Solution of fractional differential equations via $\alpha-\psi$-Geraghty type mappings

Hojjat Afshari ${ }^{*}$, Sabileh Kalantari ${ }^{1}$ and Dumitru Baleanu ${ }^{2}$
*Correspondence:
hojat.afshari@yahoo.com
${ }^{1}$ Department of Mathematics, Basic Science Faculty, University of Bonab, Bonab, Iran
Full list of author information is available at the end of the article

Abstract

Using fixed point results of $\alpha-\psi$-Geraghty contractive type mappings, we examine the existence of solutions for some fractional differential equations in b-metric spaces. By some concrete examples we illustrate the obtained results.

Keywords: Fractional differential equation; Normal cone; $\alpha-\psi$-Geraghty contractive type mapping

1 Introduction

In 2012, Samet et al. [11] presented the concepet of α-admissible mappings, which was expanded by several authors (see [5, 6, 9]). Baleanu, Rezapour, and Mohammadi [3] studied the existence of a solution for problem $D^{\nu} w(\xi)=h(\xi, w(\xi))(\xi \in[0,1], 1<v \leq 2)$. Afshari, Aydi, and Karapinar [1,2] considered generalized $\alpha-\psi$-Geraghty contractive mappings in b-metric spaces.

We investigate the existence of solutions for some fractional differential equations in b-metric spaces. We denote $I=[0,1]$.

Definition $1.1([7,10])$ The Caputo derivative of order v of a continuous function h : $[0, \infty) \rightarrow \mathbb{R}$ is defined by

$$
{ }^{c} D^{\nu} h(\xi)=\frac{1}{\Gamma(n-v)} \int_{0}^{\xi}(\xi-\zeta)^{n-v-1} h^{(n)}(\zeta) d \zeta
$$

where $n-1<\nu<n, n=[\nu]+1,[\nu]$ is the integer part of v, and

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} d x \tag{1}
\end{equation*}
$$

Definition 1.2 ($[7,10]$) The Riemann-Liouville derivative of a continuous function h is defined by

$$
D^{\nu} h(\xi)=\frac{1}{\Gamma(n-v)}\left(\frac{d}{d \xi}\right)^{n} \int_{0}^{\xi} \frac{h(\zeta)}{(\xi-\zeta)^{\nu-n-1}} d \zeta \quad(n=[\nu]+1)
$$

where the right-hand side is defined on $(0, \infty)$.

Let Ψ be the set of all increasing continuous functions $\psi:[0, \infty) \rightarrow[0, \infty)$ such that $\psi(\lambda x) \leq \lambda \psi(x) \leq \lambda x$ for $\lambda>1$, and let \mathcal{B} be the family of nondecreasing functions γ : $[0, \infty) \rightarrow\left[0, \frac{1}{s^{2}}\right)$ for some $s \geq 1$.

Definition 1.3 ([1]) Let (X, d) be a b-metric space (with constant s). A function $g: X \rightarrow X$ is a generalized $\alpha-\psi$-Geraghty contraction if there exists $\alpha: X \times X \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\alpha(z, t) \psi\left(s^{3} d(g z, g t)\right) \leq \gamma(\psi(d(z, t))) \psi(d(z, t)) \tag{2}
\end{equation*}
$$

for all $z, t \in X$, where $\gamma \in \mathcal{B}$ and $\psi \in \Psi$.

Definition 1.4 ([11]) Let $g: X \rightarrow X$ and $\alpha: X \times X \rightarrow[0, \infty)$ be given. Then g is called α-admissible if for $z, t \in X$,

$$
\begin{equation*}
\alpha(z, t) \geq 1 \quad \Longrightarrow \quad \alpha(g z, g t) \geq 1 \tag{3}
\end{equation*}
$$

Theorem 1.5 ([1]) Let (X, d) be a complete b-metric space, and let $f: X \rightarrow X$ be a generalized $\alpha-\psi$-Geraghty contraction such that
(i) f is α-admissible;
(ii) there exists $u_{0} \in X$ such that $\alpha\left(u_{0}, f u_{0}\right) \geq 1$;
(iii) if $\left\{u_{n}\right\} \subseteq X, u_{n} \rightarrow u$ in X, and $\alpha\left(u_{n}, u_{n+1}\right) \geq 1$, then $\alpha\left(u_{n}, u\right) \geq 1$.

Thenf has a fixed point.

