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Abstract
Using fixed point results of α –ψ -Geraghty contractive type mappings, we examine
the existence of solutions for some fractional differential equations in b-metric spaces.
By some concrete examples we illustrate the obtained results.
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1 Introduction
In 2012, Samet et al. [11] presented the concepet of α-admissible mappings, which was
expanded by several authors (see [5, 6, 9]). Baleanu, Rezapour, and Mohammadi [3] studied
the existence of a solution for problem Dνw(ξ ) = h(ξ , w(ξ )) (ξ ∈ [0, 1], 1 < ν ≤ 2). Afshari,
Aydi, and Karapinar [1, 2] considered generalized α – ψ-Geraghty contractive mappings
in b-metric spaces.

We investigate the existence of solutions for some fractional differential equations in
b-metric spaces. We denote I = [0, 1].

Definition 1.1 ([7, 10]) The Caputo derivative of order ν of a continuous function h :
[0,∞) →R is defined by

cDνh(ξ ) =
1

�(n – ν)

∫ ξ

0
(ξ – ζ )n–ν–1h(n)(ζ ) dζ ,

where n – 1 < ν < n, n = [ν] + 1, [ν] is the integer part of ν , and

�(z) =
∫ ∞

0
xz–1e–x dx. (1)

Definition 1.2 ([7, 10]) The Riemann–Liouville derivative of a continuous function h is
defined by

Dνh(ξ ) =
1

�(n – ν)

(
d

dξ

)n ∫ ξ

0

h(ζ )
(ξ – ζ )ν–n–1 dζ

(
n = [ν] + 1

)
,

where the right-hand side is defined on (0,∞).
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Let � be the set of all increasing continuous functions ψ : [0,∞) → [0,∞) such that
ψ(λx) ≤ λψ(x) ≤ λx for λ > 1, and let B be the family of nondecreasing functions γ :
[0,∞) → [0, 1

s2 ) for some s ≥ 1.

Definition 1.3 ([1]) Let (X, d) be a b-metric space (with constant s). A function g : X → X
is a generalized α – ψ-Geraghty contraction if there exists α : X × X → [0,∞) such that

α(z, t)ψ
(
s3d(gz, gt)

) ≤ γ
(
ψ

(
d(z, t)

))
ψ

(
d(z, t)

)
(2)

for all z, t ∈ X, where γ ∈ B and ψ ∈ � .

Definition 1.4 ([11]) Let g : X → X and α : X × X → [0,∞) be given. Then g is called
α-admissible if for z, t ∈ X,

α(z, t) ≥ 1 �⇒ α(gz, gt) ≥ 1. (3)

Theorem 1.5 ([1]) Let (X, d) be a complete b-metric space, and let f : X → X be a gener-
alized α – ψ-Geraghty contraction such that

(i) f is α-admissible;
(ii) there exists u0 ∈ X such that α(u0, fu0) ≥ 1;

(iii) if {un} ⊆ X , un → u in X , and α(un, un+1) ≥ 1, then α(un, u) ≥ 1.
Then f has a fixed point.

2 Main result
By X = C(I) we denote the set of continuous functions. Let d : X × X → [0,∞) be given by

d(y, z) =
∥∥(y – z)2∥∥∞ = sup

ξ∈I

(
y(ξ ) – z(ξ )

)2. (4)

Evidently, (X, d) is a complete b-metric space with s = 2 but is not a metric space.
Now we study the problem

Dν

Dξ
w(ξ ) = h

(
ξ , w(ξ )

)
, ξ ∈ I, 3 < ν ≤ 4, (5)

under the conditions

w(0) = w′(0) = w(1) = w′(1) = 0, (6)

where Dν is the Riemann–Liouville derivative, and h : I × X →R is continuous.

Lemma 2.1 ([13]) Given h ∈ C(I × X,R) and 3 < ν ≤ 4, the unique solution of

Dν

Dξ
w(ξ ) = h

(
ξ , w(ξ )

)
, ξ ∈ I, 3 < ν ≤ 4, (7)

where

w(0) = w′(0) = w(1) = w′(1) = 0, (8)
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is given by w(ξ ) =
∫ 1

0 G(ξ , ζ )h(s, w(s)) ds, where

G(ξ , ζ ) =

⎧⎨
⎩

(ξ–1)ν–1+(1–ζ )ν–2ξν–2[(ζ–ξ )+(ν–2)(1–ξ )ζ ]
�(ν) , 0 ≤ ζ ≤ ξ ≤ 1,

(1–ζ )ν–2ξν–2[(ζ–ξ )+(ν–2)(1–ξ )ζ ]
�(ν) , 0 ≤ ξ ≤ ζ ≤ 1.

