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Abstract
This paper aims to obtain an approximate solution for fractional order Riccati
differential equations (FRDEs). FRDEs are equivalent to nonlinear Volterra integral
equations of the second kind. In order to solve nonlinear Volterra integral equations
of the second kind, a class of Runge–Kutta methods has been applied. Runge–Kutta
methods have been implemented to solve nonsingular integral equations. In this
work Volterra integral equations are singular. The singularity by a suitable subtraction
technique will be weakened; then, this method will be applied to gain an
approximate solution. Fractional derivatives are defined in the Caputo form of order
0 < α ≤ 1.
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1 Introduction
A generalization of the classical Newtonian calculus is called fractional calculus and ap-
pears in many natural phenomena such as physical, chemical, sociological, biological, and
economical processes. Fractional differential equations are one of the most important
branches of fractional calculus. Fractional differential equations are an essential tool in
mathematical modeling for many engineering and scientific problems [1–9]. FRDEs are
well known equations that find many applications in scientific phenomena. The general
form of FRDEs is as follows:

Dα
s x(s) = r(s)x2(s) + q(s)x(s) + p(s), s > 0, 0 < α ≤ 1, (1)

with the initial condition

x(0) = k, (2)

where p(s), q(s), and r(s) are known functions, Dα
s is the Caputo fractional derivative op-

erator. For α = 1, FRDEs are the same as classical Riccati differential equations.
There are numerous direct numerical approaches for solving such equations. Some

of these methods are as follows: optimal homotopy asymptotic method [10], homotopy
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analysis [11–13], homotopy perturbation [14–18], variational iteration [19, 20], modified
variational iteration [21], differential transform [22], shifted Jacobi spectral method [23],
Taylor matrix method [24], Adomian decomposition [1, 25, 26], and B-spline operational
matrix method [27]. In this work, first, FRDEs will be converted into nonlinear Volterra
integral equations of the second kind and then we will look for the solution by a class of
Runge–Kutta methods. However, we usually suppose that the kernel and driving terms are
continuous functions in the interval of integration and the kernel satisfies a uniform Lip-
schitz condition in x [28]. We are aware that, when this assumption violated, the method
will fail utterly, or at best converge slowly. For solving singular integral equations, the pur-
pose is to achieve a method as a product integration which converges as fast as for smooth
problems [28]. We know that obtained equivalent nonlinear Volterra integral equations of
the second kind, which will be described in Sect. 2, are singular at the final point. So by
an appropriate subtraction technique, the singularity will be weakened and then Runge–
Kutta approach can be applied. However, at singular points, the modified method is slow,
yet we see two advantages in this approach, namely the ability to use this method for spe-
cial singular nonlinear Volterra integral equations of the second kind and getting relatively
accurate results for the solution in comparison with other methods. The singularity of the
nonlinear kernel, k(s, t, x(t)), implies that the construction of methods with high order
accuracy will not be easy. Under best conditions, the rate of convergence decreases [29].
During recent years, various papers have been devoted to the solution of linear and nonlin-
ear weakly singular integral equations. In [30], Chebyshev spectral collocation method has
been implemented to solve multidimensional nonlinear Volterra integral equation with a
weakly singular kernel. The local discrete collocation method, which does not need any
meshes, is called the meshless local discrete collocation (MLDC) method. This approach
has been utilized for solving weakly singular integral equations [31]. In [29], a strong ap-
proach based on Legendre multiwavelets is presented for obtaining the approximate so-
lution of Fredholm weakly singular integro-differential equations. A kind of subtraction
technique has been applied in this paper. The discrete Galerkin approach with thin-plate
splines based on scattered points is used to calculate the solution of nonlinear weakly
singular Fredholm integral equation in [32]. In [33], tau approximation method has been
applied to solve weakly singular Volterra-Hammerstein integral equations. An interesting
numerical method by combining the product integration and collocation methods based
on the radial basis functions has been used for solving weakly singular Fredholm integral
equations in [34]. Moreover, Newton product integration method [35], the piecewise poly-
nomial collocation method [36, 37], and quadratic spline collocation method [38] have
been utilized for solving weakly singular integral equations. An efficient approach based
on combining the radial basis functions and discrete collocation method has been imple-
mented to solve nonlinear Volterra integral equations of the second kind in [39]. A numer-
ical scheme based on the moving least squares method has been applied to solve integral
equations in [40]. This approach is meshless. Some other related works that can be useful
to better understand the research are [41–47].

The rest of this paper is organized as follows: in the next section, we present a brief
review of a class of Runge–Kutta methods for nonlinear Volterra integral equations of the
second kind. In Sect. 3, we explain the subtraction of the singularity and application of
the approach. In Sect. 4, we investigate two numerical examples. In Sect. 5, convergence
analysis will be discussed. In the last section, we present the conclusions.
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2 Preliminaries
The aim of this section is to recall some preliminaries about the objects used in our paper.

2.1 Definition
Definition 1 The Riemann–Liouville fractional integral of order α > 0 of a function x :
(0,∞) → R is defined by

Jαx(s) =
1

�(α)

∫ s

0
(s – t)α–1x(t) dt, (3)

where � is the Gamma function. It must be noted that in this paper 0 < α ≤ 1. See [7] for
more details and examples.

Definition 2 The Caputo fractional derivative of order α > 0 of a function x : (0,∞) → R
is defined as

Dαx(s) =
1

�(m – α)

∫ s

0
(s – t)m–α–1x(m)(t) dt, m = �α�. (4)

See [7] for more details and examples.

