with singularity of attractive type. Next, we give other conditions
to prove the existence of a positive T-periodic solution for Eq. (1.1) with singularity of at-
tractive type.
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Theorem 1.5 Assume that conditions (H1) and (H4) hold. Suppose the following condi-
tions are satisfied:

(H6) There exist two positive constants D3, D4 with D3 < D4 such that g(t, x) – e(t) > N for
all (t, x) ∈ [0, T] × (0, D3), and g(t, x) – e(t) < –N for all (t, x) ∈ [0, T] × (D4, +∞).

(H7) There exist positive constants a′, b′ such that

–g(t, x) ≤ a′xp–1 + b′, for all (t, x) ∈ [0, T] × (0, +∞).

(H8) (Singularity of attractive type)

∫ 1

0
g0(x) dx = +∞.

Then Eq. (1.1) has at least one positive T-periodic solution if

0 <
a′T

1 – δ′

(
T
πp

)2p–1

< 1.

2 Preparation
Lemma 2.1 (Gaines and Mawhin [1]) Suppose that X and Y are two Banach spaces, and
L : D(L) ⊂ X → Y is a Fredholm operator with index zero. Let � ⊂ X be an open bounded
set and N : � → Y be L-compact on �. Assume that the following conditions hold:

(1) Lx 	= λNx, ∀x ∈ ∂� ∩ D(L), λ ∈ (0, 1);
(2) Nx /∈ Im L, ∀x ∈ ∂� ∩ Ker L;
(3) deg{JQN ,� ∩ Ker L, 0} 	= 0, where J : Im Q → Ker L is an isomorphism.

Then the equation Lx = Nx has a solution in � ∩ D(L).

Lemma 2.2 ([25]) If ω ∈ C1(R,R) and ω(0) = ω(T) = 0, then

(∫ T

0

∣
∣ω(t)

∣
∣p dt

) 1
p

≤
(

T
πp

)(∫ T

0

∣
∣ω′(t)

∣
∣p dt

) 1
p

.

In order to apply topological degree theorem to study the existence of a positive periodic
solution for Eq. (1.1), we rewrite Eq. (1.1) in the form:

⎧
⎨

⎩
x′′

1(t) = (φq(x2(t)),

x′′
2(t) = –f (t, x′

1(t)) – g(t, x1(t – δ(t))) + e(t),
(2.1)

where 1
p + 1

q = 1. Clearly, if x(t) = (x1(t), x2(t)) is a T-periodic solution to Eq. (2.1), then
x1(t) must be a T-periodic solution to Eq. (1.1). Thus, the problem of finding a T-periodic
solution for Eq. (1.1) reduces to finding one for Eq. (2.1).

Let

X :=
{

x =
(
x1(t), x2(t)

) ∈ C2(
R,R2) : x(t + T) – x(t) ≡ 0

}

with the norm ‖x‖ := max{‖x1‖,‖x2‖};

Y :=
{

x =
(
x1(t), x2(t)

) ∈ C1(
R,R2) : x(t + T) – x(t) ≡ 0

}
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with the norm ‖x‖∞ := max{‖x‖,‖x′‖}. Clearly, X and Y are both Banach spaces. Mean-
while, define

L : D(L) ⊂ X → Y , by (Lx)(t) =

(
x′′

1(t)
x′′

2(t)

)

, (2.2)

where D(L) = {x = (x1, x2) ∈ C2(R,R2) : x(t + T) – x(t) ≡ 0, t ∈ R}. Define a nonlinear
operator N : X → Y as follows:

(Nx)(t) =

(
φq(x2(t))

–f (t, x′
1(t)) – g(t, x1(t – δ(t))) + e(t)

)

. (2.3)

Then Eq. (2.1) can be converted to the abstract equation Lx = Nx.
From the definition of L, one can easily see that

Ker L ∼= R
2, Im L =

{

y ∈ Y :
∫ T

0

(
y1(s)
y2(s)

)

ds =

(
0
0

)}

.

