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Abstract
For stochastic differential equations (SDEs) whose drift and diffusion coefficients can
grow super-linearly, the equivalence of the asymptotic mean square stability between
the underlying SDEs and the partially truncated Euler–Maruyama method is studied.
Using the finite time convergence as a bridge, a twofold result is proved. More
precisely, the mean square stability of the SDEs implies that of the partially truncated
Euler–Maruyama method, and the mean square stability of the partially truncated
Euler–Maruyama method indicates that of the SDEs given the step size is carefully
chosen.
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1 Introduction
In [9], the authors initialed the study on the equivalence of the stability between the under-
lying equations and their numerical methods for stochastic differential equations (SDEs).
More precisely, for the SDE of the Itô type

dy(t) = μ
(
y(t)

)
dt + σ

(
y(t)

)
dB(t)

with the initial value y(0) = y0 satisfying E|y0|2 < ∞. One says that the solution is mean
square stable if there exist positive constants Ks and λs such that

E
∣∣y(t)

∣∣2 ≤ KsE
∣∣y(0)

∣∣2e–λst . (1.1)

Denote some numerical approximations to y(t) by x�(t) with x�(0) = y(0). One claims
that the numerical solution is mean square stable if there exist positive constants Kn and
λn such that

E
∣∣x�(t)

∣∣2 ≤ KnE
∣∣x�(0)

∣∣2e–λnt . (1.2)
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The authors in [9] proved a very general “if and only if” theorem between (1.1) and (1.2).
The theorem states in twofold that

(A) the mean square stability of the SDE implies the mean square stability of the
numerical method,

(B) the mean square stability of the numerical method implies the mean square stability
of the SDE if the step size � of the numerical method is carefully chosen.

By saying the theorem is very general, one means that conditions required are the sec-
ond moment boundedness of the numerical method and the finite time convergence of
the numerical method to the SDE (see the details in Sect. 3), where the structure of the
numerical method is not needed to be specified.

Since then, many works have been devoted to the study on the equivalence of the mean
square stability between different types of SDEs and their numerical methods. The author
in [18] investigated the stochastic differential delay equations (SDDEs) and the Euler–
Maruyama (EM) method. The SDDEs with Poisson jump and Markov switching and the
semi-implicit Euler method are studied in [28]. The authors in [17] analyze the neutral
delayed stochastic differential equations and the EM method.

It should be pointed out that although the very general results are obtained in the papers
above for different types of SDEs and numerical methods, the global Lipschitz condition
is always imposed on the drift and diffusion coefficients when the theorems are applied
to some specified numerical methods. One may notice that SDEs with the coefficients
not obeying the global Lipschitz condition have been extensively applied more recently in
many areas such as biology, finance, and epidemiology [1, 4, 19, 23]. Therefore, the first
motivation of this paper is as follows.

(M1) For some SDEs whose coefficients do not satisfy the global Lipschitz condition,
can we find some numerical method that shares the mean square stability with
the underlying SDEs, i.e., both (A) and (B) hold?

Actually, many interesting works have been devoted to (A), i.e., given the SDE is stable
under certain conditions, some numerical method can reproduce such a stability. We just
mention some of the works here [2, 3, 7, 10, 11, 14, 22, 26, 27] and refer the readers to
the references therein. It is not hard to observe that when the coefficients of SDE do not
satisfy the global Lipschitz condition, the classical EM method is always abandoned and
some implicit methods are adapted as alternatives. This phenomenon is explained in [12],
where the authors proved that the classical EM diverges from the SDE if either drift or
diffusion coefficient grows super-linearly.

However, due to the advantages such as simple structure and less computational cost in
each iteration (not like implicit methods in which some non-linear equation system needs
to be solved in each iteration) [8], the explicit Euler-type methods are still attracting lots of
attention. Therefore, in the past several years some modified explicit Euler methods, such
as the tamed Euler method [13, 24, 25, 29] and the truncated EM method [6, 15, 16, 20,
21], have been developed. The bloom of explicit methods brings the second motivation of
this paper as follows.

(M2) Can we use some explicit method to answer (M1), i.e., can we find some explicit
methods for some SDEs with super-linear growing coefficients that shares the
mean square stability with the underlying SDEs?