2.2 Existence of solutions
Consider the initial value problem (IVP) with Caputo fractional derivative given by

Dαx(s) = f
(
s, x(s)

)
, (5)

with initial conditions

Dkx(0) = x(k)
0 , k = 0, 1, . . . , m – 1. (6)

We want to illustrate, by a theorem and a lemma, that every solution of the IVP given by
(5) is also a solution of the following equation:

x(s) =
m–1∑
k=0

sk

k!
x(k)

0 +
1

�(α)

∫ s

0
(s – t)α–1f

(
t, x(t)

)
dt, m = �α�. (7)

Theorem 1 Let α > 0, m = �α�, x(0)
0 , . . . , x(m–1)

0 ∈ R, L > 0 and h∗ > 0. Define H := {(s, x) : s ∈
[0, h∗], |x –

∑m–1
k=0

sk

k! x
(k)
0 | ≤ L}. Moreover, suppose that the function f : H → R is continuous.

Define P := sup(s,z)∈H |f (s, z)| and

h :=

⎧⎨
⎩

h∗ if P = 0,

min{h∗, (L�(α + 1)/P))1/n} else.

Then there exists a function x ∈ C[0, h], satisfying IVP (5) (see [7]).

Lemma 1 Assume the hypotheses of Theorem 1. A function x ∈ C[0, h] is a solution IVP (5)
if and only if this function is a solution of the nonlinear Volterra integral equation of the
second kind (7) (see [7]).
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Remark 1 As a direct result from Lemma 1, let us consider the IVP given by

Dαx(s) = f
(
s, x(s)

)
, (8)

with the initial condition

x(0) = x0, (9)

where Dα is Caputo fractional derivative, and f ∈ C([0, L] × R, R), 0 < α ≤ 1. Since f is pre-
sumed to be continuous, every solution of (8) is also a solution of the following nonlinear
Volterra integral equation of the second kind:

x(s) = x0 +
1

�(α)

∫ s

0
(s – t)α–1f

(
t, x(t)

)
dt, t ∈ [0, L]. (10)

Furthermore, every solution of the equation given by (10) is a solution of (8) (see [7, 48]).

2.3 Runge–Kutta methods
Consider nonsingular Volterra equations of the second kind of the general form given by

x(s) = y(s) +
∫ s

a
k
(
s, t, x(t)

)
dt, a ≤ s ≤ b, (11)

and suppose that the solution is defined over a finite interval [a, b], y is continuous in
the closed interval [a, b], kernel is continuous in a ≤ t ≤ s ≤ b and it satisfies a uniform
Lipschitz condition in x. In Eq. (11), these conditions guaranty the existence of a unique
continuous solution. Rung–Kutta methods are efficient numerical methods to approxi-
mate the solution of (11). These methods are self-starting approaches which specify the
approximate solution at the points si = a + ih, i = 1, . . . , N ; we generate approximations to
the solution at some intermediate points in the closed interval [si, si+1], i = 0, . . . , N – 1,
where si + θrh, i = 0, . . . , N – 1, r = 1, . . . , p – 1, and 0 = θ0 ≤ θ1 ≤ · · · ≤ θp–1 ≤ 1. Then we
apply the general p-stage Rung–Kutta approach to obtain an approximate solution of the
initial value problem

x′(s) = f
(
s, x(s)

)
, (12)

x(a) = x0, (13)

given by

xi+1 = xi + h
p–1∑
l=0

Aplki
l , (14)

where

ki
0 = f (a + ih, xi), (15)

ki
r = f

(
a + (i + θr)h, xi + h

r–1∑
l=0

Arlki
l

)
, r = 1, . . . , p – 1, (16)
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r–1∑
l=0

Arl =

{
θr , r = 1, 2, . . . , p – 1,
1, r = p,

(17)

and where xl is an approximation to the solution at s = sl = a + lh. We can rewrite Eq. (14)
as follows:

xi+1 = xi + h
p–1∑
l=0

Aplf (si + θlh, xi+θl ). (18)

It must be noted that Apl , θl are chosen to obtain the final approximate solution of a special
order. Equation (18), for a given pair (p, q), provides a set of nonlinear equations that may
have no solutions, one solution, or a family of solutions; see [28] for more details and
examples.

2.4 A class of Runge–Kutta methods
We can extend Eq. (18) to gain a class of Rung–Kutta methods to solve nonsingular
Volterra equations of the second kind of the general form in (11). Substituting si into (11),
results in

x(si) = y(si) +
∫ a+ih

a
k
(
a + ih, t, x(t)

)
dt, i = 1, . . . , N , (19)

so

x(si) = y(si) +
i–1∑
j=0

∫ a+(j+1)h

a+jh
k
(
a + ih, t, x(t)

)
dt, i = 1, . . . , N . (20)

We can consider an approximation xi to x(si) from the following equation:

xi = y(si) + h
i–1∑
j=0

p–1∑
l=0

Aplk
(
a + ih, a + (j + θl)h, xj+θl

)
. (21)

For s ∈ (si, si+1), Eq. (11) can be written as the following form:

x(s) = y(s) +
i–1∑
j=0

∫ sj+1

sj

k
(
s, t, x(t)

)
dt +

∫ s

si

k
(
s, t, x(t)

)
dt. (22)

By setting s = si + θϑh, ϑ = 1, . . . , p – 1, the last integral in (22) will be approximated as
follows:

∫ si+θϑ h

si

k
(
si + θϑh, t, x(t)

)
dt ≈ h

ϑ–1∑
l=0

Aϑ lk(si + θϑh, si + θlh, xi+θl ). (23)

According to (20), (21), (22), and (23), the Runge–Kutta method for (11) can be rewritten
as the following form:

xi+θϑ h = y(si + θϑh) + h
i–1∑
j=0

p–1∑
l=0

Aplk(si + θϑh, sj + θlh, xj+θl )

+ h
ϑ–1∑
l=0

Aϑ lk(si + θϑh, si + θlh, xi+θl ),

(24)
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i = 0, 1, . . . , N – 1, ϑ = 1, 2, . . . , p – 1, where x(a) = y(a), and Arj, θj, r = 1, 2, . . . , p, j = 0, . . . , p –
1, describe the particular method; see [28] for more details and examples.