So L is a Fredholm operator with index zero. Let P : X → Ker L and Q : Y → Im Q ⊂R
2 be

defined by

Px :=

(
(x1)(0)
x2(0)

)

; Qy :=
1
T

∫ T

0

(
y1(s)
y2(s)

)

ds,

then Im P = Ker L, Ker Q = Im L. let K denote the inverse of L|Ker p∩D(L). It is easy to see that
Ker L = Im Q = R

2 and

[Ky](t) = col

(∫ T

0
G1(t, s)y1(s) ds,

∫ T

0
G2(t, s)y2(s) ds

)
,

where

Gi(t, s) =

⎧
⎨

⎩

–s(T–t)
T , 0 ≤ s ≤ t ≤ T ,

–t(T–s)
T , 0 ≤ t < s ≤ T ,

i = 1, 2. (2.4)

3 Main results
In the section, we first consider the existence of a positive T-periodic solution for Eq. (1.1)
with singularity of repulsive type.

Proof of Theorem 1.1 Consider the operator equation

Lx = λNx, λ ∈ (0, 1),

where L and N are defined by Eqs. (2.2) and (2.4). Set

�1 =
{

x : Lx = λNx,λ ∈ (0, 1)
}

.
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If x(t) = (x1(t), x2(t)) ∈ �1, then
⎧
⎨

⎩
x′′

1(t) = λφq(x2(t)),

x′′
2(t) = –λf (t, x′

1(t)) – λg(t, x1(t – δ(t))) + λe(t).
(3.1)

Substituting x2(t) = 1
λp–1 (φp(x1)′′(t)) into the second equation of (3.1)

φp
(
x′′

1(t)
)′′(t) + λpf

(
t, x′

1(t)
)

+ λpg
(
t, x1

(
t – δ(t)

))
= λpe(t). (3.2)

Integrating both side of Eq. (3.2) over [0, T], we have

∫ T

0

(
f
(
t, x′

1(t)
)

+ g
(
t, x1

(
t – δ(t)

))
– e(t)

)
dt = 0, (3.3)

since
∫ T

0 (φp(Ax1)′′(t))′′ = 0. From Eq. (3.3) and condition (H1), we deduce

–NT ≤
∫ T

0

(
g
(
t, x1

(
t – δ(t)

))
– e(t)

)
dt ≤ NT .

Then, by condition (H2), we know that there are two points ξ ,η ∈ (0, T) such that

x1
(
ξ – δ(ξ )

) ≥ D1, x1(η) ≤ D2. (3.4)

Then, from Eq. (3.4), we have

x(t) =
1
2
(
x(t) + x(t – T)

)

=
1
2

(
x(η) +

∫ t

η

x′(s) ds + x(η) –
∫ η

t–T
x′(s) ds

)

= x(η) +
1
2

∫ t

t–T
x′(s) ds

≤ D2 +
1
2

∫ T

0

∣∣x′(t)
∣∣dt. (3.5)

Multiplying both sides of Eq. (3.2) by x1(t) and integrating over the interval [0, T], we
get

∫ T

0
φp

(
x′′

1(t)
)′′x1(t) dt + λp

∫ T

0
f
(
t, x′

1(t)
)
x1(t) dt + λp

∫ T

0
g
(
t, x1

(
t – δ(t)

))
x1(t) dt

= λp
∫ T

0
e(t)x1(t) dt. (3.6)

Substituting
∫ T

0 φp(x′′
1(t))′′x1(t) dt =

∫ T
0 |x′′

1(t)|p dt into Eq. (3.6), we arrive at

∫ T

0

∣∣x′′
1(t)

∣∣p dt = –λp
∫ T

0
f
(
t, x′

1(t)
)
x1(t) dt – λp

∫ T

0
g
(
t, x1

(
t – δ(t)