Bearing (M1) and (M2) in mind, in this paper we investigate the partially truncated EM
method to see if it could share the mean square stability with the SDEs when both the drift
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and diffusion coefficients can grow super-linear. By using the finite time convergence as
the bridge, we prove the “if and only if” theorem for the partially truncated EM method.
More precisely, we prove that

(a) the mean square stability of the SDE implies the mean square stability of the
partially truncated EM method,

(b) the mean square stability of the partially truncated EM method implies the mean
square stability of the SDE if the step size � of the numerical method is carefully
chosen.

To our best knowledge, few works have dealt with (B) using explicit methods for SDEs
with super-linear coefficients, though some works have studied (A) using explicit meth-
ods [6, 29]. As pointed out in [9], sometimes (B) is more interesting and important since
if (B) is true for some numerical method, then by carefully conducting the numerical sim-
ulation one can know whether the SDE is stable or not without using the Lyapunov tech-
nique.

This paper is constructed as follows. In Sect. 2, a general theorem that guarantees the
equivalence of the stability between the SDEs and their numerical methods is provided,
which is a slight generalization of Theorem 2.6 in [9]. Our main results for the partially
truncated EM method are presented in Sect. 3. Section 4 concludes this paper with some
future research mentioned.

2 A general theorem
Throughout this paper, unless otherwise specified, the following notations are used. The
transpose of a vector or matrix A is denoted by AT . |y| is the Euclidean norm if y ∈ R

d .
If A is a matrix, we let |A| =

√
trace(AT A) be its trace norm. For two real numbers α and

β , we use α ∨ β = max(α,β) and α ∧ β = min(α,β). If D is a set, its indicator function
is denoted by ID, namely ID(x) = 1 if x ∈ D and 0 otherwise. Moreover, let (�,F ,P) be a
complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions (that is,
it is right continuous and increasing while F0 contains all P-null sets), and let E denote the
expectation corresponding to P. Let B(t) be an m-dimensional Brownian motion defined
on the space.

In this paper, we study stochastic differential equations of the Itô type

dy(t) = μ
(
y(t)

)
dt + σ

(
y(t)

)
dB(t) (2.1)

with the initial value y(0) = y0, where

μ : Rd →R
d and σ : Rd →R

d×m.

Theorem 2.1 Assume that, for all sufficiently small step size �, a numerical method ap-
plied to (2.1) with initial value x�(0) = y(0) = y0 satisfies:

(I) for any T > 0,

sup
0≤t≤T

E
∣
∣x�(t)

∣
∣2 < C(y0, T),

where C(y0, T) depends on y0 and T, but not on �;



Jiang et al. Advances in Difference Equations  (2018) 2018:355 Page 4 of 15

(II) there exists a strictly increasing continuous function α(�) with α(0) = 0 such that

sup
0≤t≤T

E
∣∣x�(t) – y(t)

∣∣2 ≤
(

sup
0≤t≤T

E
∣∣x�(t)

∣∣2
)

CTα(�),

where CT depends on T but not on y0 and �.
Then the SDE is mean square exponentially stable if and only if there exists � > 0 such that
the numerical method is mean square exponentially stable with rate constant λn, growth
constant Kn, step size �, and the global error constant CT with T := 1 + (4 log Kn)/λn satis-
fying

C2T
(
α(�) +

√
α(�)

)
eλnT + 1 +

√
α(�) ≤ e(1/4)λnT and CT� ≤ 1.

Remark 2.2 Theorem 2.1 is a general theorem for any numerical method. Compared with
Condition 2.3 for Theorem 2.6 in [9], one may notice that a more general function of �,
i.e., α(�), is used in Theorem 2.1. This change enables the new theorem to cover numerical
methods with different convergence rates. For example, in this paper the partially trun-
cated EM method needs α(�) = �ε with ε ∈ (0, 1), which is not covered by Theorem 2.6
in [9].

Remark 2.3 Although Theorem 2.1, to some extent, could be regarded as a generalization
of Theorem 2.6 in [9], the proof follows a similar manner. Therefore, we refer the readers
to [9] for the detailed proof. In this paper, we focus on how to fulfill (I) and (II) by using
the partially truncated EM method for SDEs with super-linear growing coefficients.

3 Main results
We start this section by imposing some conditions on the coefficient and introducing the
partially truncated EM method in Sect. 3.1. The main results and proofs are presented in
Sect. 3.2

3.1 Partially truncated EM method
We assume that both the drift and diffusion coefficients in (2.1) could be separated into
two parts as follows:

μ(y) = μ1(y) + μ2(y) and σ (y) = σ1(y) + σ2(y).