3 Subtraction of the singularity
In this section, we want to apply a class of Runge–Kutta methods for solving nonlinear
Volterra integral equations of the second kind with singular kernels given by (11). For
this, we assume that k(s, t, x(t)) = K(s, t)[βx2(t) + γ x(t)], where

K(s, t) =
K0(s, t)

(s – t)1–α
, β ,γ ∈ R, 0 < α ≤ 1, (25)

and we suppose K0(s, t) is regular. Now we utilize the Runge–Kutta method given in
Sect. 2.4 for the kernel provided in (25). According to Eq. (22), we have

x(s) = y(s) +
i–1∑
j=0

∫ sj+1

sj

K(s, t)
[
βx2(t) + γ x(t)

]
dt

+
∫ s

si

K(s, t)
[
βx2(t) + γ x(t)

]
dt. (26)

We know that the singularity of the kernel is at s = t, in the last term of Eq. (26), so it is
enough that we obtain the last term as follows:

∫ s

si

K(s, t)
[
βx2(t) + γ x(t)

]
dt

=
∫ s

si

K(s, t)
[(

βx2(t) + γ x(t)
)

–
(
βx2(s) + γ x(s)

)
+

(
βx2(s) + γ x(s)

)]
dt, (27)

and finally,
∫ s

si

K(s, t)
[
βx2(t) + γ x(t)

]
dt

= β

∫ s

si

K0(s, t)
(s – t)1–α

(
x2(t) – x2(s)

)
dt + γ

∫ s

si

K0(s, t)
(s – t)1–α

(
x(t) – x(s)

)
dt

+
(
βx2(s) + γ x(s)

)
q(s), (28)

where q(s) =
∫ s

si
K0(s,t)

(s–t)1–α dt is known and can be computed easily. If the primal integral exists
in the Riemann sense then the first and second terms of (28) are now regular at s = t. Since
x2(t) – x2(s) = 0, and x(t) – x(s) = 0, at the singular point s = t, the singularity is weaker
than in the previous case. So, we can now introduce Runge–Kutta method and apply it
to (28). The singularity happens when θϑ = θl , so the term θϑ = θl , is omitted employing
the identities K(s, s)(x2(s) – x2(s)) = 0 and K(s, s)(x(s) – x(s)) = 0. It must be noted that the
singularity has been weakened, by this subtraction technique, but has not been removed
completely. So by implementing the Runge–Kutta method, if θϑ = θl , we can write the
numerical form of Eq. (28) as follows:

∫ s

si

K(s, t)
[
βx2(t) + γ x(t)

]
dt

= βh
ϑ–1∑
l=0

θϑ �=θl

Aϑ l
[
k(si + θϑh, si + θlh)

(
x2

i+θl
– x2

i+θϑ

)]
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+ γ h
ϑ–1∑
l=0

θϑ �=θl

Aϑ l
[
k(si + θϑh, si + θlh)

]
(xi+θl – xi+θϑ )]

+
(
βx2(si + θϑh) + γ x(si + θϑh)

)
q(si + θϑh). (29)

Finally, we write the numeric form of Eq. (24) as

xi+θϑ = y(si + θϑh) + h
i–1∑
j=0

p–1∑
l=0

AplK(si + θϑh, sj + θlh)
[
βx2

j+θl
+ γ xj+θl

]

+ βh
ϑ–1∑
l=0

θϑ �=θl

Aϑ l
[
k(si + θϑh, si + θlh)

(
x2

i+θl
– x2

i+θϑ

)]

+ γ h
ϑ–1∑
l=0

θϑ �=θl

Aϑ l
[
k(si + θϑh, si + θlh)

]
(xi+θl – xi+θϑ )]

+
(
βx2

i+θϑ
+ γ xi+θϑ

)
q(si + θϑh), (30)

where β ,γ ∈ R, ϑ = 1, 2, . . . , p – 1, q(s) =
∫ s

si
K0(s,t)

(s–t)1–α dt, and K(s, t) = K0(s,t)
(s–t)1–α , i = 0, 1, . . . , N – 1.

Here xi+θϑ is an approximation of x(si + θϑh), x(a) = y(a), and Arj, θj, r = 1, 2, . . . , p, j =
0, . . . , p – 1, describe the particular method (see [28, 29]).

The proposed approach, with this subtraction technique, is called the new p-stage
Runge–Kutta method (NRKp).

4 Examples
In this section, first, a new 4-stage Runge–Kutta method (NRK4) is obtained, and then the
application of this approach in solving fractional Riccati differential equations is illustrated
by two examples.