))
x1(t) dt

+ λp
∫ T

0
e(t)x1(t) dt.
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Therefore, from condition (H1), we deduce

∫ T

0

∣
∣x′′

1(t)
∣
∣p dt ≤

∫ T

0

∣
∣f

(
t, x′

1(t)
)∣∣

∣
∣x1(t)

∣
∣dt +

∫ T

0

∣
∣g

(
t, x1

(
t – δ(t)

))∣∣
∣
∣x1(t)

∣
∣dt

+
∫ T

0

∣∣e(t)
∣∣∣∣x1(t)

∣∣dt

≤ ‖x1‖NT + ‖x1‖
∫ T

0

∣
∣g

(
t, x1

(
t – δ(t)

))∣∣dt + ‖e‖T‖x1‖, (3.7)

where ‖e‖ := maxt∈[0,T] |e(t)|. From conditions (H1), (H2) and Eq. (3.3), we obtain

∫ T

0

∣∣g
(
t, x1

(
t – δ(t)

))∣∣dt

=
∫

g(t,x1)≥0
g
(
t, x1

(
t – δ(t)

))
dt –

∫

g(t,x1)≤0
g
(
t, x1

(
t – δ(t)

))
dt

= 2
∫

g(t,x1)≥0
g
(
t, x1

(
t – δ(t)

))
dt +

∫ T

0
f
(
t, x′

1(t)
)

dt –
∫ T

0
e(t) dt

≤ 2a
∫ T

0
xp–1

1
(
t – δ(t)

)
dt + 2bT +

∫ T

0

∣∣f
(
t, x′

1(t)
)∣∣dt +

∫ T

0

∣∣e(t)
∣∣dt

= 2a
∫ T

0

∣∣x1
(
t – δ(t)

)∣∣p–1 dt + 2bT + NT + ‖e‖T

≤ 2a
1 – δ′

∫ T

0

∣
∣x1(t)

∣
∣p–1 dt + 2bT + NT + ‖e‖T , (3.8)

from aT
1–δ′ ( T

πp
)2p–1 > 0, we know that δ′ < 1. Substituting Eqs. (3.5) and (3.8) into (3.7), and

by using the Hölder inequality, we see that

∫ T

0

∣∣x′′
1(t)

∣∣p dt ≤ 2a
1 – δ′ ‖x1‖

∫ T

0

∣∣x1(t)
∣∣p dt + 2T

(
N + b + ‖e‖)‖x1‖

≤ 2a
1 – δ′

(
D2 +

1
2

∫ T

0

∣
∣x′

1(t)
∣
∣dt

)∫ T

0

∣
∣x1(t)

∣
∣p–1 dt

+ F1

(
D2 +

1
2

∫ T

0

∣∣x′
1(t)

∣∣dt
)

≤ aT
1 – δ′

(∫ T

0

∣
∣x′

1(t)
∣
∣p dt

) 1
p
(∫ T

0

∣
∣x1(t)

∣
∣p dt

) p–1
p

+
2aD2T

1
p

1 – δ′

(∫ T

0

∣∣x1(t)
∣∣p dt

) p–1
p

+
F1T

1
q

2

(∫ T

0

∣∣x′
1(t)

∣∣p dt
) 1

p
+ F1D2, (3.9)

where F1 := 2(N + b + ‖e‖)T .
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Let ω(t) = x1(t + η) – x1(η), here x1(η) ≤ D2, and then ω(0) = ω(T) = 0. By Lemma 2.2
and the Minkowski inequality [26], it is clear that

(∫ T

0

∣∣x1(t)
∣∣p dt

) 1
p

=
(∫ T

0

∣∣ω(t) + x1(ξ )
∣∣p dt

) 1
p

≤
(∫ T

0

∣
∣ω(t)

∣
∣p dt

) 1
p

+
(∫ T

0

∣
∣x1(η)

∣
∣p dt

) 1
p

≤
(

T
πp

)(∫ T

0

∣∣ω′(t)
∣∣p dt

) 1
p

+ D2T
1
p

=
(

T
πp

)(∫ T

0

∣∣x′
1(t)

∣∣p dt
) 1

p
+ D2T

1
p . (3.10)

On the other hand, in view of x1(0) = x1(T), there exists a point t1 ∈ (0, T) such that
x′

1(t1) = 0. Let ω∗(t) = x′
1(t + t1), it is easy to see that ω∗(0) = ω∗(T) = 0 for ω∗ ∈ C1(R,R).