2 Main result

By $X=C(I)$ we denote the set of continuous functions. Let $d: X \times X \rightarrow[0, \infty)$ be given by

$$
\begin{equation*}
d(y, z)=\left\|(y-z)^{2}\right\|_{\infty}=\sup _{\xi \in I}(y(\xi)-z(\xi))^{2} \tag{4}
\end{equation*}
$$

Evidently, (X, d) is a complete b-metric space with $s=2$ but is not a metric space.
Now we study the problem

$$
\begin{equation*}
\frac{D^{v}}{D \xi} w(\xi)=h(\xi, w(\xi)), \quad \xi \in I, 3<v \leq 4 \tag{5}
\end{equation*}
$$

under the conditions

$$
\begin{equation*}
w(0)=w^{\prime}(0)=w(1)=w^{\prime}(1)=0, \tag{6}
\end{equation*}
$$

where D^{ν} is the Riemann-Liouville derivative, and $h: I \times X \rightarrow \mathbb{R}$ is continuous.

Lemma 2.1 ([13]) Given $h \in C(I \times X, \mathbb{R})$ and $3<v \leq 4$, the unique solution of

$$
\begin{equation*}
\frac{D^{v}}{D \xi} w(\xi)=h(\xi, w(\xi)), \quad \xi \in I, 3<v \leq 4 \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
w(0)=w^{\prime}(0)=w(1)=w^{\prime}(1)=0, \tag{8}
\end{equation*}
$$

is given by $w(\xi)=\int_{0}^{1} G(\xi, \zeta) h(s, w(s)) d s$, where

$$
G(\xi, \zeta)= \begin{cases}\frac{(\xi-1)^{\nu-1}+(1-\zeta)^{\nu-2} \xi^{\nu-2}[(\zeta-\xi)+(v-2)(1-\xi) \zeta]}{\Gamma(\nu)}, & 0 \leq \zeta \leq \xi \leq 1, \tag{9}\\ \frac{(1-\zeta)^{\nu-2} \xi^{\nu-2}[(\zeta-\xi)+(\nu-2)(1-\xi) \zeta]}{\Gamma(\nu)}, & 0 \leq \xi \leq \zeta \leq 1 .\end{cases}
$$

If $h(\xi, w(\xi))=1$, then the unique solution of $(7)-(8)$ is given by

$$
f(\xi)=\int_{0}^{1} G(\xi, \zeta) d s=\frac{1}{\Gamma(v+1)} \xi^{v-2}(1-\xi)^{2}
$$

Lemma 2.2 ([13]) In Lemma 2.1, $G(\xi, \zeta)$ given in (9) satisfies the following conditions:
(1) $G(\xi, \zeta)>0$, and $G(\xi, \zeta)$ is continuous for $\xi, \zeta \in I$;
(2) $\frac{(\nu-2) \sigma(\xi) \rho(\zeta)}{\Gamma(\nu)} \leq G(\xi, \zeta) \leq \frac{r_{0} \rho(\zeta)}{\Gamma(\nu)}$,
where

$$
r_{0}=\max \left\{v-1,(v-2)^{2}\right\}, \quad \sigma(\xi)=\xi^{v-2}(1-\xi)^{2}, \quad \text { and } \quad \rho(\zeta)=\zeta^{2}(1-\zeta)^{\nu-2}
$$

Theorem 2.3 Suppose

(i) there exist $\theta: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\psi \in \Psi$ such that

$$
|h(\xi, c)-h(\xi, d)| \leq \frac{1}{2 \sqrt{2}} \frac{\Gamma(v+1)}{4 v} \frac{\psi\left(|c-d|^{2}\right)}{\sqrt{4\left\|(c-d)^{2}\right\|_{\infty}+1}}
$$

for $\xi \in I$ and $c, d \in \mathbb{R}$ with $\theta(c, d) \geq 0$;
(ii) there exists $y_{0} \in C(I)$ such that $\theta\left(y_{0}(\xi), \int_{0}^{1} G(\xi, \zeta) h\left(\zeta, y_{0}(\xi)\right) d \zeta\right) \geq 0, \xi \in I$;
(iii) for $\xi \in I$ and $y, z \in C(I), \theta(y(\xi), z(\xi)) \geq 0$ implies

$$
\theta\left(\int_{0}^{1} G(\xi, \zeta) h(\zeta, y(\zeta)) d \zeta, \int_{0}^{1} G(\xi, \zeta) h(\zeta, z(\xi)) d \zeta\right) \geq 0
$$

(iv) if $\left\{y_{n}\right\} \subseteq C(I), y_{n} \rightarrow y$ in $C(I)$, and $\theta\left(y_{n}, y_{n+1}\right) \geq 0$, then $\theta\left(y_{n}, y\right) \geq 0$.

Then problem (7) has at least one solution.