We set p = 4, ϑ = 1, 2, 3, i = 0, 1, . . . , N – 1, r = 1, 2, 3, 4, j = 0, . . . , 3 and K0(s, t) = c0, c0∈R,
to gain a new 4-stage Runge–Kutta method from Eq. (30), and derive

xi+θϑ = y(si + θϑh) + h
i–1∑
j=0

3∑
l=0

A4lK(si + θϑh, sj + θlh)
[
βx2

j+θl
+ γ xj+θl

]

+ βh
ϑ–1∑
l=0

θϑ �=θl

Aϑ l
[
k(si + θϑh, si + θlh)

(
x2

i+θl
– x2

i+θϑ

)]

+ γ h
ϑ–1∑
l=0

θϑ �=θl

Aϑ l
[
k(si + θϑh, si + θlh)

]
(xi+θl – xi+θϑ )]

+
(
βx2

i+θϑ
+ γ xi+θϑ

)
q(si + θϑh), (31)

where θ0 = 0, θ1 = θ2 = 1
2 , θ3 = 1, A10 = 1

2 , A20 = 0, A21 = 1
2 , A30 = A31 = 0, A32 = 1, A40 =

A43 = 1
6 , and A41 = A42 = 1

3 ; see [28] for more details about the values of θj, j = 0, 1, 2, 3.
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Example 1 Consider the following fractional Riccati differential equation:

Dαx(s) = 1 – x2(s), 0 ≤ s ≤ 1, 0 < α ≤ 1, (32)

with the initial condition

x(0) = 0. (33)

The exact solution, for α = 1, is

x(s) =
e2s – 1
e2s + 1

. (34)

According to Remark 1, we can write (32) as follows:

x(s) = y(s) +
∫ s

0
k
(
s, t, x(t)

)
dt, 0 ≤ s ≤ 1, (35)

where y(s) = sα
�(α+1) , k(s, t, x(t)) = βk(s, t)x2(t), K(s, t) = 1

(s–t)1–α , β = – 1
�(α) , and γ = 0. By set-

ting i = 0, ϑ = 1 in (31), we have x 1
2

= hα

2α�(α+1) . In the next step, if i = 0, ϑ = 2, the singularity
happens at s = h

2 , so the second x 1
2

can be achieved as

x 1
2

=
hα

2α�(α + 1)
+ hβ

1∑
l=0
l �=1

A2lk(s0 + θ2h, s0 + θlh)
(
x2

0+θl
– x2

0+θ2

)
+ βx2

1
2

q
(

h
2

)
, (36)

where q( h
2 ) =

∫ h
2

0
1

( h
2 –t)1–α

dt, and x 1
2

is an approximation of x( h
2 ). The following quadratic

polynomial will be obtained from (36):

x 1
2

=
hα

2α�(α + 1)
(
1 – x2

1
2

)
. (37)

To get x 1
2

, we prefer to utilize the predictor–corrector method. For such a purpose, we
use the first iteration of x 1

2
= hα

2α�(α+1) on the right-hand side of (37) as a predictor. Let us
consider x 1

2
= x(0)

1
2

. Equation (37) can now be rewritten as follows:

x(1)
1
2

=
hα

2α�(α + 1)
(
1 –

(
x(0)

1
2

)2), (38)

i.e.,

x(1)
1
2

=
hα

2α�(α + 1)

(
1 –

(
hα

2α�(α + 1)

)2)
. (39)

By repeating this process, we obtain

x(2)
1
2

=
hα

2α�(α + 1)
(
1 –

(
x(1)

1
2

)2). (40)
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Finally, after two iterations we get

x(2)
1
2

=
hα

2α�(α + 1)

(
1 –

(
hα

2α�(α + 1)

(
1 –

(
hα

2α�(α + 1)

)2))2)
. (41)

With this technique given by (36), the singularity of x 1
2

will disappear, and with the
predictor–corrector method, the approximation of x( h

2 ) will improve. In the following,
we put i = 0, ϑ = 3, so

x1 =
hα

�(α)

(
1
α

–
(x(2)

1
2

)2

2α–1

)
. (42)

By substituting (41) into (42), we gain

x1 =
hα

�(α)

(
1
α

–
( hα

2α�(α+1) (1 – ( hα

2α�(α+1) (1 – ( hα

2α�(α+1) )2))2))2

2α–1

)
. (43)

Similarly, for i = 1, ϑ = 1,

x 3
2

=
hα

�(α)

(
1
α

3α

2α
–

2
3
(
x(2)

1
2

)2 –
4
3

x2
1

2α

)
. (44)

In the following, if i = 1, ϑ = 2, the singularity appears at s = 3h
2 , so we have

x 3
2

=
hα

�(α)

[
1
α

3α

2α
–

2
3
(
x(2)

1
2

)2 –
1
3

1
2α

x2
1 –

1
α

3α

2α
x2

3
2

]
. (45)

To obtain x 3
2

, we prefer to use the predictor–corrector method. For such a purpose, we

apply the first iteration of x 3
2

= hα

�(α) ( 2α

α3α – 2
3 (x(2)

1
2

)2 – 4
3

x2
1

2α ) on the right-hand side of (45) as

a predictor and consider x 3
2

= x(0)
3
2

. Equation (45) can now be rewritten as follows:

x(1)
3
2

=
hα

�(α)

[
1
α

3α

2α
–

2
3
(
x(2)

1
2

)2 –
1
3

1
2α

x2
1 –

1
α

3α

2α

(
x(0)

3
2

)2
]

. (46)

By repeating this process, we improve the approximation of x 3
2

to

x(2)
3
2

=
hα

�(α)

[
1
α

3α

2α
–

2
3
(
x(2)