By Lemma 2.2,

(∫ T

0

∣∣x′
1(t)

∣∣p dt
) 1

p
=

(∫ T

0

∣∣ω∗(t)
∣∣p dt

) 1
p

≤
(

T
πp

)(∫ T

0

∣∣ω′
∗(t)

∣∣p dt
) 1

p

=
(

T
πp

)(∫ T

0

∣∣x′′
1(t)

∣∣p dt
) 1

p
. (3.11)

Substituting Eqs. (3.11) into (3.10), we obtain

(∫ T

0

∣
∣x1(t)

∣
∣p dt

) 1
p

≤
(

T
πp

)2(∫ T

0

∣
∣x′′

1(t)
∣
∣p dt

) 1
p

+ D2T
1
p . (3.12)

Furthermore, substituting Eqs. (3.11) and (3.12) into (3.9), we see that

∫ T

0

∣∣(x1)′′(t)
∣∣p dt

≤ aT
1 – δ′

(
T
πp

)(∫ T

0

∣
∣x′′

1(t)
∣
∣p dt

) 1
p
((

T
πp

)2(∫ T

0

∣
∣x′′

1(t)
∣
∣p dt

) 1
p

+ D2T
1
p

)p–1

+
2aD2T

1
p

1 – δ′

((
T
πp

)2(∫ T

0

∣∣x′′
1(t)

∣∣p dt
) 1

p
+ D2T

1
p

)p–1

+
F1T

1
q

2

(
T
πp

)(∫ T

0

∣∣x′′
1(t)

∣∣p dt
) 1

p
+ F1D2

=
aT

1 – δ′

(
T
πp

)2p–1(
1 +

D2T
1
p

( T
πp

)2(
∫ T

0 |x′′
1(t)|p dt)

1
p

)p–1 ∫ T

0

∣
∣x′′

1(t)
∣
∣p dt

+
2aD2T

1
p

1 – δ′

(
T
πp

)2p–2(
1 +

D2T
1
p

( T
πp

)2(
∫ T

0 |x′′
1(t)|p dt)

1
p

)p–1(∫ T

0

∣∣x′′
1(t)

∣∣p dt
) p–1

p

+
F1T

1
q

2

(
T
πp

)(∫ T

0

∣∣x′′
1(t)

∣∣p dt
) 1

p
+ F1D2. (3.13)
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Next, we introduce a classical inequality, there exists a k(p) > 0 which is dependent on p
only,

(1 + x)p ≤ 1 + (1 + p)x, for x ∈ [
0, k(p)

]
. (3.14)

Then, we consider the following two cases:

Case 1. If D2T
1
p

( T
πp )2(

∫ T
0 |x′′

1(t)|p dt)
1
p

> k(p), then it is obvious that

(∫ T

0

∣∣x′′
1(t)

∣∣p dt
) 1

p
<

D2T
1
p

k(p)

(
T
πp

)–2

.