(9)

If h(ξ , w(ξ )) = 1, then the unique solution of (7)–(8) is given by

f (ξ ) =
∫ 1

0
G(ξ , ζ ) ds =

1
�(ν + 1)

ξν–2(1 – ξ )2.

Lemma 2.2 ([13]) In Lemma 2.1, G(ξ , ζ ) given in (9) satisfies the following conditions:
(1) G(ξ , ζ ) > 0, and G(ξ , ζ ) is continuous for ξ , ζ ∈ I ;
(2) (ν–2)σ (ξ )ρ(ζ )

�(ν) ≤ G(ξ , ζ ) ≤ r0ρ(ζ )
�(ν) ,

where

r0 = max
{
ν – 1, (ν – 2)2}, σ (ξ ) = ξν–2(1 – ξ )2, and ρ(ζ ) = ζ 2(1 – ζ )ν–2.

Theorem 2.3 Suppose
(i) there exist θ : R2 →R and ψ ∈ � such that

∣∣h(ξ , c) – h(ξ , d)
∣∣ ≤ 1

2
√

2
�(ν + 1)

4ν

ψ(|c – d|2)√
4‖(c – d)2‖∞ + 1

for ξ ∈ I and c, d ∈R with θ (c, d) ≥ 0;
(ii) there exists y0 ∈ C(I) such that θ (y0(ξ ),

∫ 1
0 G(ξ , ζ )h(ζ , y0(ξ )) dζ ) ≥ 0, ξ ∈ I ;

(iii) for ξ ∈ I and y, z ∈ C(I), θ (y(ξ ), z(ξ )) ≥ 0 implies

θ

(∫ 1

0
G(ξ , ζ )h

(
ζ , y(ζ )

)
dζ ,

∫ 1

0
G(ξ , ζ )h

(
ζ , z(ξ )

)
dζ

)
≥ 0;

(iv) if {yn} ⊆ C(I), yn → y in C(I), and θ (yn, yn+1) ≥ 0, then θ (yn, y) ≥ 0.
Then problem (7) has at least one solution.

Proof By Lemma 2.1 y ∈ C(I) is a solution of (7) if and only if it is a solution of y(ξ ) =∫ 1
0 G(ξ , ζ )h(ζ , y(ζ )) dζ , and we define A : C(I) → C(I) by Ay(ξ ) =

∫ 1
0 G(ξ , ζ )h(ζ , y(ζ )) dζ for

ξ ∈ I . For this purpose, we find a fixed point of A. Let y, z ∈ C(I) be such that θ (y(ξ ), z(ξ )) ≥
0 for ξ ∈ I . Using (i), we get

∣∣Ay(ξ ) – Az(ξ )
∣∣2 =

∣∣∣∣
∫ 1

0
G(ξ , ζ )

(
h
(
ζ , y(ζ )

)
– h

(
ζ , z(ζ )

))
dζ

∣∣∣∣
2

≤
[∫ 1

0
G(ξ , ζ )

∣∣h(
ζ , y(ζ )

)
– h

(
ζ , z(ζ )

)∣∣dζ

]2

≤
[∫ 1

0
G(ξ , ζ )

1
2
√

2
�(ν + 1)

4ν

ψ(|y(ζ ) – z(ζ )|2)√
4‖(y – z)2‖∞ + 1

dζ

]2

≤ 1
8

(ψ(‖(y – z)2‖∞))2

4‖(y – z)2‖∞ + 1
.
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Hence, for y, z ∈ C(I) and ξ ∈ I with θ (y(ξ ), z(ξ )) ≥ 0, we have

‖(Ay – Az)2‖∞ ≤ 1
8

(ψ(‖(y – z)2‖∞))2

4‖(y – z)2‖∞ + 1
.

Let α : C(I) × C(I) → [0,∞) be defined by

α(y, z) =

⎧⎨
⎩

1, θ (y(ξ ), z(ξ )) ≥ 0, ξ ∈ I,

0 otherwise.