We impose some assumptions on μi and σi for i = 1, 2.

Assumption 3.1 Assume that there exist constants L1 ≥ 1 and γ ≥ 0 such that, for any
x, y ∈R

d ,

∣
∣μ1(x) – μ1(y)

∣
∣ ∨ ∣

∣σ1(x) – σ1(y)
∣
∣ ≤ L1|x – y|

and

∣
∣μ2(x) – μ2(y)

∣
∣ ∨ ∣

∣σ2(x) – σ2(y)
∣
∣ ≤ L1

(
1 + |x|γ + |y|γ )|x – y|.
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Assumption 3.2 Assume that there is a pair of constants r̄ > 2 and L2 such that

(x – y)T(
μ2(x) – μ2(y)

)
+

r̄ – 1
2

∣∣σ2(x) – σ2(y)
∣∣2 ≤ L2|x – y|2

for all x, y ∈ R
d .

For the purpose of the study on the stability, we require

μ1(0) = μ2(0) = σ1(0) = σ2(0) = 0.

Assumption 3.3 Assume that there are constants p̄ > r̄ and K2 > 0 such that

xTμ2(x) +
p̄ – 1

2
∣∣σ2(x)

∣∣2 ≤ K2|x|2

for all x ∈R
d .

As pointed out in [6], Assumption 3.3 cannot be deduced from Assumption 3.2 as we
need p̄ > r̄.

In addition, it can be derived from Assumption 3.1 that μ1 and σ1 satisfy the linear
growth condition and μ2 and σ2 satisfy the polynomial growth condition that there exists
a constant K1 > 0 such that, for all x ∈R

d ,

∣∣μ1(x)
∣∣ ∨ ∣∣σ1(x)

∣∣ ≤ K1|x| (3.1)

and

∣∣μ2(x)
∣∣ ∨ ∣∣σ2(x)

∣∣ ≤ K1
(
1 + |x|γ +1). (3.2)

It is not hard to see that the combination of Assumption 3.3 and (3.1) can imply that, for
any p ∈ (2, p̄),

xTμ(x) +
p – 1

2
∣∣σ (x)

∣∣2 ≤ K3|x|2 (3.3)

for all x ∈R
d , where K3 is a constant dependent on K1, K2, p, and p̄.

It can also be seen that under Assumptions 3.1 and 3.2, for any q ∈ (2, r̄),

(x – y)T(
μ(x) – μ(y)

)
+

q – 1
2

∣
∣σ (x) – σ (y)

∣
∣2 ≤ L3|x – y|2, (3.4)

where L3 is a constant dependent on L1, L2, q, and r̄.
To make the paper self-contained, we provide the definition of the partially truncated

EM method here and refer for the original ideas to [5, 6]. Firstly, we choose a strictly in-
creasing continuous function κ : R+ →R+ satisfying

κ(r) → ∞ as r → ∞ and sup
|x|≤r

(∣∣μ2(x)
∣
∣ ∨ ∣

∣σ2(x)
∣
∣) ≤ κ(r) for any r ≥ 1.
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It is clear to see that the inverse function of κ , denoted by κ–1, is strictly increasing con-
tinuous from [κ(0),∞) to R+.

Next, we choose a strictly decreasing continuous function h : (0, 1] → (0,∞) such that

lim
�→0

h(�) = ∞ and �1/4h(�) ≤ |y0| for any � ∈ (0, 1]. (3.5)

Remark 3.4 Comparing (3.5) with (2.9) in [5], we need �1/4h(�) to be bounded by the
initial value here. It should be noted that this requirement is not hard to satisfy as the
initial value y0 is always provided. In addition, such an upper bound is key in the proofs of
our results.

For a given time step � ∈ (0, 1], we define the truncating function π� : Rd →Rd by

π�(x) =
(|x| ∧ κ–1(h(�)

)) x
|x| .

Now, we embed the truncating function into μ2 and σ2 to get

μ2,�(x) = μ2
(
π�(x)

)
and σ2,�(x) = σ2

(
π�(x)

)
for x ∈R

d.