From Eqs. (3.5) and (3.11), by using the Hölder inequality, we deduce

x(t) ≤ D2 +
1
2

T
1
q

(∫ T

0

∣
∣x′(t)

∣
∣p dt

) 1
p

≤ D2 +
1
2

T
1
q

(
T
πp

)(∫ T

0

∣∣x′′(t)
∣∣p dt

) 1
p

≤ D2 +
TD2

2k(p)

(
T
πp

)–1

:= M1. (3.15)

Case 2. If D2T
1
p

( T
πp )2(

∫ T
0 |x′′

1(t)|p dt)
1
p

< k(p), from Eqs. (3.13) and (3.14), we obtain

∫ T

0

∣
∣(x1)′′(t)

∣
∣p dt

≤ aT
1 – δ′

(
T
πp

)2p–1(
1 +

D2T
1
p p

( T
πp

)2(
∫ T

0 |x′′
1(t)|p dt)

1
p

)∫ T

0

∣∣x′′
1(t)

∣∣p dt

+
2aD2T

1
p

1 – δ′

(
T
πp

)2p–2(
1 +

D2T
1
p p

( T
πp

)2(
∫ T

0 |x′′
1(t)|p dt)

1
p

)(∫ T

0

∣
∣x′′

1(t)
∣
∣p dt

) p–1
p

+
F1T

1
q

2

(
T
πp

)(∫ T

0

∣∣x′′
1(t)

∣∣p dt
) 1

p
+ F1D2

=
aT

1 – δ′

(
T
πp

)2p–1 ∫ T

0

∣∣x′′
1(t)

∣∣p dt +
aD2T1+ 1

p

1 – δ′

(
Tp + 2

(
T
π

))(
T
πp

)2p–2

·
(∫ T

0

∣∣x′′
1(t)

∣∣p dt
) p–1

p
+

2aD2
2T

2
p p

1 – δ′

(
T
πp

)2p–4(∫ T

0

∣∣x′′
1(t)

∣∣p dt
) p–2

p

+
F1T

1
q

2

(
T
πp

)(∫ T

0

∣∣x′′
1(t)

∣∣p dt
) 1

p
+ F1D2. (3.16)

Since

aT
1 – δ′

(
T
πp

)2p–1

< 1,
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it is easy to see that there exists a positive constant M′
1 such that

∫ T

0

∣∣x′′
1(t)

∣∣p dt ≤ M′
1.

From Eq. (3.5) and Lemma 2.2, we have

x1(t) ≤ D2 +
1
2

∫ T

0

∣∣x′
1(t)

∣∣dt

≤ D2 +
1
2

T
1
q

(
T
πp

)(∫ T

0

∣
∣x′′

1(t)
∣
∣p dt

) 1
p

≤ D2 +
1
2

T
1
q

(
T
πp

)
(
M′

1
) 1

p := M1. (3.17)

From Eq. (3.5), we have

∥
∥x′

1
∥
∥ ≤ x′

1(t1) +
1
2

∫ T

0

∣
∣x′′

1(t)
∣
∣dt

≤ 1
2

T
1
q

(∫ T

0

∣∣x′′
1(t)

∣∣dt
) 1

p

≤ 1
2

T
1
q M

′ 1
p

1 := M2, (3.18)

since x′
1(t1) = 0. From x2(0) = x2(T), we know that there exists a point t2 ∈ (0, T) such that

x′
2(t2) = 0. From the second equation of (3.1), Eqs. (3.8), (3.17), (3.18) and condition (H1),

we obtain

∥
∥x′

2
∥
∥ ≤ 1

2

∫ T

0

∣
∣x′′

2(t)
∣
∣dt

≤ λ

2

(∫ T

0

∣∣f
(
t, x′

1(t)
)∣∣dt +

∫ T

0

∣∣g
(
t, x1(t)

)∣∣dt +
∫ T

0

∣∣e(t)
∣∣dt

)

≤ λ
(
NT + aTMp–1

1 + bT + T‖e‖) := λM3. (3.19)

Integrating the first equation of (3.1) over [0, T], we have
∫ T

0 x2(t) dt =
∫ T

0 φp(x′′
1(t)) dt = 0,

which implies there is a point t3 ∈ (0, T) such that x2(t3) = 0, so

‖x2‖ ≤ 1
2

∫ T

0

∣∣x′
2(t)

∣∣dt ≤ λTM3 := λM4. (3.20)