Define γ : [0,∞) → [0, 1
4 ) by γ (q) = q

4q+1 and s = 2.
So

α(y, z)ψ
(
8d(Ay, Az)

) ≤ 8α(y, z)ψ
(
d(Ay, Az)

) ≤ (ψ(d(y, z)))2

4d(y, z) + 1

≤ (ψ(d(y, z)))2

4ψ(d(y, z)) + 1

=
1

γ (ψ(d(y, z)))
γ
(
ψ

(
d(y, z)

)) (ψ(d(y, z)))2

4ψ(d(y, z)) + 1

≤ γ
(
ψ

(
d(y, z)

))
ψ

(
d(y, z)

)
, γ ∈ B.

Then A is an α – ψ–contractive mapping. From (iii) and the definition of α we have

α(y, z) ≥ 1 ⇒ θ
(
y(ξ ), z(ξ )

) ≥ 0

⇒ θ
(
A(y), A(z)

) ≥ 0

⇒ α
(
A(y), A(z)

) ≥ 1,

for y, z ∈ C(I). Thus, A is α-admissible. By (ii) there exists y0 ∈ C(I) such that α(y0, Ay0) ≥ 1.
By (iv) and Theorem 1.5 there is y∗ ∈ C(I) such that y∗ = Ay∗. Hence y∗ is a solution of the
problem. �

Corollary 2.4 Suppose that there exist θ : R2 →R and ψ ∈ � such that

∣∣h(ξ , c) – h(ξ , d)
∣∣ ≤ 103

4
√

8
ψ(|c – d|2)√

4‖(c – d)2‖∞ + 1
(10)

for ξ ∈ I and c, d ∈R with θ (c, d) ≥ 0. Also, suppose that conditions (ii)–(iv) from Theorem
2.3 hold for h, where G(ξ , ζ ) is given in (9). Then the problem

D 7
2

Dξ
w(ξ ) = h

(
ξ , w(ξ )

)
, ξ ∈ I, (11)

where

w(0) = w′(0) = w(1) = w′(1) = 0,

has at least one solution.
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Proof By Lemma 2.2

min
∫ 1

0
G(ξ , ζ ) dζ = 10–5 and max

∫ 1

0
G(ξ , ζ ) dζ = 4 × 10–3. (12)

Using (10) and (12), by Theorem 2.3 we obtain

∣∣Ay(ξ ) – Az(ξ )
∣∣2 ≤ 1

8
(ψ(|y – z|2))2

4‖(y – z)2‖∞ + 1
.

The rest of the proof is according to Theorem 2.3. �

Lemma 2.5 ([8]) If h ∈ C(I × X,R) and h(ξ , w(ξ )) ≤ 0, then the problem

–Dν
0+w(ξ ) = h

(
ξ , w(ξ )

)
, (0 < ξ < 1, 3 < ν ≤ 4),

w(0) = w′(0) = w′′(0) = w′′(1) = 0
(13)

has a unique positive solution

w(ξ ) =
∫ 1

0
G(ξ , ζ )h

(
ζ , w(ζ )

)
dζ ,

where G(ξ , ζ ) is given by

G(ξ , ζ ) =
1

�(ν)

⎧⎨
⎩

ξν–1(1 – ζ )ν–3 – (ξ – ζ )ν–1, 0 ≤ ζ ≤ ξ ≤ 1,

ξν–1(1 – ζ )ν–3, 0 ≤ ξ ≤ ζ ≤ 1.
(14)

Lemma 2.6 ([12]) The function G(ξ , ζ ) in Lemma 2.5 has the following property:

1
�(ν)

ζ (2 – ζ )(1 – ζ )ν–3ξν–1 ≤ G(ξ , ζ ) ≤ 1
�(ν)

(1 – ζ )ν–3ξν–1,

where ξ , ζ ∈ I and 3 < ν ≤ 4.

Based on Theorem 2.3, we get the following result.

Corollary 2.7 Assume that there exist θ : R2 →R and ψ ∈ � such that

∣∣h(ξ , c) – h(ξ , d)
∣∣ ≤ 1

2
√

2M
ψ(|c – d|2)√

4‖(c – d)2‖∞ + 1
,

where M = supξ∈I
∫ 1

0 G(ξ , ζ ) dζ . Also, suppose that conditions (ii)–(iv) from Theorem 2.3
are satisfied, where G(ξ , ζ ) is given in (14). Then problem (13) has at least one solution.

