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Abstract
In this paper, we construct a Crank–Nicolson linear finite difference scheme for a
Benjamin–Bona–Mahony equation with a time fractional nonlocal viscous term. The
stability and convergence of the proposed numerical scheme are rigorously derived.
Theoretical analysis shows that the numerical scheme is convergent in the order of
O(τ

3
2 + h2), where τ and h are the time and space step sizes. Two numerical

experiments are presented to verify that the theoretical analysis is accurate and to
demonstrate that the numerical scheme is effective.
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1 Introduction
In many nonlinear partial differential equations, the most common method to stimulate
the nonlinear dispersion wave is by using the Korteweg–de Vries (KdV) equation [1]

ut + ux + uxxx + uux = 0, (1)

because it obeys conservation laws and has been widely applied in solid, liquid, and other
subject fields [2]. As an improvement of the KdV equation, generalized regularized long-
wave (GRLW) equation [3, 4], Rosenau–Burgers (R–B) equation [5, 6], and Benjamin–
Bona–Mahony (BBM) equation [7] can better simulate shallow water waves. Among them,
the BBM equation, which describes the unidirectional propagation of surface water in
a nonlinear dispersive medium with small amplitude and long wave, is the most typical
model [8–13].

Generally, it is difficult to obtain the analytic solution of the aforementioned water wave
equation. Therefore, the investigation of using numerical methods to simulate the solu-
tions of the classical water wave equation and the regularized water wave equation has
been the subject of many studies in the recent literature (see, for example, [14–20] and the
references therein). More recently, Zhang and Xu [10] constructed two linearized schemes
for the time fractional water wave equation in a BBM form. Li [21] discussed the linearized
difference scheme for a BBM equation with a space fractional nonlocal viscous term.
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When simulating the nonlinear differential equation, it is effective to construct the linear
difference scheme, which reduces the complexity in computing and the difficulties in the
analysis of convergence. Zhang and Xu [10] used the linearized difference method to solve
the nonlinear time fractional water wave equation in a BBM form. However, the different
method that is constructed above is a three-layer linear scheme, which does not minimize
the amount of calculation. Inspired by the work [21], we find that the Crank–Nicolson
method can be combined with the technique of linearization for a nonlinear equation to
establish a two-level linear difference scheme, which can further reduce the computational
complexity while maintaining the accuracy. Consequently, in this paper, we consider a
Crank–Nicolson linear difference scheme for the initial and boundary value problems of
the following BBM equation with a time fractional nonlocal viscous term [12]:

ut + ux – βuxxt + ε
1
2 C

0 D
1
2
t u + γ uux – αuxx = 0, x ∈ (a, b), t ∈ (0, T], (2)

and an initial condition

u(x, 0) = u0(x), x ∈ (a, b), (3)

and the boundary conditions

u(a, t) = u(b, t) = 0, t ∈ (0, T], (4)

where β , ε, γ , and α are positive parameters, C
0 D

1
2
t is 1

2 -order Caputo’s fractional derivative
operator. Ordinarily, the α-order Caputo time fractional derivative C

0 Dα
t u(x, t) is defined

as follows [22]:

C
0 Dα

t u(x, t) :=
∂αu(x, t)

∂tα
=

⎧
⎨

⎩

1
�(m–α)

∫ t
0 (t – s)m–α–1 ∂mu(x,s)

∂sm ds, m – 1 < α < m,
∂mu(x,t)

∂tm , α = m ∈ N ,
(5)

where �(·) is a gamma function.
In this paper, we use the L1 formula to approximate 1

2 -order Caputo’s fractional deriva-
tive; we use the central difference to approximate both the first and second space deriva-
tive; we use the linear difference to approximate the nonlinear term; and we use the Crank–
Nicolson difference formula to approximate the first-order time derivatives. Then, we
construct a Crank–Nicolson-L1 (C-N-L1) linear difference scheme for problems (2)–(4).
The stability and convergence of the C-N-L1 numerical scheme are rigorously derived.
Numerical experiments show that the theoretical analysis is accurate and that the numer-
ical scheme is effective. The contribution of this paper is to propose, analyze, and verify the
combination scheme of a Crank–Nicolson scheme and linearization of nonlinear term.