On the other hand, it follows from Eq. (3.2) and condition (H4) that

(
φp

(
x′′

1(t)
))′′ + λpf

(
t, x1(t)

)
x′

1(t) + λp(g0
(
x1

(
t – δ(t)

))
+ g1

(
t, x1

(
t – δ(t)

))

= λpe(t). (3.21)
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Let ξ ∈ [0, T] be as in Eq. (3.4), for any t ∈ [ξ , T]. Multiplying both sides of Eq. (3.21) by
x′

1(t – δ(t))(1 – δ′(t)) and integrating on [ξ , t] we get

λp
∫ x1(t–δ(t))

x1(ξ–δ(ξ ))
g0(u) du

= λp
∫ t

ξ

g0
(
x1

(
s – δ(s)

))
x′

1
(
s – δ(s)

)(
1 – δ′(s)

)
ds

= –
∫ t

ξ

(
φp

(
x′′

1(s)
))′′x′

1
(
s – δ(s)

)(
1 – δ′(s)

)
ds

– λp
∫ t

ξ

f
(
s, x′

1(s)
)
x′

1
(
s – δ(s)

)(
1 – δ′(s)

)
ds

– λp
∫ t

ξ

g1
(
s, x1

(
s – δ(s)

))
x′

1
(
s – δ(s)

)(
1 – δ′(s)

)
ds

+ λp
∫ t

ξ

e(s)x′
1
(
s – δ(s)

)(
1 – δ′(s)

)
ds. (3.22)

Furthermore, by Eqs. (3.16), (3.17), (3.18) and (3.19), we have

λp
∣
∣∣
∣

∫ x1(t–δ(t))

x1(ξ–δ(ξ ))
g0(u) du

∣
∣∣
∣

=
∣
∣∣
∣–

∫ t

ξ

(
φp

(
x′′

1(s)
))′′x′

1
(
s – δ(s)

)(
1 – δ′(s)

)
ds

– λp
∫ t

ξ

f
(
s, x′

1(s)
)
x′

1
(
s – δ(s)

)(
1 – δ′(s)

)
ds

– λp
∫ t

ξ

g1
(
s, x1

(
s – δ(s)

))
x′

1
(
s – δ(s)

)(
1 – δ′(s)

)
ds

+ λp
∫ t

ξ

e(s)x′
1
(
s – δ(s)

)(
1 – δ′(s)

)
ds

∣∣
∣∣

≤ (
1 + δ′)∥∥x′

1
∥
∥

∫ T

0

∣
∣φp

(
x′′

1(s)
)
)′′

∣
∣ds + λp(1 + δ′)∥∥x′

1
∥
∥

∫ T

0

∣
∣f

(
s, x′

1(s)
)∣∣ds

+ λp(1 + δ′)∥∥x′
1
∥∥

∫ T

0

∣∣g1
(
s, x1

(
s – δ(s)

))∣∣ds + λp(1 + δ′)∥∥x′
1
∥∥

∫ T

0

∣∣e(s)
∣∣ds

≤ λp(1 + δ′)M2

(∫ T

0

∣∣f
(
s, x′(s)

)
)
∣∣ds +

∫ T

0

∣∣g
(
s, x1(s)

)∣∣ds +
∫ T

0

∣∣e(s)
∣∣ds

)

+ λp(1 + δ′)(M2NT + M2‖gM1‖T + M2‖e‖T
)

≤ λp(1 + δ′)M2
(
M3 + NT + ‖gM1‖T + ‖e‖T

)
, (3.23)

where gM1 = max0≤x≤M1 |g1(t, x)| ∈ L2(0, T) are as in condition (H4). According to the sin-
gular condition (H5), we know that there exists a positive constant M5 such that

x1
(
t – δ(t)

) ≥ M5, ∀t ∈ [ξ , T]. (3.24)