1
2

)2 –
1
3

1
2α

x2
1 –

1
α

3α

2α

(
x(1)

3
2

)2
]

. (47)

Let us consider i = 1, ϑ = 3, and then

x2 =
hα

�(α)

[
2α

α
–

2
3

(
3
2

)α–1(
x(2)

1
2

)2 –
1
6

x2
1 –

1
2α–1

(
x(2)

3
2

)2
]

. (48)

In the following, if i = 2, ϑ = 1,

x 5
2

=
hα

�(α)

[
1
α

5α

2α
–

2α

3
(
x(2)

1
2

)2 –
3α–2

2α–1 x2
1 –

2
3
(
x(2)

3
2

)2 –
1
3

x2
2

2α–2

]
. (49)
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If i = 2, ϑ = 2, the singularity is at s = 5h
2 , so we have

x 5
2

=
hα

�(α)

[
1
α

5α

2α
–

2α

3
(
x(2)

1
2

)2 –
3α–2

2α–1 x2
1 –

2
3
(
x(2)

3
2

)2 –
1
3

x2
2

2α–2 –
1

α2α
x2

5
2

]
. (50)

To improve x 5
2

, we prefer to use the predictor–corrector method. For such a purpose, we

apply (49) on the right-hand side of (50) as a predictor, and so we consider x 5
2

= x(0)
5
2

. After
two steps we achieve

x(2)
5
2

=
hα

�(α)

[
1
α

5α

2α
–

2α

3
(
x(2)

1
2

)2 –
3α–2

2α–1 x2
1 –

2
3
(
x(2)

3
2

)2 –
1
3

x2
2

2α–2 –
1

α2α

(
x(1)

5
2

)2
]

. (51)

Finally, for i = 2, ϑ = 3,

x3 =
hα

�(α)

[
3α

α
–

2
3

(
5
2

)α–1(
x(2)

1
2

)2 –
2αx2

1
3

–
3α–2

2α–2

(
x(2)

3
2

)2 –
x2

2
6

–
1

2α

(
x(2)

5
2

)2
]

. (52)

In Example 1, the computed xj, j = 1
2 , 1, 3

2 , 2, 5
2 , 3, form an approximation to the solution

of the Eqs. (32)–(33) for 0 < α ≤ 1, but x3 is considered as the final approximation of the
solution. In Tables 1 and 2, a p-stage Runge–Kutta method, for p = 4, which has led to
an approximate solution, is called NRK4. Also, we present the solution achieved by three
iterations from the modified variational iteration method (MVIM) [21] as well as the so-
lution obtained by four terms from the modified homotopy perturbation method (HPM)
[18]. A comparison of the results from NRK4 and HPM shows that the results obtained by
NRK4 are more accurate in the closed interval [0.6, 1], and have less variation in relative
error. A comparison of the results of NRK4 and MVIM shows that the results of NRK4 are
more accurate in the closed interval [0.8, 1]. To get any desired accuracy, we could proceed
with this method and use more iterations; however, the relative errors are already small
enough to be satisfied. It appears that the introduced modified Runge–Kutta method can
be relatively accurate. The gained results are shown in Tables 1 and 2. It must be noted
that x(s) is an exact solution, for α = 1.

Figure 1 shows a comparison between the exact solution and the numerical solution
resulted from NRK4, for α = 1. A comparison between the gained approximate solution
by NRK4 and exact solution shows that the maximum of relative error happens at the
last point and is less than or equal to 2.0523E–3. Moreover, the approximations of the
solutions for various values of α are shown in Fig. 2. In (32), when α varies from 0 to 1, the
approximate solution that is gained for a given α changes. For example, we suppose the
arbitrary values of α = 0.25, 0.5, 0.75, 1 in Fig. 2.

Table 1 The results of different methods for Example 1, α = 1

s x (s) NRK4 HPM MVIM

0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.197375 0.197397 0.197375 0.197375
0.4 0.379949 0.380052 0.379944 0.379946
0.5 0.462117 0.462236 0.462078 0.462101
0.6 0.537050 0.537114 0.536857 0.537049
0.8 0.664037 0.663610 0.661706 0.663300
1.0 0.761594 0.760031 0.746032 0.757165
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Table 2 Relative errors for Example 1, α = 1

s x (s) NRK4 HPM MIVM

0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.197375 1.1146E–4 0.000000 0.000000
0.4 0.379949 2.7111E–4 1.3160E–5 7.8958E–6
0.5 0.462117 2.5751E–4 8.4394E–5 3.4623E–5
0.6 0.537050 1.1192E–4 3.5938E–4 1.8620E–6
0.8 0.664037 6.4304E–4 3.5103E–3 1.1099E–3
1.0 0.761594 2.0523E–3 2.0433E–2 5.8154E–3

Figure 1 Exact and numerical solutions of
Example 1

Figure 2 Numerical solutions of Example 1 for
various values of 0 < α ≤ 1

Example 2 Consider the following fractional Riccati differential equation:

Dαx(s) = 1 + 2x(s) – x2(s), 0 ≤ s ≤ 1, 0 < α ≤ 1, (53)

with the initial condition

x(0) = 0. (54)
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The exact solution, for α = 1, is

x(s) = 1 +
√

2 tanh

[√
2s +

1
2

log

(√
2 – 1√
2 + 1

)]
. (55)

According to Remark 1, (53) can be written in the following form:

x(s) = y(s) +
∫ s

0
k
(
s, t, x(t)