Proof By Lemma 2.5 y ∈ C(I) is a solution of (13) if and only if a solution of y(ξ ) =∫ 1
0 G(ξ , ζ )h(ζ , y(ζ )) dζ . Define A : C(I) → C(I) by Ay(ξ ) =

∫ 1
0 G(ξ , ζ )h(ζ , y(ζ )) dζ for ξ ∈ I .

We find a fixed point of A. Let y, z ∈ C(I) be such that θ (y(ξ ), z(ξ )) ≥ 0 for ξ ∈ I . By (i) and
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Lemma 2.6 we get

∣∣Ay(ξ ) – Az(ξ )
∣∣2

=
∣∣∣∣
∫ 1

0
G(ξ , ζ )

(
h
(
ζ , y(ζ )

)
– h

(
ζ , z(ζ )

))
dζ

∣∣∣∣
2

≤
[∫ 1

0
G(ξ , ζ )

∣∣h(
ζ , y(ζ )

)
– h

(
ζ , z(ζ )

)∣∣dζ

]2

≤
[∫ 1

0
G(ξ , ζ )

1
2
√

2M
ψ(|y(ζ ) – z(ζ )|2)√
4‖(y – z)2‖∞ + 1

dζ

]2

≤
[∫ 1

0
G(ξ , ζ )

1
2
√

2(supξ∈I
∫ 1

0 G(ξ , ζ ) dζ )
ψ(|y(ζ ) – z(ζ )|2)√
4‖(y – z)2‖∞ + 1

dζ

]2

≤
[∫ 1

0
G(ξ , ζ )

1
2
√

2(
∫ 1

0 G(ξ , ζ ) dζ )
ψ(|y(ζ ) – z(ζ )|2)√
4‖(y – z)2‖∞ + 1

dζ

]2

≤
[∫ 1

0

1
�(ν)

(1 – ζ )ν–3ξν–1 �(ν)
2
√

2(
∫ 1

0 ζ (2 – ζ )(1 – ζ )ν–3ξν–1 dζ )

× ψ(|y(ζ ) – z(ζ )|2)√
4‖(y – z)2‖∞ + 1

dζ

]2

≤ 1
8

(ψ(‖(y – z)2‖∞))2

4‖(y – z)2‖∞ + 1
.

Suppose that conditions (ii)–(iv) from Theorem 2.3 are satisfied, where G(ξ , ζ ) is given in
(14). By Theorem 2.3 problem (13) has at least one solution.

Let (X, d) be given in (4). For the equation

cDνy(ξ ) = h
(
ξ , y(ξ )

)
, (ξ ∈ I, 1 < ν ≤ 2), (15)

via

y(0) = 0, y(1) =
∫ η

0
y(ζ ) dζ (0 < η < 1),

where h : I × X →R is continuous, we have the following result. �

Theorem 2.8 Assume that there exist θ : R2 →R, γ ∈ B, and ψ ∈ � such that

∣∣h(ξ , c) – h(ξ , d)
∣∣ ≤ �(ν + 1)

5

√
1
8
γ
(
ψ

(|c – d|2))ψ(|c – d|2).

Suppose conditions (ii)–(iv) from Theorem 2.3 hold, where A : C(I) → C(I) is defined by

Ay(ξ ) :=
1

�(ν)

∫ 1

0
(ξ – ζ )ν–1h

(
ζ , y(ζ )

)
dζ –

2ξ

(2 – η2)�(ν)

∫ 1

0
(1 – ζ )ν–1h

(
ζ , y(ζ )

)
dζ

+
2ξ

(2 – η2)�(ν)

∫ η

0

(∫ ζ

0
(ζ – n)ν–1h

(
n, y(n)

)
dn

)
dζ (ξ ∈ I);

Then (15) has at least one solution.
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Proof A function y ∈ C(I) is a solution of (15) if and only if it is a solution of

y(ξ ) =
1

�(ν)

∫ 1

0
(ξ – ζ )ν–1h

(
ζ , y(ζ )

)
dζ –

2ξ

(2 – η2)�(ν)

∫ 1

0
(1 – ζ )ν–1h

(
ζ , y(ζ )

)
dζ

+
2ξ

(2 – η2)�(ν)

∫ η

0

(∫ ζ

0
(ζ – n)ν–1h

(
n, y(n)

)
dn

)
dζ (ξ ∈ I).