The case t ∈ [0, ξ ] (i.e., x1(t – δ(t)) ∈ [–δ(0), ξ – δ(ξ )]) can be treated similarly.
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From Eqs. (3.16), (3.17), (3.18), (3.19) and (3.24), we let

� =
{

x = (x1, x2) : E1 ≤ x1(t) ≤ E2,
∥∥x′

1
∥∥ ≤ E3,‖x2‖ ≤ E4 and

∥∥x′
2
∥∥ ≤ E5,∀t ∈ [0, T]

}
,

where 0 < E1 < min(M5, D1), E2 > max(M1, D2), E3 > M2, E4 > M4 and E5 > M3. �2 = {x : x ∈
∂� ∩ Ker L} then ∀x ∈ ∂� ∩ Ker L

QNx =
1
T

∫ T

0

(
φq(x2(t))

–f (t, x′
1) – g(t, x1) + e(t)

)

dt.

If QNx = 0, then x2(t) = 0, x1 = E2 or E1. But if x1(t) = E2, we know

0 =
∫ T

0

(
g(t, E2) – e(t)

)
dt.

From condition (H2), we have x1(t) ≤ D2 ≤ E2, which yields a contradiction. Similarly if
x1 = E1. We also have QNx 	= 0, i.e., ∀x ∈ ∂� ∩ Ker L, x /∈ Im L, so assumptions (1) and (2)
of Lemma 2.1 are both satisfied. Define the isomorphism J : Im Q → Ker L as follows:

J(x1, x2) = (x2, –x1).

Let H(μ, x) = –μx + (1 – μ)JQNx, (μ, x) ∈ [0, 1] × �, then ∀(μ, x) ∈ (0, 1) × (∂� ∩ Ker L),

H(μ, x) =

(
–μx1 – 1–μ

T
∫ T

0 (g(t, x1) – e(t)) dt
–μx2 – (1 – μ)φq(x2)

)

.

From condition (H2), we get xH(μ, x) 	= 0, ∀(μ, x) ∈ (0, 1) × (∂� ∩ Ker L). Hence

deg{JQN ,� ∩ Ker L, 0} = deg
{

H(0, x),� ∩ Ker L, 0
}

= deg
{

H(1, x),� ∩ Ker L, 0
}

= deg{I,� ∩ Ker L, 0} 	= 0.

So assumption (3) of Lemma 2.1 is satisfied. By applying Lemma 2.1, we conclude that the
equation Lx = Nx has a solution x = (x1, x2) on �̄ ∩ D(L), i.e., Eq. (2.1) has a T-periodic
solution x1(t). �

Next, we investigate the existence of a positive T-periodic solution for Eq. (1.1) with a
singularity of attractive type.

Proof of Theorem 1.5 We follow the same strategy and notation as in the proof of The-
orem 1.1. From Eq. (3.3) and condition (H6), we know that there are points τ ,ν ∈ (0, T)
such that

x1
(
τ – δ(τ )

) ≥ D3, x1(ν) ≤ D4. (3.25)



Xin and Liu Advances in Difference Equations  (2018) 2018:368 Page 13 of 15

Next, we consider
∫ T

0 |g(t, x1(t – δ(t)))|dt. From Eq. (3.11) and conditions (H1), (H7), we
obtain

∫ T

0

∣∣g
(
t, x1

(
t – δ(t)

))∣∣dt =
∫

g(t,x1)≥0
g
(
t, x1

(
t – δ(t)

))
dt

–
∫

g(t,x1)≤0
g
(
t, x1

(
t – δ(t)

))
dt

= –2
∫

g(t,x1)≤0
g
(
t, x1

(
t – δ(t)

))
dt

–
∫ T

0
f
(
t, x′

1(t)
)

dt +
∫ T

0
e(t) dt

≤ 2a′
∫ T

0
xp–1

1
(
t – δ(t)

)
dt + 2b′T

+
∫ T

0

∣∣f
(
t, x′

1(t)
)∣∣dt +

∫ T

0

∣∣e(t)
∣∣dt

= 2a′
∫ T

0

∣∣x1
(
t – δ(t)

)∣∣p–1 dt + 2b′T + NT + ‖e‖T

≤ 2a′

1 – δ′

∫ T

0

∣
∣x1(t)

∣
∣p–1 dt + 2b′T + NT + ‖e‖T .