It is easy to see that, for any x ∈R
d ,

∣∣μ2,�(x)
∣∣ ∨ ∣∣σ2,�(x)

∣∣ ≤ κ
(
κ–1(h(�)

))
= h(�). (3.6)

Using the notations that

μ�(x) = μ1(x) + μ2,�(x) and σ�(x) = σ1(x) + σ2,�(x),

the partially truncated EM method is defined as

x�,i+1 = x�,i + μ�(x�,i)� + σ�(x�,i)�Bi with x�,0 = y0, (3.7)

where �Bi = B((i + 1)�) – B(i�) is the Brownian motion increment for i = 1, 2, 3, . . . , and
x�,i is the numerical approximation to y(i�) for i = 1, 2, 3, . . . .

In some cases, it is more convenient to work with the continuous version of the numer-
ical method. Thus, we define the continuous version of (3.7) by

x�(t) = x�,0 +
∫ t

0
μ�

(
x̄�(t)

)
dt +

∫ t

0
σ�

(
x̄�(t)

)
dB(t), (3.8)

where

x̄�(t) = x�,i, when t ∈ [i�, (i + 1)�).

3.2 (I) and (II) for the partially truncated EM method
To show that the SDE is mean square exponentially stable if and only if the partially trun-
cated EM method is mean square exponentially stable, we need to prove that (I) and (II)
in Theorem 2.1 hold for the method.
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One may argue that the second moment boundedness and the L2 strong conver-
gence, i.e., requirements (I) and (II) in Theorem 2.1, have already been proven in
[5, 6]. But it should be noted that (II) requires the L2 strong error to be linearly related
to sup0≤t≤T E|x�(t)|2 and this special structure of the error is important to the proof of
Theorem 2.1. By looking into [5, 6], one notices that no such structure of error is provided.

Therefore, the main task of this part is to prove (II) for the partially truncated EM
method by carefully tracking the related constants. We need several lemmas before we
proceed to the main theorem.

Firstly, we cite two lemmas from [5]. Roughly speaking, Lemma 3.5 shows that μ2,�

and σ2,� inherit Assumption 3.3. And Lemma 3.6 shows that μ� and σ� inherit Assump-
tion 3.1.

Lemma 3.5 Let Assumption 3.3 hold. Then, for all � ∈ (0, 1], we have

xTμ2,�(x) +
p̄ – 1

2
∣
∣σ2,�(x)

∣
∣2 ≤ K4|x|2, ∀x ∈R

d, (3.9)

where K4 = 2K2(1 ∨ [1/κ–1(h(1))]).

Lemma 3.6 Let Assumption 3.1 hold. Then

∣
∣μ(x) – μ(y)

∣
∣ ∨ ∣

∣σ (x) – σ (y)
∣
∣ ≤ 2L1

(
1 + |x|γ + |y|γ )|x – y| (3.10)

for all x, y ∈R
d . Moreover, for any � ∈ (0, 1],

∣∣μ�(x) – μ�(y)
∣∣ ∨ ∣∣σ�(x) – σ�(y)

∣∣ ≤ 3L1
(
1 + |x|γ + |y|γ )|x – y| (3.11)

for all x, y ∈R
d .

Lemma 3.7 Suppose that (3.5) and Assumptions 3.1, 3.2, and 3.3 hold, then the partially
truncated EM method solution (3.8) satisfies

sup
0<�≤1

sup
0≤t≤T

E
∣∣x�(t)

∣∣p < C1 for p ∈ (2, p̄],

where

C1 =
(|y0| + 2p–1yp/2

0 K1
(
1 +

(
p(p – 2)/8

)p/4)T + 2pyp
0T

)

× exp
(
pK4 + 2pK1 + (p – 2) + 2p–1yp/2

0 K1
(
1 +

(
p(p – 2)/8

)p/4)).

Proof From (3.8) and by the Itô formula, we have

E
∣∣x�(t)

∣∣p –
∣∣x�(0)

∣∣

= E

∫ t

0
p
∣
∣x�(s)

∣
∣p–2

×
(

xT
�(s)

(
μ1

(
x̄�(s)

)
+ μ2,�

(
x̄�(s)

))
+

p – 2
2

∣
∣σ1

(
x̄�(s)

)
+ σ2,�

(
x̄�(s)

)∣∣2
)

ds
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= E

∫ t

0
p
∣∣x�(s)

∣∣p–2

×
(

x̄T
�(s)

(
μ1

(
x̄�(s)

)
+ μ2,�

(
x̄�(s)

))
+

p – 2
2

∣∣σ1
(
x̄�(s)

)
+ σ2,�

(
x̄�(s)

)∣∣2
)

ds

+ E

∫ t

0
p
∣
∣x�(s)

∣
∣p–2(x�(x) – x̄�(s)

)T(
μ1

(
x̄�(s)

)
+ μ2,�

(
x̄�(s)

))
ds.