The outline of this paper is as follows. Section 2 is devoted to the design of the C-N-
L1 linear difference scheme for the time fractional nonlinear BBM equation. Sections 3
and 4 prove that the scheme is stable and convergent, respectively. Two numerical exam-
ples are presented to verify the theoretical result and the effectiveness of the numerical
scheme and to demonstrate the impact of various terms by changing the parameters of
the corresponding terms in Sect. 5. Finally, the conclusions of this paper are provided.
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2 The derivation of the C-N-L1 linear difference scheme
In this section, we describe the derivation of the C-N-L1 linear difference scheme for the
time fractional BBM equation (2).

We consider the difference scheme for equation (2) in a finite domain (x, t) ∈ [a, b] ×
[0, T]. Spatial step size h = b–a

M and time step size τ = T
N , respectively, where M and N

are integers and assume that the mesh sizes h and τ satisfy 0 < h < 1 and 0 < τ < 1. Grid
points (xj, tn) are defined by xj = a + jh (0 ≤ j ≤ M); tn = nτ (0 ≤ n ≤ N ). Let un

j denote
the numerical approximation of u(xj, tn). Sometimes, suppose that un = {un

j |0 ≤ j ≤ M} is
a grid function. We introduce the following notations and an L1 approximation formula
of the 1

2 -order Caputo’s fractional derivative [23]:

un+ 1
2

j =
un

j + un+1
j

2
, Dtun

j =
un+1

j – un
j

τ
, D+un

j =
un

j+1 – un
j

h
,

D–un
j =

un
j – un

j–1

h
, D2un

j = D+D–un
j =

un
j+1 – 2un

j + un
j–1

h2 ,

D0un
j =

un
j+1 – un

j–1

2h
,

(
un, vn) =

M–1∑

j=0

hun
j vn

j ,
∥
∥un∥∥ =

√(
un, un

)
,

∥
∥un∥∥∞ = max

0≤j≤M–1

∣
∣un

j
∣
∣, (u, v)1 = (u, v) + β(D+u, D+v),

and

1
�( 1

2 )

∫ tn

0

u′(s)
(tn – s) 1

2
ds :=

τ– 1
2

�( 3
2 )

(

u(tn) –
n–1∑

k=1

(an–k–1 – an–k)u(tk) – an–1u(t0)

)

,

where aj = (j + 1)1–α – j1–α and j ≥ 0.
We use the L1 formula to approximate the Caputo fractional derivatives, use the cen-

tral differences to approximate for both first and second space derivatives, use the linear
differences to approximate the nonlinear term and use the Crank–Nicolson difference for-
mula to approximate the first-order time derivative. Then, we get the C-N-L1 scheme for
problems (2)–(4):

Dtun
j + D0un+ 1

2
j – βDtD2un

j +
ε

1
2 τ– 1

2

�( 3
2 )

(

un+ 1
2

j –
n–1∑

i=0

(ai – ai+1)un– 1
2 –i

j – anu0
j

)

+
γ

3
(
un

j D0un+ 1
2

j + D0
(
un

j un+ 1
2

j
))

– αD2un+ 1
2

j = 0, (6)

u0
j = u0(xj), 0 ≤ j ≤ M, (7)

u(a, t) = u(b, t) = 0, 0 ≤ n ≤ N . (8)

In order to prove the stability and convergence of the above constructed C-N-L1 scheme,
we collect useful facts on the truncation error of the L1 approximate operator for the
Caputo fractional derivatives, the discrete Sobolev inequality, and the discrete Gronwall
inequality.
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Lemma 2.1 ([24]) Suppose f (t) ∈ C2[0, tn]. Let

R̄
(
f (tn)

)
:=

1
�(1 – α)

∫ tn

0

f ′(s)
(tn – s)α

ds

–
τ–α

�(2 – α)

(

a0f (tn) –
n–1∑

j=1

(an–j–1 – an–j)f (tj) – an–1f (t0)

)

, (9)

then

∣
∣R̄

(
f (tn)

)∣
∣ ≤ 1

�(2 – α)

[
1 – α

12
+

22–α

2 – α
–

(
1 + 2–α

)
]

max
0≤t≤tn

∣
∣f ′′(t)

∣
∣τ 2–α , (10)

where 0 < α ≤ 1 and aj = (j + 1)1–α – j1–α , j ≥ 0.