The proof further is the same as Theorem 1.1. �

4 Examples
In this section, we present two examples to illustrate Theorems 1.1 and 1.5.

Example 4.1 Consider the fourth-order Rayleigh equation with singularity of repulsive
type and time-dependent deviating argument:

(
φp

(
x′′(t)

))′′ +
(
sin2 t + 5

)
cos x′(t) +

1
20π

(sin 2t + 3)x
(

t –
1
4

sin 2t
)

–
1

xμ(t – 1
4 sin 2t)

= ecos 2t , (4.1)

where μ ≥ 1and p = 4.
It is clear that T = π , f (t, x′) = (sin2 t + 5) cos x′(t), g(t, x) = 1

20π
(sin 2t + 3)x – 1

xμ , δ(t) =
1
4 sin 2t, a = 1

5π
, δ′ = 1

2 < 1, π4 = 2π (p–1)
1
p

p sin(π/p) = 2π (4–1)
1
4

4·
√

2
2

= π × ( 3
4 ) 1

4 . It is obviously that (H1)–

(H5) hold. Now we consider

aT
1 – δ′

(
T
πp

)2p–1

=
2

5π
× π

(
π

π × ( 3
4 ) 1

4

)7

=
2
5

×
(

4
3

) 7
4 ≈ 0.6618 < 1.

Therefore, by Theorem 1.1, we know that Eq. (4.1) has at least one positive π-periodic
solution.
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Example 4.2 Consider the fourth-order Rayleigh equation with singularity of attractive
type:

x(4)(t) –
(
cos2(2t) + 100

)
sin x′(t) –

1
3π

(sin 4t + 5)x
(

t –
1
8

cos 4t
)

+
5

xκ ′ (t – 1
8 cos 4t)

= esin2(2t), (4.2)

where κ ′ ≥ 1 and p = 2.
It is clear that T = π

2 , f (t, x′) = –(cos2(2t) + 100) sin x′, g(t, x) = – 1
3π

(sin 4t + 5)x + 5
xκ′ ,

δ = 1
8 cos 4t, δ′ = 1

2 , π2 = 2π (p–1)
1
p

p sin(π/p) = 2π (2–1)
1
2

4× 1
2

= π . Take N = 6, a′ = 2
π

, b′ = 1. It is obvious
that (H1), (H4), (H6)–(H8) hold. Now we consider

a′T
1 – δ′

(
T
πp

)2p–1

=
4
π

× π

2
×

(
1
2

)3

=
1
4

< 1.

Therefore, applying Theorem 1.5, we know that Eq. (4.2) has at least one positive π
2 -

periodic solution.

5 Conclusions
In this paper, we introduce the existence of a positive T-periodic solution for the fourth-
order p-Laplacian singular Rayleigh equation with time-dependent deviating argument.
The nonlinear function has a time-dependent deviating argument. This implies that the
work on estimating lower bounds of periodic solutions for Eq. (1.1) is more difficult than
the corresponding work on Eq. (1.4) in [21]. Secondly, attractive conditions (H6), (H7)
and (H8) are in contradiction with the repulsive conditions (H2), (H3) and (H5), and the
methods of singularity of repulsive type are no longer applicable to the proof of a periodic
solution for Eq. (1.1) with singularity of attractive type. In this paper, by using coincidence
degree theory and conditions (H1)–(H5), we prove the existence of a positive T-periodic
solution for Eq. (1.1) with a singularity of repulsive type; applying conditions (H1), (H4),
(H6)–(H8), we find that Eq. (1.1) with singularity of attractive type has at least one positive
T-periodic solution.
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