By (3.9), we have

E
∣
∣x�(t)

∣
∣p –

∣
∣x�(0)

∣
∣ ≤ J1 + J2 + J3,

where

J1 ≤ E

∫ t

0
pK4

∣
∣x�(s)

∣
∣p–2∣∣x̄�(s)

∣
∣2 ds,

J2 ≤ E

∫ t

0
p
∣∣x�(s)

∣∣p–2∣∣x�(s) – x̄�(s)
∣∣∣∣μ1

(
x̄�(s)

)∣∣ds,

and

J3 ≤ E

∫ t

0
p
∣∣x�(s)

∣∣p–2∣∣x�(s) – x̄�(s)
∣∣∣∣μ2,�

(
x̄�(s)

)∣∣ds.

By the Hölder inequality and the Young inequality αbβ1–b ≤ bα + (1 – b)β for α,β ≥ 0 and
b ∈ (0, 1), we have

E
∣
∣x�(s)

∣
∣p–2∣∣x̄�(s)

∣
∣2 ≤ (

E
∣
∣x�(s)

∣
∣(p–2)× p

p–2
) p–2

p
(
E

∣
∣x̄�(s)

∣
∣2× p

2
) 2

p

≤ p – 2
p

E
∣
∣x�(s)

∣
∣p +

2
p
E

∣
∣x̄�(s)

∣
∣p.

Then we obtain the estimate of J1

J1 ≤ K4

∫ t

0

(
(p – 2)E

∣∣x�(s)
∣∣p + 2E

∣∣x̄�(s)
∣∣p)ds.

In a similar manner, by (3.1) we have

E
(∣∣x�(s)

∣∣p–2∣∣x�(s) – x̄�(s)
∣∣∣∣μ1

(
x̄�(s)

)∣∣)

≤ K1E
(∣∣x�(s)

∣∣p–2(∣∣x�(s)
∣∣ +

∣∣x̄�(s)
∣∣)∣∣x̄�(s)

∣∣)

≤ K1

(
2p – 3

p
E

∣∣x�(s)
∣∣p +

3
p
E

∣∣x̄�(s)
∣∣p

)
.

Thus, we have the estimate for J2

J2 ≤ pK1

∫ t

0

(
2p – 3

p
E

∣
∣x�(s)

∣
∣p +

3
p
E

∣
∣x̄�(s)

∣
∣p

)
ds.
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Now we are going to estimate J3. By the Hölder inequality, the Young inequality, and (3.6),
we have

E
(∣∣x�(s)

∣∣p–2∣∣x�(s) – x̄�(s)
∣∣∣∣μ2,�

(
x̄�(s)

)∣∣)

≤ p – 2
p

E
∣
∣x�(s)

∣
∣p +

2
p
(
h(�)

)p/2
E

∣
∣x�(s) – x̄�(s)

∣
∣p/2.

By the Hölder inequality, the elementary inequality, (3.1), (3.6), Theorem 7.1 on page 39
of [19], for s ∈ [i�, (i + 1)�), we have

E
∣
∣x�(s) – x̄�(s)

∣
∣p/2 ≤ 2p–2�p/4((1 +

(
p(p – 2)/8

)p/4)K1E
∣
∣x̄�(i�)

∣
∣p/2 + 2

(
h(�)

)p/2).

Combining the two inequalities above and using the fact that |x̄�(s)|p/2 ≤ 1 + |x̄�(s)|p, we
have the estimate for J3

J3 ≤
∫ t

0

(
(p – 2)E

∣
∣x�(s)

∣
∣p + 2p–1(h(�)

)p/2
�p/4

× [
K1

(
1 +

(
p(p – 2)/8

)p/4)(
E

∣∣x̄�(s)
∣∣p + 1

)
+ 2

(
h(�)

)p/2])ds

≤
∫ t

0

(
(p – 2)E

∣∣x�(s)
∣∣p + 2p–1�p/8yp/2

0 K1
(
1 +

(
p(p – 2)/8

)p/4)
E

∣∣x̄�(s)
∣∣p)ds

+ 2p–1�p/8yp/2
0 K1

(
1 +

(
p(p – 2)/8

)p/4)t + 2pyp
0t,

where (3.5) is used. Putting the estimates for J1, J2, and J3 together, we have that