Lemma 2.2 ([24]) Let 0 < α < 1, aj = (j + 1)1–α – j1–α , j = 0, 1, 2, . . . . Then
(1) 1 = a0 > a1 > · · · > ak → 0, as k → +∞;
(2) an–1 > 1–α

j2 .

Lemma 2.3 (Discrete Sobolev’s inequality [19]) There exist constants C1 and C2 such that

∥
∥un∥∥∞ ≤ C1

∥
∥un∥∥ + C2

∥
∥D+un∥∥. (11)

Lemma 2.4 (Discrete Gronwall’s inequality [21]) Suppose that θ (k), ρ(k) are nonnegative
mesh functions and ρ(k) is nondecreasing. For C > 0, if

θ (k) ≤ ρ(k) + Cτ

k–1∑

l=0

θ (l), ∀k,

then

θ (k) ≤ ρ(k)eCτk , ∀k.

3 Stability
In this section, we study the stability of the proposed C-N-L1 scheme (6).

Theorem 3.1 The difference scheme (6) is unconditionally stable, and it holds

∥
∥un∥∥

1 ≤ C,
∥
∥un∥∥∞ ≤ C, n = 0, 1, . . . , N .

Proof For n = 0, 1, . . . , N , computing the inner product of (6) with 2un+ 1
2 (i.e., un+1 + un), we

obtain

1
τ

(∥
∥un+1∥∥2 –

∥
∥un∥∥2) +

(
D0un+ 1

2 , 2un+ 1
2
)

– β
(
DtD2un, 2un+ 1

2
)

+ γ
(
Z, 2un+ 1

2
)

– μ

(

un+ 1
2 –

n–1∑

i=0

(ai – ai+1)un– 1
2 –i

j – anu0
j , 2un+ 1

2

)

– α
(
D2un+ 1

2 , 2un+ 1
2
)

= 0, (12)

where Z = 1
3 (unD0un+ 1

2 + D0(unun+ 1
2 )), μ = ε

1
2 τ

– 1
2

�( 3
2 )

.
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For the second and fourth terms in (12), we use the definition of inner product and note
that [20]

(
D0un+ 1

2 , 2un+ 1
2
)

=
M∑

j=1

[
un+ 1

2
j+1 un+ 1

2
j – un+ 1

2
j–1 un+ 1

2
j

]
= 0, (13)

and

(
Z, 2un+ 1

2
)

=
2h
3

M∑

j=1

(
un

j D0un+ 1
2

j + D0
(
unun+ 1

2
j

))
un+ 1

2
j

=
1
3

M∑

j=1

(
un

j
(
un+ 1

2
j+1 – un+ 1

2
j–1

)
+ un

j+1un+ 1
2

j+1 – un
j–1un+ 1

2
j–1

)
un+ 1

2
j

=
1
3

M∑

j=1

[(
un

j un+ 1
2

j+1 un+ 1
2

j + un
j+1un+ 1

2
j+1 un+ 1

2
j

)
–

(
un

j un+ 1
2

j–1 un+ 1
2

j + un
j–1un+ 1

2
j–1 un+ 1

2
j

)]

= 0. (14)

From (13) and (14), (12) can be rewritten as

1
τ

(∥
∥un+1∥∥2 –

∥
∥un∥∥2) +

β

τ

(∥
∥D+un+1∥∥2 –

∥
∥D+un∥∥2) + 2α

∥
∥D+un+ 1

2
∥
∥2 + 2μ

∥
∥un+ 1

2
∥
∥2

= 2μ

n–1∑

i=0

(ai – ai+1)
(
un– 1

2 –i, un+ 1
2
)