)
dt, 0 ≤ s ≤ 1, (56)

where y(s) = sα
�(α+1) , k(s, t, x(t)) = K(s, t)[βx2(t) + γ x(t)], K(s, t) = 1

(s–t)1–α , β = – 1
�(α) , and γ =

2
�(α) . We put i = 0, ϑ = 1, in (31), and have x 1

2
= hα

2α�(α+1) . In the next step, if i = 0, ϑ = 2, the
singularity happens at s = h

2 , so the second x 1
2

can be obtained as follows:

x 1
2

=
hα

2α�(α + 1)
+ hβ

1∑
l=0
l �=1

A2lk(s0 + θ2h, s0 + θlh)
(
x2

0+θl
– x2

0+θ2

)

+ hγ

1∑
l=0
l �=1

A2lk(s0 + θ2h, s0 + θlh)(x0+θl – x0+θ2 )

+
(
βx2

0+θ2 + γ x0+θ2

)
q(s0 + θ2h), (57)

and hence the following quadratic polynomial will be obtained from (57):

x 1
2

=
hα

2α�(α + 1)
(
1 + 2x 1

2
– x2

1
2

)
. (58)

To get x 1
2

, we use the predictor–corrector method. We apply the first iteration of x 1
2

=
hα

2α�(α+1) on the right-hand side of (58) as a predictor. Let us consider x 1
2

= x(0)
1
2

, so Eq. (58)
can be rewritten as follows:

x(1)
1
2

=
hα

2α�(α + 1)
(
1 + 2x(0)

1
2

–
(
x(0)

1
2

)2), (59)

i.e.,

x(1)
1
2

=
hα

2α�(α + 1)

(
1 +

2hα

2α�(α + 1)
–

(
hα

2α�(α + 1)

)2)
. (60)

By repeating this process, we obtain

x(2)
1
2

=
hα

2α�(α + 1)
(
1 + 2x(1)

1
2

–
(
x(1)

1
2

)2). (61)

Finally, after two iterations, we get

x(2)
1
2

=
hα

2α�(α + 1)

(
1 +

2hα

2α�(α + 1)

(
1 +

2hα

2α�(α + 1)
–

(
hα

2α�(α + 1)

)2)

–
(

hα

2α�(α + 1)

(
1 +

2hα

2α�(α + 1)
–

(
hα

2α�(α + 1)

)2))2)
. (62)
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With the predictor–corrector method, the approximation of x( h
2 ) will improve, and with

the proposed technique, given in (57), the singularity of x 1
2

will disappear. In the following,
we put i = 0, ϑ = 3, so

x1 =
hα

�(α)

(
1
α

+
(2x(2)

1
2

– (x(2)
1
2

)2)

2α–1

)
, (63)

and, by substituting (62) into (63), x1 will be obtained. Similarly, for i = 1, ϑ = 1,

x 3
2

=
hα

�(α)

(
3α

α2α
+

(2x(2)
1
2

– (x(2)
1
2

)2)

3
+

(2x1 – x2
1)

32α
+

(2x1 – x2
1)

2α

)
. (64)

In the following, if i = 1, ϑ = 2, the singularity happens at s = 3h
2 , so by using (31), we have

x 3
2

=
hα

�(α)

(
3α

α2α
+

2(2x(2)
1
2

– (x(2)
1
2

)2)

3
+

(2x1 – x2
1)

32α
+

(2x 3
2

– x2
3
2

)

α2α

)
, (65)

where now the predictor–corrector method will be applied to get and improve x 3
2

. For such
a purpose, we apply the first iteration of x 3

2
on the right-hand side of (65) as a predictor

and consider x 3
2

= x(0)
3
2

. Equation (65) will be rewritten as follows:

x(1)
3
2

=
hα

�(α)

(
3α

α2α
+

2(2x(2)
1
2

– (x(2)
1
2

)2)

3
+

(2x1 – x2
1)

32α
+

(2x(0)
3
2

– (x(0)
3
2

)2)

α2α

)
. (66)

Finally, after two iterations, we get

x(2)
3
2

=
hα

�(α)

(
3α

α2α
+

2(2x(2)
1
2

– (x(2)
1
2

)2)

3
+

(2x1 – x2
1)

32α
+

(2x(1)
3
2

– (x(1)
3
2

)2)

α2α

)
. (67)

Let us consider i = 1, ϑ = 3, and then

x2 =
hα

�(α)

(
2α

α
+

3α–2(2x(2)
1
2

– (x(2)
1
2

)2)

2α–2 +
(2x1 – x2

1)
6

+
(2x(2)

3
2

– (x(2)
3
2

)2)

2α–1

)
. (68)

In the following, if i = 2, ϑ = 1, then

x 5
2

=
hα

�(α)

(
5α

α2α
+

2α(2x(2)
1
2

– (x(2)
1
2

)2)

3
+

3α–2(2x1 – x2
1)

2α–1 +
2(2x(2)

3
2

– (x(2)
3
2

)2)

3

+
(2x2 – x2

2)
32α

+
(2x2 – x2

2)
2α

)
.