Proof By Lemma $2.1 y \in C(I)$ is a solution of (7) if and only if it is a solution of $y(\xi)=$ $\int_{0}^{1} G(\xi, \zeta) h(\zeta, y(\zeta)) d \zeta$, and we define $A: C(I) \rightarrow C(I)$ by $A y(\xi)=\int_{0}^{1} G(\xi, \zeta) h(\zeta, y(\zeta)) d \zeta$ for $\xi \in I$. For this purpose, we find a fixed point of A. Let $y, z \in C(I)$ be such that $\theta(y(\xi), z(\xi)) \geq$ 0 for $\xi \in I$. Using (i), we get

$$
\begin{aligned}
|A y(\xi)-A z(\xi)|^{2} & =\left|\int_{0}^{1} G(\xi, \zeta)(h(\zeta, y(\zeta))-h(\zeta, z(\zeta))) d \zeta\right|^{2} \\
& \leq\left[\int_{0}^{1} G(\xi, \zeta)|h(\zeta, y(\zeta))-h(\zeta, z(\zeta))| d \zeta\right]^{2} \\
& \leq\left[\int_{0}^{1} G(\xi, \zeta) \frac{1}{2 \sqrt{2}} \frac{\Gamma(v+1)}{4 v} \frac{\psi\left(|y(\zeta)-z(\zeta)|^{2}\right)}{\sqrt{4\left\|(y-z)^{2}\right\|_{\infty}+1}} d \zeta\right]^{2} \\
& \leq \frac{1}{8} \frac{\left(\psi\left(\left\|(y-z)^{2}\right\|_{\infty}\right)\right)^{2}}{4\left\|(y-z)^{2}\right\|_{\infty}+1}
\end{aligned}
$$

Hence, for $y, z \in C(I)$ and $\xi \in I$ with $\theta(y(\xi), z(\xi)) \geq 0$, we have

$$
\left\|(A y-A z)^{2}\right\|_{\infty} \leq \frac{1}{8} \frac{\left(\psi\left(\left\|(y-z)^{2}\right\|_{\infty}\right)\right)^{2}}{4\left\|(y-z)^{2}\right\|_{\infty}+1}
$$

Let $\alpha: C(I) \times C(I) \rightarrow[0, \infty)$ be defined by

$$
\alpha(y, z)= \begin{cases}1, & \theta(y(\xi), z(\xi)) \geq 0, \xi \in I \\ 0 & \text { otherwise }\end{cases}
$$

Define $\gamma:[0, \infty) \rightarrow\left[0, \frac{1}{4}\right)$ by $\gamma(q)=\frac{q}{4 q+1}$ and $s=2$.
So

$$
\begin{aligned}
\alpha(y, z) \psi(8 d(A y, A z)) & \leq 8 \alpha(y, z) \psi(d(A y, A z)) \leq \frac{(\psi(d(y, z)))^{2}}{4 d(y, z)+1} \\
& \leq \frac{(\psi(d(y, z)))^{2}}{4 \psi(d(y, z))+1} \\
& =\frac{1}{\gamma(\psi(d(y, z)))} \gamma(\psi(d(y, z))) \frac{(\psi(d(y, z)))^{2}}{4 \psi(d(y, z))+1} \\
& \leq \gamma(\psi(d(y, z))) \psi(d(y, z)), \quad \gamma \in \mathcal{B} .
\end{aligned}
$$

Then A is an $\alpha-\psi$-contractive mapping. From (iii) and the definition of α we have

$$
\begin{aligned}
\alpha(y, z) \geq 1 & \Rightarrow \quad \theta(y(\xi), z(\xi)) \geq 0 \\
& \Rightarrow \quad \theta(A(y), A(z)) \geq 0 \\
& \Rightarrow \quad \alpha(A(y), A(z)) \geq 1
\end{aligned}
$$

for $y, z \in C(I)$. Thus, A is α-admissible. By (ii) there exists $y_{0} \in C(I)$ such that $\alpha\left(y_{0}, A y_{0}\right) \geq 1$. By (iv) and Theorem 1.5 there is $y^{*} \in C(I)$ such that $y^{*}=A y^{*}$. Hence y^{*} is a solution of the problem.

Corollary 2.4 Suppose that there exist $\theta: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\psi \in \Psi$ such that

$$
\begin{equation*}
|h(\xi, c)-h(\xi, d)| \leq \frac{10^{3}}{4 \sqrt{8}} \frac{\psi\left(|c-d|^{2}\right)}{\sqrt{4\left\|(c-d)^{2}\right\|_{\infty}+1}} \tag{10}
\end{equation*}
$$

for $\xi \in I$ and $c, d \in \mathbb{R}$ with $\theta(c, d) \geq 0$. Also, suppose that conditions (ii)-(iv) from Theorem 2.3 hold for h, where $G(\xi, \zeta)$ is given in (9). Then the problem

$$
\begin{equation*}
\frac{D^{\frac{7}{2}}}{D \xi} w(\xi)=h(\xi, w(\xi)), \quad \xi \in I \tag{11}
\end{equation*}
$$

where

$$
w(0)=w^{\prime}(0)=w(1)=w^{\prime}(1)=0,
$$

has at least one solution.