Then (15) is equivalent to finding y∗ ∈ C(I) that is a fixed point of A. Let y, z ∈ C(I) with
θ (y(ξ ), z(ξ )) ≥ 0, ξ ∈ I . By (i) we have

∣∣Ay(ξ ) – Az(ξ )
∣∣2

=
∣∣∣∣ 1
�(ν)

∫ 1

0
(ξ – ζ )ν–1h

(
ζ , y(ζ )

)
dζ

–
2ξ

(2 – η2)�(ν)

∫ 1

0
(1 – ζ )ν–1h

(
ζ , y(ζ )

)
dζ

+
2ξ

(2 – η2)�(ν)

∫ η

0

(∫ ζ

0
(ζ – n)ν–1h

(
n, y(n)

)
dn

)
dζ

–
1

�(α)

∫ 1

0
(ξ – ζ )ν–1h

(
ζ , z(ζ )

)
dζ

+
2ξ

(2 – η2)�(ν)

∫ 1

0
(1 – ζ )ν–1h

(
ζ , z(ζ )

)
dζ

–
2ξ

(2 – η2)�(ν)

∫ η

0

(∫ ζ

0
(ζ – n)ν–1h

(
n, z(n)

)
dn

)
dζ

∣∣∣∣
2

≤
∣∣∣∣ 1
�(ν)

∫ 1

0
|ξ – ζ

∣∣∣∣
ν–1∣∣h(

ζ , y(ζ )
)

– h
(
ζ , z(ζ )

)∣∣dζ

+
2ξ

(2 – η2)�(ν)

∫ 1

0
|1 – ζ |ν–1∣∣h(

ζ , y(ζ )
)

– h
(
ζ , z(ζ )

)∣∣dζ

+
2ξ

(2 – η2)�(ν)

∫ η

0

∣∣∣∣
∫ ζ

0
|ζ – n|ν–1∣∣h(

n, y(n)
)

– h
(
n, z(n)

)∣∣dn|dζ

∣∣∣∣
2

≤
∣∣∣∣ 1
�(ν)

∫ 1

0
|ξ – ζ |ν–1 �(ν + 1)

5

√
1
8
γ
(
ψ

(∣∣y(ζ ) – z(ζ )
∣∣2))

ψ
(∣∣y(ζ ) – z(ζ )

∣∣2)dζ

+
2ξ

(2 – η2)�(ν)

∫ 1

0
|1 – ζ |ν–1 �(ν + 1)

5

×
√

1
8
γ
(
ψ

(∣∣y(ζ ) – z(ζ )
∣∣2))

ψ
(∣∣y(ζ ) – z(ζ )

∣∣2)dζ

+
2ξ

(2 – η2)�(ν)

∫ η

0

∫ ζ

0
|ζ – n|ν–1

×
√

1
8
γ
(
ψ

(∣∣y(n) – z(n)
∣∣2))

ψ
(∣∣y(n) – z(n)

∣∣2)dζ

∣∣∣∣
2

≤
(

�(ν + 1)
5

)2 1
8
γ
(
ψ

(‖y – z‖2
∞

))
ψ

(‖y – z‖2
∞

)[
sup

(∫ 1

0
|ξ – ζ |ν–1 dζ

+
2ξ

(2 – η2)�(ν)

∫ 1

0
|1 – ζ |ν–1 dζ
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+
2ξ

(2 – η2)�(ν)

∫ η

0

(∫ ζ

0
|ζ – n|ν–1dn

)
dζ

)]2

≤ 1
8
γ
(
ψ

(‖y – z‖2
∞

))
ψ

(‖y – z‖2
∞

)

for all y, z ∈ C(I) with θ (y(ξ ), z(ξ )) ≥ 0, ξ ∈ I , so that

∥∥(Ay – Az)2∥∥∞ ≤ 1
8
γ
(
ψ

(‖y – z‖2
∞

))
ψ

(‖y – z‖2
∞

)
.

Let α : C(I) × C(I) → [0,∞) be defined by

α(y, z) =

⎧⎨
⎩

1 θ (y(ξ ), z(ξ )) ≥ 0, ξ ∈ I,

0 otherwise.