(69)

If i = 2, ϑ = 2, the singularity happens at s = 5h
2 , so by using (31), we derive

x 5
2

=
hα

�(α)

(
5α

α2α
+

2α(2x(2)
1
2

– (x(2)
1
2

)2)

3
+

3α–2(2x1 – x2
1)

2α–1 +
2(2x(2)

3
2

– (x(2)
3
2

)2)

3

+
(2x2 – x2

2)
32α

+
(2x 5

2
– x2

5
2

)

α2α

)
,

(70)
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where now the predictor–corrector method will be applied to get and improve x 5
2

. For such
a purpose, we apply the first iteration of x 5

2
on the right-hand side of (70) as a predictor

and consider x 5
2

= x(0)
5
2

. After two iterations, Eq. (70) will be transformed as follows:

x(2)
5
2

=
hα

�(α)

(
5α

α2α
+

2α(2x(2)
1
2

– (x(2)
1
2

)2)

3
+

3α–2(2x1 – x2
1)

2α–1 +
2(2x(2)

3
2

– (x(2)
3
2

)2)

3

+
(2x2 – x2

2)
32α

+
(2x(1)

5
2

– x(1)
5
2

)

α2α

)
. (71)

Finally, for i = 2, ϑ = 3,

x3 =
hα

�(α)

(
3α

α
+

5α–1(2x(2)
1
2

– (x(2)
1
2

)2)

32α–2 +
2α–1(2x1 – x2

1)
3

+
3α–2(2x(2)

3
2

– (x(2)
3
2

)2)

2α–2

+
(2x2 – x2

2)
6

+
(2x(2)

5
2

– x(2)
5
2

)

2α–1

)
. (72)

In Example 2, the computed xj, j = 1
2 , 1, 3

2 , 2, 5
2 , 3, form an approximation to the solu-

tion of Eqs. (53)–(54) for 0 < α ≤ 1, but x3 is considered as the final approximation to the
solution. The results of NRK4 have been compared with the results of the other two meth-
ods, HPM and MVIM. The solution gained by four terms is from HPM [18]. The solution
achieved by three iterations comes from MVIM [21]. A comparison of the results of ap-
plying NRK4 and HPM shows that the results of NRK4 are almost as accurate as those
of HPM in the closed interval [0, 1]. A comparison of the results of applying NRK4 and
MVIM shows that the results of MVIM are more accurate in the closed interval [0, 1]. If
we proceed with this method and use more iterations, we can get any desired accuracy.
The obtained results have been shown in Tables 3 and 4. It must be noted that x(s) is an
exact solution, for α = 1.

Table 3 The results of different methods for Example 2, α = 1

s x (s) NRK4 HPM MVIM

0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.241977 0.240711 0.241965 0.241978
0.4 0.567812 0.563632 0.568115 0.567845
0.5 0.756014 0.749954 0.757564 0.756087
0.6 0.953566 0.945251 0.958259 0.953666
0.8 1.346364 1.332255 1.365240 1.346379
1.0 1.689498 1.668815 1.723810 1.686028

Table 4 Relative errors for Example 2, α = 1

s x (s) NRK4 HPM MIVM

0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.241977 5.2319E–3 4.9592E–5 4.1326E–6
0.4 0.567812 7.3616E–3 5.3363E–4 5.8118E–5
0.5 0.756014 8.0157E–3 2.0502E–3 9.6559E–5
0.6 0.953566 8.7199E–3 4.9215E–3 1.0487E–4
0.8 1.346364 1.0479E–2 1.4020E–2 1.1141E–5
1.0 1.689498 1.2242E–2 2.0309E–2 2.0539E–3
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Figure 3 Exact and numerical solutions of
Example 2

Figure 4 Numerical solutions of Example 2 for
various values of 0 < α ≤ 1

Figure 3 shows a comparison between the exact solution and the numerical solution
resulted from NRK4, for α = 1. A comparison between the gained approximate solution
by NRK4 and the exact solution shows that the maximum of relative error happens at the
last point and is less than or equal to 1.2242E–2. Moreover, the approximations of the
solutions for various values of α are shown in Fig. 2. In (53), when α varies from 0 to 1, the
approximate solution that was obtained for different α changes. For example, we suppose
the arbitrary values of α = 0.5, 0.6, 0.8, 1 in Fig. 4.

All calculations have been done using Maple on a computer with Intel Core i5-2430M
CPU at 2.400 GHz, 4.00 GB of RAM and 64-bit operating system (Windows 7).

5 Convergence analysis
The convergence analysis of NRKp is the same as for a p-stage Runge–Kutta method;
we refer the reader to [49], but, first, we need some preliminaries on convergence of the
proposed approach. The solution of (11) with the special nonlinear kernel, k(s, t, x(t)) =
K(s, t)[βx2(t) +γ x(t)], where K(s, t) = K0(s,t)

(s–t)1–α , β ,γ ∈ R, 0 < α ≤ 1, is not differentiable when
s = t; therefore, the rate of convergence and accuracy of proposed approach may be de-
creased, so when we utilize NRKp to solve nonlinear Volterra integral equations of the
second kind, the predictor–corrector method needs to be applied at the last point s = t. In
this section, to simplify the proof of convergence, we consider k0(s, t) = c0, c0∈R.
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Lemma 2 Let

|β|∣∣x(t1) + x(t2)
∣∣ + |γ | ≤ LM

|c0| , β ,γ , c0∈R, (73)

and x(t1) �= x(t2). Then the nonlinear kernel, k(s, t, x(t)) = (βx2(t) + γ x(t))k(s, t), satisfies a
Lipschitz condition with respect to the dependent variable x, i.e.,

∣∣k(
s, t1, x(t1)

)
– k

(
s, t2, x(t2)

)∣∣ ≤ L
∣∣x(t1) – x(t2)

∣∣, (74)

where L is Lipschitz constant, M = (s–t2)1–α

(b–a)1–α , k(s, t) = c0
(s–t)1–α , and a ≤ t1 < t2 < s ≤ b.