E
∣
∣x�(t)

∣
∣p ≤ |y0| + 2p–1yp/2

0 K1
(
1 +

(
p(p – 2)/8

)p/4)t + 2pyp
0t

+
∫ t

0

([
(p – 2)K4 + (2p – 3)K1 + (p – 2)

]
sup

0≤u≤s
E

∣∣x�(u)
∣∣p

+
[
2K4 + 3K1 + 2p–1yp/2

0 K1
(
1 +

(
p(p – 2)/8

)p/4)]
sup

0≤u≤s
E

∣∣x̄�(u)
∣∣p

)
ds,

where � < 1 is used. Since sup0≤u≤s E|x�(u)|p = sup0≤u≤s E|x̄�(u)|p and the inequality
above holds for any t ∈ [0, T] and any � ∈ (0, 1], we obtain that

sup
0<�≤1

sup
0≤t≤T

E
∣∣x�(t)

∣∣p ≤ C1,

where

C1 =
(|y0| + 2p–1yp/2

0 K1
(
1 +

(
p(p – 2)/8

)p/4)T + 2pyp
0T

)

× exp
(
pK4 + 2pK1 + (p – 2) + 2p–1yp/2

0 K1
(
1 +

(
p(p – 2)/8

)p/4)). �

The next lemma can be proved by following the typical way, we refer the readers to, for
example, [19] for details.

Lemma 3.8 Suppose that (3.3) holds, the solution to (2.1) satisfies

sup
0≤t≤T

E
∣
∣y(t)

∣
∣p ≤ C2,

where C2 = y0 exp(pK3T).
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Lemma 3.9 Suppose that Assumption 3.1 holds, then

(
E

∣
∣x�(t) – x̄�(t)

∣
∣4)1/2 ≤ C3�

1/2
(

sup
0≤t≤T

E
∣
∣x�(t)

∣
∣2

)
,

where

C3 = 97
(
K4

1 C1 + 1
)1/2.

Proof We see from (3.8) that, for any t ∈ [i�, (i + 1)�),

E
∣
∣x�(t) – x̄�(t)

∣
∣4

≤ 8E
∣
∣∣
∣

∫ t

i�

(
μ1

(
x̄�(s)

)
+ μ2,�

(
x̄�(s)

))
ds

∣
∣∣
∣

4

+ 8E
∣
∣∣
∣

∫ t

i�

(
σ1

(
x̄�(s)

)
+ σ2,�

(
x̄�(s)

))
dB(s)

∣
∣∣
∣

4

≤ 8�3
E

∫ t

i�

∣
∣μ1

(
x̄�(s)

)
+ μ2,�

(
x̄�(s)

)∣∣4 ds

+ 288�E

∫ t

i�

∣
∣σ1

(
x̄�(s)

)
+ σ2,�

(
x̄�(s)

)∣∣4 ds

≤ 64�
(
�2 + 36

)

×E

∫ t

i�

(∣∣μ1
(
x̄�(s)

)∣∣4 +
∣∣μ2,�

(
x̄�(s)

)∣∣4 +
∣∣σ1

(
x̄�(s)

)∣∣4 +
∣∣σ2,�

(
x̄�(s)

)∣∣4)ds,

where the Hölder inequality, Theorem 7.1 on page 39 of [19] and the elementary inequality
|a + b|4 ≤ 8(|a|4 + |b|4) have been used.

Now, using (3.1) and (3.6), we have

E
∣
∣x�(t) – x̄�(t)

∣
∣4 ≤ 128�

(
�2 + 36

)∫ t

i�

(
K4

1E
∣
∣x̄�(s)

∣
∣4 +

(
h(�)

)4)ds

≤ 128�2(�2 + 36
)(

K4
1E

∣
∣x̄�(i�)

∣
∣4 +

(
h(�)

)4)

≤ 128�2(�2 + 36
)(

K4
1 C1 +

(
h(�)

)4),

where Lemma 3.7 is used for the last inequality.
From (3.5), we derive �(h(�))4 ≤ |y0|4 and � ≤ |y0|4. Then

E
∣∣x�(t) – x̄�(t)

∣∣4 ≤ 256�
(
�2 + 36

)(
K4

1 C1 + 1
)|y0|4.

Taking square root on both sides, we have

(
E

∣
∣x�(t) – x̄�(t)