+ 2μan
(
u0, un+ 1

2
)

≤ μ

n–1∑

i=0

(ai – ai+1)
(∥
∥un– 1

2 –i∥∥2 +
∥
∥un+ 1

2
∥
∥2) + μan

(∥
∥u0∥∥2 +

∥
∥un+ 1

2
∥
∥2)

= μ

n–1∑

i=0

(ai – ai+1)
∥
∥un– 1

2 –i∥∥2 + μ
(
(1 – an) + an

)∥
∥un+ 1

2
∥
∥2 + μan

∥
∥u0∥∥2. (15)

Multiplying (15) by τ , we have

∥
∥un+1∥∥2

1 + τμ

n∑

i=0

ai+1
∥
∥un– 1

2 –i∥∥2

≤ ∥
∥un∥∥2

1 + τμ

n–1∑

i=0

ai+1
∥
∥un– 1

2 –i∥∥2 + τμan
∥
∥u0∥∥2. (16)

Let

Bn+1 =
∥
∥un+1∥∥2

1 + τμ

n∑

i=0

ai+1
∥
∥un– 1

2 –i∥∥2, (17)

(16) can be rewritten as follows:

Bn+1 ≤ Bn + μan
∥
∥u0∥∥2. (18)
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It follows that

Bn+1 ≤ B0 + μ
√

n + 1
∥
∥u0∥∥2. (19)

Then we get

∥
∥un∥∥

1 ≤ C. (20)

And using Lemma 2.3, we have

∥
∥un∥∥∞ ≤ C. (21)

This completes the proof. �

4 Convergence
In this section, the rate of convergence of scheme (6) is guaranteed and explicitly proved.
Firstly, we consider the truncation error of the difference scheme (6). Let v(x, t) be the
solution of problems (2)–(4), vn

j = v(xj, tn), then the truncation error of scheme (6) is

rn
j = Dtvn

j + D0vn+ 1
2

j – βDtD2vn
j + μ

(

vn+ 1
2

j –
n–1∑

i=0

(ai – ai+1)vn– 1
2 –i

j – anv0
j

)

+
γ

3
(
vn

j D0vn+ 1
2

j + D0
(
vn

j vn+ 1
2

j
))

– αD2vn+ 1
2

j , (22)

where μ = ε
1
2 τ

– 1
2

�( 3
2 )

.
According to Taylor’s expansion,

Dtvn
j + D0vn+ 1

2
j – βDtD2vn

j

+

[
μ

2

(
(
vn+1

j + vn
j
)

–
n–1∑

i=0

(ai – ai+1)
(
vn–i

j + vn–1–i
j

)
– anv0

j

)

+ O
(
τ

3
2
)
]

+
{

γ

12h
[
un

j
(
un+1

j+1 – un+1
j–1 + un

j+1 – un
j–1

)

+
(
un

j+1un+1
j+1 – un

j–1un+1
j–1 + un

j+1un
j+1 – un

j–1un
j–1

)]
+ O

(
τ 2 + h2)

}

– αD2vn+ 1
2

j = 0, (23)

it can be easily obtained that rn
j = O(τ 3

2 + h2) holds if h, τ → 0.

Theorem 4.1 Suppose u0 ∈ H1
0 [0, L], then the solution un

j of (6) converges to the solution
vn

j of (2) in norm ‖ · ‖∞ and the rate of convergence is O(τ 3
2 + h2).