Proof By Lemma 2.2

$$
\begin{equation*}
\min \int_{0}^{1} G(\xi, \zeta) d \zeta=10^{-5} \quad \text { and } \quad \max \int_{0}^{1} G(\xi, \zeta) d \zeta=4 \times 10^{-3} \tag{12}
\end{equation*}
$$

Using (10) and (12), by Theorem 2.3 we obtain

$$
|A y(\xi)-A z(\xi)|^{2} \leq \frac{1}{8} \frac{\left(\psi\left(|y-z|^{2}\right)\right)^{2}}{4\left\|(y-z)^{2}\right\|_{\infty}+1} .
$$

The rest of the proof is according to Theorem 2.3.

Lemma $2.5([8])$ If $h \in C(I \times X, \mathbb{R})$ and $h(\xi, w(\xi)) \leq 0$, then the problem

$$
\begin{align*}
& -D_{0+}^{v} w(\xi)=h(\xi, w(\xi)), \quad(0<\xi<1,3<v \leq 4), \tag{13}\\
& w(0)=w^{\prime}(0)=w^{\prime \prime}(0)=w^{\prime \prime}(1)=0
\end{align*}
$$

has a unique positive solution

$$
w(\xi)=\int_{0}^{1} G(\xi, \zeta) h(\zeta, w(\zeta)) d \zeta
$$

where $G(\xi, \zeta)$ is given by

$$
G(\xi, \zeta)=\frac{1}{\Gamma(\nu)} \begin{cases}\xi^{\nu-1}(1-\zeta)^{\nu-3}-(\xi-\zeta)^{\nu-1}, & 0 \leq \zeta \leq \xi \leq 1 \tag{14}\\ \xi^{\nu-1}(1-\zeta)^{\nu-3}, & 0 \leq \xi \leq \zeta \leq 1\end{cases}
$$

Lemma 2.6 ([12]) The function $G(\xi, \zeta)$ in Lemma 2.5 has the following property:

$$
\frac{1}{\Gamma(\nu)} \zeta(2-\zeta)(1-\zeta)^{\nu-3} \xi^{\nu-1} \leq G(\xi, \zeta) \leq \frac{1}{\Gamma(\nu)}(1-\zeta)^{\nu-3} \xi^{\nu-1}
$$

where $\xi, \zeta \in I$ and $3<\nu \leq 4$.

Based on Theorem 2.3, we get the following result.

Corollary 2.7 Assume that there exist $\theta: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\psi \in \Psi$ such that

$$
|h(\xi, c)-h(\xi, d)| \leq \frac{1}{2 \sqrt{2} M} \frac{\psi\left(|c-d|^{2}\right)}{\sqrt{4\left\|(c-d)^{2}\right\|_{\infty}+1}}
$$

where $M=\sup _{\xi \in I} \int_{0}^{1} G(\xi, \zeta) d \zeta$. Also, suppose that conditions (ii)-(iv) from Theorem 2.3 are satisfied, where $G(\xi, \zeta)$ is given in (14). Then problem (13) has at least one solution.

Proof By Lemma $2.5 y \in C(I)$ is a solution of (13) if and only if a solution of $y(\xi)=$ $\int_{0}^{1} G(\xi, \zeta) h(\zeta, y(\zeta)) d \zeta$. Define $A: C(I) \rightarrow C(I)$ by $A y(\xi)=\int_{0}^{1} G(\xi, \zeta) h(\zeta, y(\zeta)) d \zeta$ for $\xi \in I$. We find a fixed point of A. Let $y, z \in C(I)$ be such that $\theta(y(\xi), z(\xi)) \geq 0$ for $\xi \in I$. By (i) and