∣
∣4)1/2 ≤ 16�1/2(1 + 36)1/2(K4

1 C1 + 1
)1/2

(
sup

0≤t≤T
E

∣
∣x�(t)

∣
∣2

)
,

where the fact |y0|2 = |x�(0)|2 ≤ sup0≤t≤T E|x�(t)|2 is used. Since the analysis above holds
for any t ∈ [0, T], the assertion is obtained. �

For any real number R > |y0|, define the stopping times

τR = inf
{

t ≥ 0 :
∣∣y(t)

∣∣ ≥ R
}

and ρR = inf
{

t ≥ 0 :
∣∣x�(t)

∣∣ ≥ R
}

.
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Set

θR = τR ∧ ρR and e(t) = x�(t) – y(t).

Lemma 3.10 Suppose that Assumptions 3.1, 3.2, and 3.3 hold, then for any t ∈ [0, T]

E
∣∣y(t ∧ θR) – x�(t ∧ θR)

∣∣2 ≤ C4�
1/2

(
sup

0≤t≤T
E

∣∣x�(t)
∣∣2

)
,

where

C4 =
33/2(8q – 12)L2

1(1 + 2C1)1/2C3e(2L3+1)T

q – 2
.

Proof For any t ∈ [0, T], it is clear that t ∧ θR ≤ θR a.s. Therefore, we observe from the
definitions of μ� and σ� that μ�(x̄�(t)) = μ(x̄�(t)) and σ�(x̄�(t)) = σ (x�(t)).

By the Itô formula, we have

E
∣∣e(t ∧ θR)

∣∣2 = 2E
∫ t∧θR

0

(
eT (s)

(
μ

(
y(s)

)
– μ

(
x̄�(s)

))
+

1
2
∣∣σ

(
y(s)

)
– σ

(
x̄�(s)

)∣∣2
)

ds.

Now, using the elementary inequality, we can see that

∣
∣σ

(
y(s)

)
– σ

(
x̄�(s)

)∣∣2

≤ (
1 + (q – 2)

)∣∣σ
(
y(s)

)
– σ

(
x�(s)

)∣∣2 +
(
1 + 1/(q – 2)

)∣∣σ
(
x�(s)

)
– σ

(
x̄�(s)

)∣∣2,

where q > 2 is used. Thus we obtain

E
∣
∣e(t ∧ θR)

∣
∣2 ≤ J4 + J5,

where

J4 = 2E
∫ t∧θR

0

(
eT (s)

(
μ

(
y(s)

)
– μ

(
x�(s)

))
+

q – 1
2

∣
∣σ

(
y(s)

)
– σ

(
x�(s)

)∣∣2
)

ds

and

J5 = 2E
∫ t∧θR

0

(
eT (s)

(
μ

(
x�(s)

)
– μ

(
x̄�(s)

))
+

q – 1
2(q – 2)

∣
∣σ

(
x�(s)

)
– σ

(
x̄�(s)

)∣∣2
)

ds.

Applying (3.4) yields

J4 ≤ 2L3E

∫ t

0
E

∣
∣e(s ∧ θR)

∣
∣2 ds.
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Applying the elementary inequality and (3.10) gives

J5 ≤ E

∫ t∧θR

0

(∣
∣e(s)

∣
∣2 +

∣
∣μ

(
x�(s)

)
– μ

(
x̄�(s)

)∣∣2 +
q – 1
q – 2

∣
∣σ

(
x�(s)

)
– σ

(
x̄�(s)

)∣∣2
)

ds

≤
∫ t

0
E

∣∣e(s ∧ θR)
∣∣2 ds

+ 4
(

1 +
q – 1
q – 2

)
L2

1E

∫ t∧θR

0

(
1 +

∣∣x�(s)
∣∣γ +

∣∣x̄�(s)
∣∣γ )2∣∣x�(s) – x̄�(s)

∣∣2 ds

≤
∫ t

0
E

∣
∣e(s ∧ θR)

∣
∣2 ds

+
8q – 12

q – 2
L2

1

∫ T

0

(
E

(
1 +

∣∣x�(s)
∣∣γ +

∣∣x̄�(s)
∣∣γ )4)1/2(

E
∣∣x�(s) – x̄�(s)

∣∣4)1/2 ds,

where t ∧ θR ≤ T a.s. for t ∈ [0, T] is used for the last integral. Using Lemmas 3.7 and 3.9,
we have