Proof Write

∣∣k(
s, t1, x(t1)

)
– k

(
s, t2, x(t2)

)∣∣ = |c0|
∣∣∣∣βx2(t1) + γ x(t1)

(s – t1)1–α
–

βx2(t2) + γ x(t2)
(s – t2)1–α

∣∣∣∣, (75)

then, according to the assumption, we have b – a ≥ s – t1 > s – t2 > 0, so 1
s–t2

> 1
s–t1

≥ 1
b–a ,

and 1
(s–t2)1–α > 1

(s–t1)1–α ≥ 1
(b–a)1–α . In the following, we can write

∣∣k(
s, t1, x(t1)

)
– k

(
s, t2, x(t2)

)∣∣

≤ |c0| |(s – t2)1–α(βx2(t1) + γ x(t1)) – (s – t1)1–α(βx2(t2) + γ x(t2))|
|(s – t1)1–α(s – t2)1–α|

≤ |c0| |(s – t2)1–α(βx2(t1) + γ x(t1)) – (s – t1)1–α(βx2(t2) + γ x(t2))|
|(s – t2)2(1–α)|

≤ |c0| |(b – a)1–α|(|β(x2(t1) – x2(t2))| + |γ (x(t1) – x(t2))|)
|(s – t2)2(1–α)|

≤ |c0| |(b – a)1–α|(|β||(x(t1) + x(t2))| + |γ |)(|x(t1) – x(t2)|)
|(s – t2)2(1–α)| . (76)

Substituting (73) into (76), the lemma is proved. �

Theorem 2 Let |β||x(t1) + x(t2)| + |γ | ≤ LM
|c0| , β , γ , c0∈R, then NRKp with the a special

nonlinear kernel, k(s, t, x(t)) = (βx2(t) + γ x(t))k(s, t), where k(s, t) = c0
(s–t)1–α , is convergent; in

other words,

lim
h→0

∣∣x(si + θϑh) – xi+θϑ

∣∣ = 0. (77)

Proof Let s = si + θϑh, i = 0, 1, . . . , N – 1, ϑ = 1, 2, . . . , p – 1, in (22). Then we have

x(si + θϑh) = y(si + θϑh) +
i–1∑
j=0

∫ sj+1

sj

k
(
si + θϑh, t, x(t)

)
dt

+
∫ si+θϑ h

si

k
(
si + θϑh, t, x(t)

)
dt.

(78)
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Letting h < δ, ei+θϑ = x(si + θϑh) – xi+θϑ , and subtracting (30) from (78), we obtain

ei+θϑ = h
i–1∑
j=0

p–1∑
l=0

Apl
{

k
(
si + θϑh, sj + θlh, x(sj + θlh)

)
– k(si + θϑh, sj + θlh, xj+θl )

}

+ h
ϑ–1∑
l=0

Aϑ l
{

k
(
si + θϑh, si + θlh, x(si + θlh)

)
– k(si + θϑh, si + θlh, xi+θl )

}
, (79)

where

k
(
si + θϑh, sj + θlh, x(sj + θlh)

)
=

k0(βx2(sj + θlh) + γ x(sj + θlh))
((i – j) + (θϑ – θl)h)1–α

,

k(si + θϑh, sj + θlh, xj+θl ) =
k0(βx2

j+θl
+ γ xj+θl )

((i – j) + (θϑ – θl)h)1–α
,

k
(
si + θϑh, si + θlh, x(si + θlh)

)
=

k0(βx2(si + θlh) + γ x(si + θlh))
((θϑ – θl)h)1–α

,

k(si + θϑh, si + θlh, xi+θl ) =
k0(βx2

i+θl
+ γ xi+θl )

((θϑ – θl)h)1–α
.

(80)

Clearly, from Lemma 2 and [49], the theorem is proved. �

6 Conclusion
In this work, a class of Runge–Kutta methods has been successfully implemented for solv-
ing fractional Riccati differential equations. In the first step, we convert a fractional Riccati
differential equation into a singular nonlinear Volterra integral equation of the second kind
considering Remark 1. In the second step, we solve singular nonlinear Volterra integral
equation of the second kind using the Runge–Kutta method, with some manipulation. We
called proposed approach a new p-stage Runge–Kutta method (NRKp). We implemented
NRKp, for p = 4, to get approximate solutions of two examples. In these two examples,
x3 is considered as an approximate solution, and obtained for different α. At singular
points, to improve the accuracy of the approximate solution, we utilize the predictor–
corrector method. The application results are compared with those of HPM and MVIM
(Tables 1–4). A comparison of the approximate solutions shows that this method is ac-
curate enough and can even be more accurate in many instances. We proved that the
nonlinear kernel satisfies a Lipschitz condition, and then obtained that NRKp for a sin-
gular nonlinear Volterra integral equation of the second kind is convergent. As a direc-
tion for future research, we point that the final aim of presenting NRK4 is not only for
finding approximate solutions to fractional Riccati differential equations but also for em-
phasizing that this approach can be applied for fractional differential equations, as well
as singular Volterra integral equations. Moreover, this method can be used for solving
those nonlinear Volterra integral equations of the second kind, which have a singular ker-
nel, such as k(s, t, x(t)) = K(s, t)[a0x(t) + a1x2(t) + · · · + an–1xn(t)], where k(s, t) = K0(s,t)

(s–t)1–α ,
a0, a1, . . . , an–1∈R, n ∈N, 0 < α ≤ 1.
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