Lemma 2.6 we get

$$
\begin{aligned}
&|A y(\xi)-A z(\xi)|^{2} \\
&=\left|\int_{0}^{1} G(\xi, \zeta)(h(\zeta, y(\zeta))-h(\zeta, z(\zeta))) d \zeta\right|^{2} \\
& \leq {\left[\int_{0}^{1} G(\xi, \zeta)|h(\zeta, y(\zeta))-h(\zeta, z(\zeta))| d \zeta\right]^{2} } \\
& \leq {\left[\int_{0}^{1} G(\xi, \zeta) \frac{1}{2 \sqrt{2} M} \frac{\psi\left(|y(\zeta)-z(\zeta)|^{2}\right)}{\sqrt{4\left\|(y-z)^{2}\right\|_{\infty}+1}} d \zeta\right]^{2} } \\
& \leq {\left[\int_{0}^{1} G(\xi, \zeta) \frac{1}{2 \sqrt{2}\left(\sup _{\xi \in I} \int_{0}^{1} G(\xi, \zeta) d \zeta\right)} \frac{\psi\left(|y(\zeta)-z(\zeta)|^{2}\right)}{\sqrt{4\left\|(y-z)^{2}\right\|_{\infty}+1}} d \zeta\right]^{2} } \\
& \leq {\left[\int_{0}^{1} G(\xi, \zeta) \frac{1}{2 \sqrt{2}\left(\int_{0}^{1} G(\xi, \zeta) d \zeta\right)} \frac{\psi\left(|y(\zeta)-z(\zeta)|^{2}\right)}{\sqrt{4\left\|(y-z)^{2}\right\|_{\infty}+1}} d \zeta\right]^{2} } \\
& \leq {\left[\int_{0}^{1} \frac{1}{\Gamma(v)}(1-\zeta)^{v-3} \xi^{\nu-1} \frac{\Gamma(v)}{2 \sqrt{2}\left(\int_{0}^{1} \zeta(2-\zeta)(1-\zeta)^{v-3} \xi^{v-1} d \zeta\right)}\right.} \\
&\left.\times \frac{\psi\left(|y(\zeta)-z(\zeta)|^{2}\right)}{\sqrt{4\left\|(y-z)^{2}\right\|_{\infty}+1}} d \zeta\right]^{2} \\
& \leq \frac{1}{8} \frac{\left(\psi\left(\left\|(y-z)^{2}\right\|_{\infty}\right)\right)^{2}}{4\left\|(y-z)^{2}\right\|_{\infty}+1} .
\end{aligned}
$$

Suppose that conditions (ii)-(iv) from Theorem 2.3 are satisfied, where $G(\xi, \zeta)$ is given in (14). By Theorem 2.3 problem (13) has at least one solution.

Let (X, d) be given in (4). For the equation

$$
\begin{equation*}
{ }^{c} D^{v} y(\xi)=h(\xi, y(\xi)), \quad(\xi \in I, 1<v \leq 2), \tag{15}
\end{equation*}
$$

via

$$
y(0)=0, \quad y(1)=\int_{0}^{\eta} y(\zeta) d \zeta \quad(0<\eta<1)
$$

where $h: I \times X \rightarrow \mathbb{R}$ is continuous, we have the following result.

Theorem 2.8 Assume that there exist $\theta: \mathbb{R}^{2} \rightarrow \mathbb{R}, \gamma \in \mathcal{B}$, and $\psi \in \Psi$ such that

$$
|h(\xi, c)-h(\xi, d)| \leq \frac{\Gamma(v+1)}{5} \sqrt{\frac{1}{8} \gamma\left(\psi\left(|c-d|^{2}\right)\right) \psi\left(|c-d|^{2}\right)} .
$$

Suppose conditions (ii)-(iv) from Theorem 2.3 hold, where $A: C(I) \rightarrow C(I)$ is defined by

$$
\begin{aligned}
A y(\xi):= & \frac{1}{\Gamma(\nu)} \int_{0}^{1}(\xi-\zeta)^{\nu-1} h(\zeta, y(\zeta)) d \zeta-\frac{2 \xi}{\left(2-\eta^{2}\right) \Gamma(v)} \int_{0}^{1}(1-\zeta)^{\nu-1} h(\zeta, y(\zeta)) d \zeta \\
& +\frac{2 \xi}{\left(2-\eta^{2}\right) \Gamma(\nu)} \int_{0}^{\eta}\left(\int_{0}^{\zeta}(\zeta-n)^{\nu-1} h(n, y(n)) d n\right) d \zeta \quad(\xi \in I) ;
\end{aligned}
$$

Then (15) has at least one solution.