J5 ≤
∫ t

0
E

∣∣e(s ∧ θR)
∣∣2ds +

33/2(8q – 12)L2
1(1 + 2C1)1/2C3

q – 2
�1/2

(
sup

0≤t≤T
E

∣∣x�(t)
∣∣2

)
,

where the elementary inequality |a + b + c|4 ≤ 33(|a|4 + |b|4 + |c|4) is used.
Combining the estimates of J4 and J5 and applying the Gronwall inequality prove the

assertion. �

Theorem 3.11 Suppose that Assumptions 3.1, 3.2, and 3.3 hold, then for any t ∈ [0, T]

E
∣∣e(t)

∣∣2 ≤ C5�
1/2

(
sup

0≤t≤T
E

∣∣x�(t)
∣∣2

)
,

where

C5 = C4 +
(C1 + C2)(2p + p – 2)

p
.

Proof For any t ∈ [0, T], we have

E
∣
∣e(t)

∣
∣2 = E

(∣∣e(t)
∣
∣2I{θR>t}

)
+ E

(∣∣e(t)
∣
∣2I{θR≤t}

)
.

For any δ > 0, the Young inequality yields

E
(∣∣e(t)

∣
∣2I{θR≤t}

) ≤ 2δ

p
E

∣
∣e(t)

∣
∣p +

p – 2
pδ2/(p–2) P(θR ≤ t).

Due to Lemmas 3.7 and 3.8, we obtain

E
∣∣e(t)

∣∣p ≤ 2p–1
E

∣∣y(t)
∣∣p + 2p–1

E
∣∣x�(t)

∣∣p ≤ 2p–1(C1 + C2).

By the definition of τR, it is not hard to see

P(τR ≤ t) = E

(
I{τR≤t}

|y(τR)|p
Rp

)
≤ 1

Rp

(
sup

0≤t≤T
E

∣∣y(t)
∣∣p

)
≤ C2

Rp .
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In a similar way, we have

P(ρR ≤ t) ≤ C1

Rp .

Thus, we see that

P(θR ≤ t) ≤ P(τR ≤ t) + P(ρR ≤ t) ≤ C1 + C2

Rp .

Now choosing δ = |y0|2�1/2 and R = (|y0|2�1/2)–1/(p–2) gives

E
(∣∣e(t)

∣∣2I{θR≤t}
) ≤ (C1 + C2)(2p + p – 2)

p
|y0|2�1/2

≤
(

sup
0≤t≤T

E
∣∣x�(t)

∣∣2
) (C1 + C2)(2p + p – 2)

p
�1/2,

where the fact |y0|2 = |x�(0)|2 ≤ (sup0≤t≤T E|x�(t)|2) is used. Using Lemma 3.10, we have

E
∣
∣e(t)

∣
∣2 = E

(∣∣e(t)
∣
∣2I{θR>t}

)
+ E

(∣∣e(t)
∣
∣2I{θR≤t}

)

≤ E
∣
∣e(t ∧ θR)

∣
∣2 +

(C1 + C2)(2p + p – 2)
p

�1/2
(

sup
0≤t≤T

E
∣
∣x�(t)

∣
∣2

)

≤ C4�
1/2

(
sup

0≤t≤T
E

∣
∣x�(t)

∣
∣2

)
+

(C1 + C2)(2p + p – 2)
p

�1/2
(

sup
0≤t≤T

E
∣
∣x�(t)

∣
∣2

)

≤ C5�
1/2

(
sup

0≤t≤T
E

∣
∣x�(t)

∣
∣2

)
.

Hence, the proof is completed. �

We finish this section by providing the theorem of equivalence for the partially trun-
cated Euler–Maruyama method. The proof of the theorem is straightforward following
Theorem 2.1, Lemma 3.7, and Theorem 3.11.

Theorem 3.12 Suppose that Assumptions 3.1, 3.2, and 3.3 hold, then the SDE is mean
square exponentially stable if and only if the partially truncated Euler–Maruyama method
solution is mean square exponentially stable providing the step size is small enough and
satisfies (3.5).

4 Conclusion and future research
For stochastic differential equations with super-linear growing coefficients, this paper
studies equivalence of the mean square stability between the partially truncated Euler–
Maruyama method and the underlying SDEs. By carefully tracking the constant term in
the finite time convergence error, the “if and only if” result is obtained.

For the equivalence of other types of stabilities, such as pth moment stability or almost
sure stability, we will report in the future works.
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