Proof Let en
j = vn

j – un
j , subtracting (6) from (22), we have

rn
j =

en+1
j – en

j

τ
+ D0en+ 1

2
j – βDtD2en

j
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+ μ

(

en+ 1
2

j –
n–1∑

i=0

(ai – ai+1)en– 1
2 –i

j – ane0
j

)

+
γ

3
(
vn

j D0vn+ 1
2

j – un
j D0un+ 1

2
j

)

+
γ

3
(
D0

(
vn

j vn+ 1
2

j
)

– D0
(
un

j un+ 1
2

j
))

– αD2en+ 1
2

j . (24)

For convenience, we denote

P =
γ

3
(
vn

j D0vn+ 1
2

j – un
j D0un+ 1

2
j

)
, Q =

γ

3
(
D0

(
vn

j vn+ 1
2

j
)

– D0
(
un

j un+ 1
2

j
))

.

Multiplying by 2en+ 1
2 (i.e.en+1

j + en
j ) on both sides of (24), we have

∥
∥en+1∥∥2 –

∥
∥en∥∥2 + β

∥
∥D+en+1∥∥2 – β

∥
∥D+en∥∥2

= τ

[

–
(
D0en+ 1

2 , 2en+ 1
2
)

–
(
P, 2en+ 1

2
)

–
(
Q, 2en+ 1

2
)

+
(
rn, 2en+ 1

2
)

– μ

(

2
∥
∥en+ 1

2
∥
∥2 –

n–1∑

i=0

(ai – ai+1)
(
en– 1

2 –i, 2en+ 1
2
)

– an
(
e0, 2en+ 1

2
)
)

+ α
(
D2en+ 1

2 , 2en+ 1
2
)
]

. (25)

Now, we estimate the third and fourth terms of the right-hand side of (25), respectively
[18, 20]:

(
P, 2en+ 1

2
)

=
2h
3

M∑

j=1

(
vn

j D0vn+ 1
2

j – un
j D0un+ 1

2
j

)
en+ 1

2
j

=
2h
3

M∑

j=1

(
vn

j D0en+ 1
2

j
)
en+ 1

2
j +

2h
3

M∑

j=1

(
vn

j D0un+ 1
2

j – un
j D0un+ 1

2
j

)
en+ 1

2
j

≤ Ch
M∑

j=1

(∣
∣D0en+ 1

2
j

∣
∣ +

∣
∣en

j
∣
∣
)
en+ 1

2
j

≤ Ch
(∥
∥D+en+1∥∥2 +

∥
∥D+en∥∥2 +

∥
∥en+1∥∥2 +

∥
∥en∥∥2) (26)

and

(
Q, 2en+ 1

2
)

=
2h
3

M∑

j=1

[
D0

(
vn

j vn+ 1
2

j
)

– D0
(
un

j un+ 1
2

j
)]

en+ 1
2

j

= –
2h
3

M∑

j=1

(
vn

j en+ 1
2

j
)
D0en+ 1

2
j +

2h
3

M∑

j=1

(
vn

j – un
j
)
un+ 1

2
j D0en+ 1

2
j

= –
2h
3

M∑

j=1

(
vn

j en+ 1
2

j
)
D0en+ 1

2
j –

2h
3

M∑

j=1

en
j un+ 1

2
j D0en+ 1

2
j



Shen and Zhu Advances in Difference Equations  (2018) 2018:351 Page 8 of 12

≤ Ch
M∑

j=1

(∣
∣en+ 1

2
j

∣
∣ +

∣
∣en

j
∣
∣
)
D0en+ 1

2
j

≤ Ch
(∥
∥D+en+1∥∥2 +

∥
∥D+en∥∥2 +

∥
∥en+1∥∥2 +

∥
∥en∥∥2). (27)

For the second term on the right-hand side of (25), we have

n–1∑

i=0

(an–i–1 – an–i)
(
ei+ 1

2 , 2en+ 1
2
)

+ an
(
e0, 2en+ 1

2
)

≤
n–1∑

i=0

(an–i–1 – an–i)
(∥
∥ei+ 1

2
∥
∥2 +

∥
∥en+ 1

2
∥
∥2) + an

(∥
∥e0∥∥2 +

∥
∥en+ 1

2
∥
∥2)