Proof A function $y \in C(I)$ is a solution of (15) if and only if it is a solution of

$$
\begin{aligned}
y(\xi)= & \frac{1}{\Gamma(\nu)} \int_{0}^{1}(\xi-\zeta)^{\nu-1} h(\zeta, y(\zeta)) d \zeta-\frac{2 \xi}{\left(2-\eta^{2}\right) \Gamma(\nu)} \int_{0}^{1}(1-\zeta)^{\nu-1} h(\zeta, y(\zeta)) d \zeta \\
& +\frac{2 \xi}{\left(2-\eta^{2}\right) \Gamma(\nu)} \int_{0}^{\eta}\left(\int_{0}^{\zeta}(\zeta-n)^{\nu-1} h(n, y(n)) d n\right) d \zeta \quad(\xi \in I) .
\end{aligned}
$$

Then (15) is equivalent to finding $y^{*} \in C(I)$ that is a fixed point of A. Let $y, z \in C(I)$ with $\theta(y(\xi), z(\xi)) \geq 0, \xi \in I$. By (i) we have

$$
\begin{aligned}
& |A y(\xi)-A z(\xi)|^{2} \\
& =\left\lvert\, \frac{1}{\Gamma(\nu)} \int_{0}^{1}(\xi-\zeta)^{\nu-1} h(\zeta, y(\zeta)) d \zeta\right. \\
& -\frac{2 \xi}{\left(2-\eta^{2}\right) \Gamma(\nu)} \int_{0}^{1}(1-\zeta)^{\nu-1} h(\zeta, y(\zeta)) d \zeta \\
& +\frac{2 \xi}{\left(2-\eta^{2}\right) \Gamma(\nu)} \int_{0}^{\eta}\left(\int_{0}^{\zeta}(\zeta-n)^{\nu-1} h(n, y(n)) d n\right) d \zeta \\
& -\frac{1}{\Gamma(\alpha)} \int_{0}^{1}(\xi-\zeta)^{\nu-1} h(\zeta, z(\zeta)) d \zeta \\
& +\frac{2 \xi}{\left(2-\eta^{2}\right) \Gamma(\nu)} \int_{0}^{1}(1-\zeta)^{\nu-1} h(\zeta, z(\zeta)) d \zeta \\
& -\left.\frac{2 \xi}{\left(2-\eta^{2}\right) \Gamma(\nu)} \int_{0}^{\eta}\left(\int_{0}^{\zeta}(\zeta-n)^{\nu-1} h(n, z(n)) d n\right) d \zeta\right|^{2} \\
& \leq\left|\frac{1}{\Gamma(v)} \int_{0}^{1}\right| \xi-\left.\zeta\right|^{\nu-1}|h(\zeta, y(\zeta))-h(\zeta, z(\zeta))| d \zeta \\
& +\frac{2 \xi}{\left(2-\eta^{2}\right) \Gamma(\nu)} \int_{0}^{1}|1-\zeta|^{\nu-1}|h(\zeta, y(\zeta))-h(\zeta, z(\zeta))| d \zeta \\
& +\frac{2 \xi}{\left(2-\eta^{2}\right) \Gamma(v)} \int_{0}^{\eta}\left|\int_{0}^{\zeta}\right| \zeta-\left.n\right|^{\nu-1}|h(n, y(n))-h(n, z(n))| d n|d \zeta|^{2} \\
& \leq\left|\frac{1}{\Gamma(v)} \int_{0}^{1}\right| \xi-\left.\zeta\right|^{\nu-1} \frac{\Gamma(\nu+1)}{5} \sqrt{\frac{1}{8} \gamma\left(\psi\left(|y(\zeta)-z(\zeta)|^{2}\right)\right) \psi\left(|y(\zeta)-z(\zeta)|^{2}\right)} d \zeta \\
& +\frac{2 \xi}{\left(2-\eta^{2}\right) \Gamma(\nu)} \int_{0}^{1}|1-\zeta|^{\nu-1} \frac{\Gamma(v+1)}{5} \\
& \times \sqrt{\frac{1}{8} \gamma\left(\psi\left(|y(\zeta)-z(\zeta)|^{2}\right)\right) \psi\left(|y(\zeta)-z(\zeta)|^{2}\right)} d \zeta \\
& +\frac{2 \xi}{\left(2-\eta^{2}\right) \Gamma(\nu)} \int_{0}^{\eta} \int_{0}^{\zeta}|\zeta-n|^{\nu-1} \\
& \times\left.\sqrt{\frac{1}{8} \gamma\left(\psi\left(|y(n)-z(n)|^{2}\right)\right) \psi\left(|y(n)-z(n)|^{2}\right)} d \zeta\right|^{2} \\
& \leq\left(\frac{\Gamma(v+1)}{5}\right)^{2} \frac{1}{8} \gamma\left(\psi\left(\|y-z\|_{\infty}^{2}\right)\right) \psi\left(\|y-z\|_{\infty}^{2}\right)\left[\operatorname { s u p } \left(\int_{0}^{1}|\xi-\zeta|^{v-1} d \zeta\right.\right. \\
& +\frac{2 \xi}{\left(2-\eta^{2}\right) \Gamma(\nu)} \int_{0}^{1}|1-\zeta|^{\nu-1} d \zeta
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.+\frac{2 \xi}{\left(2-\eta^{2}\right) \Gamma(\nu)} \int_{0}^{\eta}\left(\int_{0}^{\zeta}|\zeta-n|^{\nu-1} d n\right) d \zeta\right)\right]^{2} \\
\leq & \frac{1}{8} \gamma\left(\psi\left(\|y-z\|_{\infty}^{2}\right)\right) \psi\left(\|y-z\|_{\infty}^{2}\right)
\end{aligned}
$$