Then

α(y, z)ψ
(
8d(Ay, Az)

) ≤ 8α(y, z)ψ
(
d(Ay, Az)

)

≤ α(y, z)ψ
(
γ
(
ψ

(
d(y, z)

))
ψ

(
d(y, z)

))

≤ γ
(
ψ

(
d(y, z)

))
ψ

(
d(y, z)

)

for all y, z ∈ C(I), and thus A is an α – ψ–contractive mapping. From Theorem 1.5, based
on the proof of Theorem 2.3, we can deduce the proof of Theorem 2.8. �

Here we find a positive solution for

cDν

Dξ
w(ξ ) = h

(
ξ , w(ξ )

)
, 0 < ν ≤ 1, ξ ∈ I, (16)

where

w(0) +
∫ 1

0
w(ζ ) dζ = w(1).

Note that cDν is the Caputo derivative of order ν . We consider the Banach space of con-
tinuous functions on I endowed with the sup norm. We have the following lemma.

Lemma 2.9 ([4]) Let 0 < ν ≤ 1 and h ∈ C([0, T] × X,R) be given. Then the equation

cDνw(ξ ) = h
(
ξ , w(ξ )

) (
ξ ∈ [0, T], T ≥ 1

)

with

w(0) +
∫ T

0
w(ζ ) dζ = w(T)

has a unique solution given by

w(ξ ) =
∫ T

0
G(ξ , ζ )h

(
ζ , w(ζ )

)
dζ ,
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where G(ξ , ζ ) is defined by

G(ξ , ζ ) =

⎧⎨
⎩

–(T–ζ )ν+νT(ξ–ζ )ν–1

T�(ν+1) + (T–ζ )ν–1

T�(ν) , 0 ≤ ζ < ξ ,
–(T–ζ )ν
T�(ν+1) + (T–ζ )ν–1

T�(ν) , ξ ≤ ζ < T .
(17)

By Lemma 2.9 and Theorem 2.4 we get the following conclusion.

Corollary 2.10 Assume that there exist θ : R2 →R and ψ ∈ � such that

∣∣h(ξ , c) – h(ξ , d)
∣∣ ≤ 51

80
√

8
ψ(|c – d|2)√

4‖(c – d)2‖∞ + 1

for ξ ∈ I and c, d ∈ R with θ (c, d) ≥ 0. Suppose conditions (ii)–(iv) from Theorem 2.3 are
satisfied, where G(ξ , ζ ) is given in (17). Then the following problem has at least one solution:

cD
1
2 w(ξ ) = h

(
ξ , w(ξ )

)
,

(
ξ ∈ [0, 1]

)
, w(0) +

∫ 1

0
w(ζ ) dζ = w(1).

Proof It is easily that mint∈[0,1]
∫ 1

0 G(t, s) ds = 1
3 and maxt∈[0,1]

∫ 1
0 G(t, s) ds = 80

51 . By Theo-
rem 2.3 we conclude the desired result. �

Example 2.11 Let ψ(r) = r, θ (x, z) = xz, and yn(ξ ) = ξ

n2+1 . We consider h : I × [–2, 2] →
[–2, 2] and the periodic boundary value problem

D 7
2

Dξ
w(ξ ) = h

(
ξ , w(ξ )

)
= w(ξ ), ξ ∈ I, (18)

with

w(0) = w′(0) = w(1) = w′(1) = 0.

Then

∣∣h(ξ , c) – h(ξ , d)
∣∣ = |c – d| ≤ 103

4
√

8
ψ(|c – d|2)√

4‖(c – d)2‖∞ + 1

for ξ ∈ I and c, d ∈ [–2, 2] with θ (c, d) ≥ 0. Because y0(ξ ) = ξ , thus

θ

(
y0(ξ ),

∫ 1

0
G(ξ , ζ )h

(
ζ , y0(ζ )

)
dζ

)
≥ 0

for all ξ ∈ I . Also, θ (y(ξ ), z(ξ )) = y(ξ )z(ξ ) ≥ 0 implies that

θ

(∫ 1

0
G(ξ , ζ )h

(
ζ , y(ζ )

)
dζ ,

∫ 1

0
G(ξ , ζ )h

(
ζ , z(ζ )

)
dζ

)
≥ 0.

It is obvious that condition (iv) in Corollary (2.4) holds. Hence by Corollary 2.4 problem
(18) has at least one solution.
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