=
n–1∑

i=0

(an–i–1 – an–i)
∥
∥ei+ 1

2
∥
∥2 +

(
(1 – an) + an

)∥
∥en+ 1

2
∥
∥2 + an

∥
∥e0∥∥2

=
n–1∑

i=0

(an–i–1 – an–i)
∥
∥ei+ 1

2
∥
∥2 +

∥
∥en+ 1

2
∥
∥2 + an

∥
∥e0∥∥2. (28)

Using Lemma 2.4, it is obvious that

α
(
D+D–en+ 1

2 , 2en+ 1
2
)

= –2α
∥
∥D+en+ 1

2
∥
∥2 (29)

and

(
rn, 2en+ 1

2
) ≤ ∥

∥rn∥∥2 +
1
2
(∥
∥en+1∥∥2 +

∥
∥en∥∥2). (30)

Substituting (26)–(30) into (25) and using the fact that ‖e0‖ = 0, we get

∥
∥en+1∥∥2 –

∥
∥en∥∥2 + β

∥
∥D+en+1∥∥2 – β

∥
∥D+en∥∥2 + 2τμ

∥
∥en+ 1

2
∥
∥2

≤ τC
(∥
∥D+en+1∥∥2 +

∥
∥D+en∥∥2 +

∥
∥en+1∥∥2 +

∥
∥en∥∥2)

+ τμ

[ n–1∑

i=0

(an–i–1 – an–i)
∥
∥ei+ 1

2
∥
∥2 +

∥
∥en+ 1

2
∥
∥2

]

+ τ
∥
∥rn∥∥2 +

1
2
τ
(∥
∥en+1∥∥2 +

∥
∥en∥∥2),

≤ τC
(∥
∥D+en+1∥∥2 +

∥
∥D+en∥∥2 +

∥
∥en+1∥∥2 +

∥
∥en∥∥2)

+ τμ

[ n–1∑

i=0

(∥
∥ei∥∥2 +

∥
∥ei+1∥∥2) +

∥
∥en+ 1

2
∥
∥2

]

+ τ
∥
∥rn∥∥2 +

1
2
τ
(∥
∥en+1∥∥2 +

∥
∥en∥∥2). (31)

Using Lemma 2.4, we have

(1 – τC)
(∥
∥en+1∥∥2

1 –
∥
∥en∥∥2

1

) ≤ 2τC
∥
∥en∥∥2

1 + τ
∥
∥rn∥∥2, (32)
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where ‖en‖2
1 = ‖en‖2 + β‖D+en‖2. Moreover, let τ be suitably small, then

∥
∥en+1∥∥2

1 –
∥
∥en∥∥2

1 ≤ Cτ
∥
∥en∥∥2

1 + Cτ
∥
∥rn∥∥2. (33)

Summing up (33) from 0 to n, we get

∥
∥en+1∥∥2

1 ≤ ∥
∥e0∥∥2

1 + Cτ

n∑

k=1

∥
∥ek∥∥2

1 + Cτ

n∑

k=1

∥
∥rk∥∥2. (34)

Using Lemma 2.4 and the boundedness of rk , we have

∥
∥en+1∥∥2

1 ≤ O
(
τ

3
2 + h2)2. (35)

By Lemma 2.3 and (35), we obtain

∥
∥en∥∥ ≤ O

(
τ

3
2 + h2),

∥
∥D+en∥∥ ≤ O

(
τ

3
2 + h2),

∥
∥en∥∥∞ ≤ O

(
τ

3
2 + h2). (36)

This completes the proof of Theorem 4.1. �

5 Numerical experiments
In this section, we provide two numerical experiments to show the performance of the
proposed numerical scheme (6).