for all $y, z \in C(I)$ with $\theta(y(\xi), z(\xi)) \geq 0, \xi \in I$, so that

$$
\left\|(A y-A z)^{2}\right\|_{\infty} \leq \frac{1}{8} \gamma\left(\psi\left(\|y-z\|_{\infty}^{2}\right)\right) \psi\left(\|y-z\|_{\infty}^{2}\right) .
$$

Let $\alpha: C(I) \times C(I) \rightarrow[0, \infty)$ be defined by

$$
\alpha(y, z)= \begin{cases}1 & \theta(y(\xi), z(\xi)) \geq 0, \xi \in I \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\begin{aligned}
\alpha(y, z) \psi(8 d(A y, A z)) & \leq 8 \alpha(y, z) \psi(d(A y, A z)) \\
& \leq \alpha(y, z) \psi(\gamma(\psi(d(y, z))) \psi(d(y, z))) \\
& \leq \gamma(\psi(d(y, z))) \psi(d(y, z))
\end{aligned}
$$

for all $y, z \in C(I)$, and thus A is an $\alpha-\psi$-contractive mapping. From Theorem 1.5, based on the proof of Theorem 2.3, we can deduce the proof of Theorem 2.8.

Here we find a positive solution for

$$
\begin{equation*}
\frac{{ }^{c} D^{v}}{D \xi} w(\xi)=h(\xi, w(\xi)), \quad 0<\nu \leq 1, \xi \in I \tag{16}
\end{equation*}
$$

where

$$
w(0)+\int_{0}^{1} w(\zeta) d \zeta=w(1)
$$

Note that ${ }^{c} D^{\nu}$ is the Caputo derivative of order ν. We consider the Banach space of continuous functions on I endowed with the sup norm. We have the following lemma.

Lemma 2.9 ([4]) Let $0<v \leq 1$ and $h \in C([0, T] \times X, \mathbb{R})$ be given. Then the equation

$$
{ }^{c} D^{\nu} w(\xi)=h(\xi, w(\xi)) \quad(\xi \in[0, T], T \geq 1)
$$

with

$$
w(0)+\int_{0}^{T} w(\zeta) d \zeta=w(T)
$$

has a unique solution given by

$$
w(\xi)=\int_{0}^{T} G(\xi, \zeta) h(\zeta, w(\zeta)) d \zeta
$$

where $G(\xi, \zeta)$ is defined by

$$
G(\xi, \zeta)= \begin{cases}\frac{-(T-\zeta)^{\nu}+\nu T(\xi-\zeta)^{\nu-1}}{T \Gamma(\nu+1)}+\frac{(T-\zeta)^{\nu-1}}{T \Gamma(\nu)}, & 0 \leq \zeta<\xi \tag{17}\\ \frac{-(T-\zeta)^{v}}{T \Gamma(\nu+1)}+\frac{(T-\zeta)^{\nu-1}}{T \Gamma(\nu)}, & \xi \leq \zeta<T\end{cases}
$$

By Lemma 2.9 and Theorem 2.4 we get the following conclusion.

Corollary 2.10 Assume that there exist $\theta: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\psi \in \Psi$ such that

$$
|h(\xi, c)-h(\xi, d)| \leq \frac{51}{80 \sqrt{8}} \frac{\psi\left(|c-d|^{2}\right)}{\sqrt{4\left\|(c-d)^{2}\right\|_{\infty}+1}}
$$

for $\xi \in I$ and $c, d \in \mathbb{R}$ with $\theta(c, d) \geq 0$. Suppose conditions (ii)-(iv) from Theorem 2.3 are satisfied, where $G(\xi, \zeta)$ is given in (17). Then the following problem has at least one solution:

$$
{ }^{c} D^{\frac{1}{2}} w(\xi)=h(\xi, w(\xi)), \quad(\xi \in[0,1]), \quad w(0)+\int_{0}^{1} w(\zeta) d \zeta=w(1)
$$

Proof It is easily that $\min _{t \in[0,1]} \int_{0}^{1} G(t, s) d s=\frac{1}{3}$ and $\max _{t \in[0,1]} \int_{0}^{1} G(t, s) d s=\frac{80}{51}$. By Theorem 2.3 we conclude the desired result.

Example 2.11 Let $\psi(r)=r, \theta(x, z)=x z$, and $y_{n}(\xi)=\frac{\xi}{n^{2}+1}$. We consider $h: I \times[-2,2] \rightarrow$ $[-2,2]$ and the periodic boundary value problem

$$
\begin{equation*}
\frac{D^{\frac{7}{2}}}{D \xi} w(\xi)=h(\xi, w(\xi))=w(\xi), \quad \xi \in I \tag{18}
\end{equation*}
$$

with

$$
w(0)=w^{\prime}(0)=w(1)=w^{\prime}(1)=0 .
$$

Then

$$
|h(\xi, c)-h(\xi, d)|=|c-d| \leq \frac{10^{3}}{4 \sqrt{8}} \frac{\psi\left(|c-d|^{2}\right)}{\sqrt{4\left\|(c-d)^{2}\right\|_{\infty}+1}}
$$

for $\xi \in I$ and $c, d \in[-2,2]$ with $\theta(c, d) \geq 0$. Because $y_{0}(\xi)=\xi$, thus

$$
\theta\left(y_{0}(\xi), \int_{0}^{1} G(\xi, \zeta) h\left(\zeta, y_{0}(\zeta)\right) d \zeta\right) \geq 0
$$

for all $\xi \in I$. Also, $\theta(y(\xi), z(\xi))=y(\xi) z(\xi) \geq 0$ implies that

$$
\left.\theta\left(\int_{0}^{1} G(\xi, \zeta) h\left(\zeta, y_{(} \zeta\right)\right) d \zeta, \int_{0}^{1} G(\xi, \zeta) h(\zeta, z(\zeta)) d \zeta\right) \geq 0
$$

It is obvious that condition (iv) in Corollary (2.4) holds. Hence by Corollary 2.4 problem (18) has at least one solution.

Acknowledgements

Not applicable.

Funding

Not applicable

Competing interests

The authors declare that they have no competing interests.
Authors' contributions
All authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Basic Science Faculty, University of Bonab, Bonab, Iran. ${ }^{2}$ Department of Mathematics, Cankaya University, Ankara, Turkey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 5 June 2018 Accepted: 18 September 2018 Published online: 01 October 2018

References

1. Afshari, H., Aydi, H., Karapinar, E.: Existence of fixed points of set-valued mappings in b-metric spaces. East Asian Math. J. 32(3), 319-332 (2016)
2. Afshari, H., Aydi, H., Karapinar, E.: On generalized $\alpha-\psi$-Geraghty contractions on b-metric spaces. Georgian Mathematical Journal, (2018) In press https://doi.org/10.1515/gmj-2017-0063
3. Baleanu, D., Rezapour, S., Mohammadi, H.: Some existence results on nonlinear FDEs. rsta.royalsocietypublishing.org, on May 28, 2017
4. Benchohra, M., Ouaar, F.: Existence results for nonlinear fractional differential equations with integral boundary conditions. Bull. Math. Anal. Appl. 4, 7-15 (2010)
5. Bota, M.-F., Chifu, C., Karapinar, E.: Fixed point theorems for generalized $(\alpha-\psi)$-Ciric-type contractive multivalued operators in b-metric spaces. J. Nonlinear Sci. Appl. 9(3), 1165-1177 (2016)
6. Bota, M.-F., Karapinar, E., Mlesnite, O.: Ulam-Hyers stability results for fixed point problems via alpha-psi-contractive mapping in b-metric space. Abstr. Appl. Anal. 2013, Article ID 825293 (2013)
7. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)
8. Liang, S., Zhang, J.: Positive solutions for boundary value problems of nonlinear fractional differential equation. Nonlinear Anal. 71, 5545-5550 (2009)
9. Karapınar, E., Samet, B.: Generalized $\alpha-\psi$-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, Article ID 793486 (2012)
10. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
11. Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for $\alpha-\psi$-contractive type mappings. Nonlinear Anal. 75, 2154-2165 (2012)
12. Wang, H., Zhang, L.: The solution for a class of sum operator equation and its application to fractional differential equation boundary value problems. Bound. Value Probl. 2015, 203 (2015)
13. Xu, X., Jiang, D., Yuan, C.: Multiple positive solutions for the BVPs of a nonlinear fractional differential equation. Nonlinear Anal. TMA 71, 4676-4688 (2009)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