Example 1 We check the accuracy and convergence order of the numerical scheme (6).
Since we do not obtain the exact solution of (2), we consider the nonhomogeneous prob-
lem

ut + ux – βuxxt + ε
1
2 C

0 D
1
2
t u + γ uux – αuxx = s(x, t), x ∈ (0, 1), t ∈ (0, 1],

u(x, 0) = u0(x), x ∈ (0, 1), (37)

u(0, t) = u(1, t) = 0, t ∈ (0, 1],

where the source term s(x, t) is determined by the exact u(x, t) = x4(x – 1)t 3
2 , which does

not belong to C2[0, T].
In Tables 1–3, we list the error and convergence order for scheme (6) with the same

parameters.
In Table 3, we can observe the convergence order is 3

2 for ε = 1 and 2 for ε = 0, respec-
tively. That is a good agreement with the theoretical prediction of Theorem 4.1.

Table 1 Error and convergence order in time when h = 1/1000,ε = α = β = γ = 1

τ ‖e‖ Order ‖e‖∞ Order

1/10 4.953935e–04 – 9.350106e–04 –
1/20 1.595958e–04 1.634152 3.029161e–04 1.626064
1/40 5.380815e–05 1.568526 1.026424e–04 1.561290
1/80 1.847254e–05 1.542441 3.545068e–05 1.533742
1/160 6.326795e–06 1.545836 1.225924e–05 1.531942
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Table 2 Error and convergence order in space when τ = 1/1000,ε = α = β = γ = 1

h ‖e‖ Order ‖e‖∞ Order

1/10 1.841489e–03 – 2.653046e–03 –
1/20 5.047981e–04 1.867094 7.279309e–04 1.865776
1/40 1.321991e–04 1.932994 1.905037e–04 1.933982
1/80 3.365747e–05 1.973713 4.854140e–05 1.972531
1/160 8.309556e–06 2.018083 1.199653e–05 2.016598

Table 3 Error and convergence order in time and space when ε = 0,α = β = γ = 1

τ = h ‖e‖ Order ‖e‖∞ Order

1/10 1.588457e–03 – 2.350020e–03 –
1/20 4.183324e–04 1.924904 6.274669e–04 1.905061
1/40 1.030145e–04 2.021802 1.585501e–04 1.984600
1/80 2.440490e–05 2.077604 3.894461e–05 2.025443
1/160 5.878778e–06 2.053582 9.517392e–06 2.032785

Figure 1 ε ranging from 0.5 to 5 with fixed α = β = γ

Example 2 We consider the following problem:

ut + ux – βuxxt + ε
1
2 C

0 D
1
2
t u + γ uux – αuxx = 0, x ∈ (0, 400), t ∈ (0, T], (38)

u(x, 0) = 3 sech2(
√

0.53(x – x0)
)
, (39)

where x0 is the middle point of the interval (0, 400) [10]. Since the initial value converges
to 0 exponentially as |x| → +∞, we can approximate the initial value problem (38) by an
initial-boundary value for x ∈ (0, 400) as long as the solution does not reach the bound-
aries. The numerical simulations are plotted in Figs. 1–3.

In Fig. 1, we plot the solutions for several different values of ε with α, β , and γ fixed,
and M = 500, τ = 1. We observe that the nonlocal viscous term damps the wave down
significantly.

Figure 2 shows the solutions for α, β , γ set to 0 or 1 with fixed ε, and M = 500, τ = 1. We
can observe that the parameters α and β have no significant impact on the wave evolution,
whereas the parameter γ plays an important role in wave shape.

Figure 3 shows the wave evolution in different time with α = β = γ = ε = 1 and τ = 1.
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Figure 2 α , β , γ set to 0 or 1 with fixed ε

Figure 3 Time evolution of the solution for α = β = γ = ε = 1

6 Conclusions
In this paper, we propose a C-N-L1 linearized difference scheme for a nonlocal viscous
wave equation in a BBM form. The convergence and stability of the scheme are discussed
in detail. Numerical experiments show that our scheme is efficient and accurate. In addi-
tion, we also verify the influence of different parameters such as the diffusion term, nonlo-
cal viscous term, dispersion term, and nonlinear term. We would extend the scope of our
work in the future by investigating the finite element Galerkin scheme and compact finite
difference scheme for the nonlocal viscous wave equation in a BBM form.
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