
Zhao and Yan Advances in Difference Equations        (2018) 2018:402 
https://doi.org/10.1186/s13662-018-1819-0

R E S E A R C H Open Access

Stability and bifurcation analysis of a
discrete predator–prey system with modified
Holling–Tanner functional response
Jianglin Zhao1* and Yong Yan1

*Correspondence:
ws05101162@163.com
1Faculty of Science and Technology,
Sichuan Minzu College, Kangding,
China

Abstract
In this paper, we study a discrete predator–prey system with modified Holling–Tanner
functional response. We derive conditions of existence for flip bifurcations and Hopf
bifurcations by using the center manifold theorem and bifurcation theory. Numerical
simulations including bifurcation diagrams, maximum Lyapunov exponents, and
phase portraits not only illustrate the correctness of theoretical analysis, but also
exhibit complex dynamical behaviors and biological phenomena. This suggests that
the small integral step size can stabilize the system into the locally stable coexistence.
However, the large integral step size may destabilize the system producing far richer
dynamics. This also implies that when the intrinsic growth rate of prey is high, the
model has bifurcation structures somewhat similar to the classic logistic one.
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1 Introduction
Predator–prey interactions have long been studied and continue to be one of the dominant
themes in both biology and mathematical biology due to their universal existence and im-
portance [1]. Recently, a predator–prey system with modified Holling–Tanner functional
response was given in [2, 3] as follows:

⎧
⎨

⎩

du
dt = ru(1 – u

K ) – kuv
a+bu+cv ,

dv
dt = v[s(1 – hv

u )],
(1)

where r, K , k, a, b, c, s, h are positive constants, and u and v represent the population den-
sities of prey and predator, respectively. The prey grows logistically with carrying capacity
K and intrinsic growth rate r in the absence of predator. The predator consumes the prey
according to the functional response of Beddington–DeAngelis type kuv/(a + bu + cv) and
grows logistically with intrinsic growth rate s, and cv measures the mutual interference
between predators. The parameters k, a, b, and c are the consumption rate, the saturation
constant, the saturation constant for an alternative prey, and the predator interference,
respectively. The carrying capacity u/h of predator is proportional to the population size
of the prey. The parameter h is the number of preys required to support one predator at
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equilibrium when v equals u/h. The term v/u measures the loss in the predator population
due to rarity of its favorite food.

Applying the following scaling to (1),

t �→ t, u �→ u
K

, v �→ v,
k

bK
�→ β ,

a
bK

�→ a,
c

bK
�→ m,

h
K

�→ h,

it becomes of the following form:

⎧
⎨

⎩

du
dt = ru(1 – u) – βuv

a+u+mv ,
dv
dt = v[(s – hv

u )].
(2)

However, for a mathematical biology model, if the size of population is rarely small, or
the population has no overlapping generation, or people study population changes within
certain intervals of time, the discrete-time model would indeed be more suitable and re-
alistic than the continuous-time model [4–12]. On the other hand, numerical solutions
or approximate solutions of discrete-time models can be obtained more easily, and much
work has shown that discrete-time prey–predator models can produce a much richer set
of patterns than those observed in continuous-time models [13–18]. Thus, it is neces-
sary to consider the corresponding discrete model of system (2). Using the forward Euler
scheme to system (2), we therefore obtain the following discrete-time model:

⎧
⎨

⎩

u → u + δ[ru(1 – u) – βuv
a+u+mv ],

v → v + δ[v(s – hv
u )],

(3)

where δ is the integral step size. In this paper, we mainly focus on the dynamical behav-
ior of system (3) in the interior of the first quadrant of R2. More precisely, we discuss the
stability of fixed points of system (3) and rigorously prove that the map (3) undergoes the
flip bifurcation and Hopf bifurcation by using the center manifold theorem and bifurca-
tion theory. Meanwhile, resent numerical simulations not only to illustrate our results of
theoretical analysis, but also to explore complex dynamical behaviors.

The outline of this paper is as follows. In Sect. 2, we investigate in detail the existence
and local stability of fixed points of model (3). In Sect. 3, we derive sufficient conditions
for the existence of flip bifurcation and Hopf bifurcation. In Sect. 4, we present numerical
simulations to check our results of theoretical analysis and exhibit some complex and new
dynamical behaviors. In the end, we give a brief conclusion in Sect. 5.

2 Existence and stability of fixed points
From a biological point of view, system (3) must have positive values of u and v. We have
the following result.

Theorem 2.1 Assume that � = {(u, v)|u > 0, v > 0, rδu + βδv – (1 + rδ) < 0}. Then � is an
invariant set for system (3) if δ and s are enough small.
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Proof Suppose that (u0, v0) ∈ �. Then (u1, v1) > 0 if δ is small enough, where

u1 = u0 + δ

[

ru0(1 – u0) –
βu0v0

a + u0 + mv0

]

, v1 = v0 + δ

[

v0

(

s –
hv0

u0

)]

.

Let L = rδu1 + βδv1 – (1 + rδ). Then

L = –r2δ2u2
0 + rδ(1 + rδ)u0 – (1 + rδ) + βδ

[

1 + δ

(

s –
hv0

u0

)

–
rδu0

a + u0 + mv0

]

v0.

If δ is small enough, then it follows that

1 + δ

(

s –
hv0

u0

)

–
rδu0

a + u0 + mv0
= 1 + δs – δ

(
hv0

u0
+

rδu0

a + u0 + mv0

)

> 0.

Since v0 < 1+rδ
βδ

, we have

L < –r2δ2u2
0 + rδ(1 + rδ)u0 – (1 + rδ) +

[

1 + δ

(

s –
hv0

u0

)

–
rδu0

a + u0 + mv0

]

(1 + rδ)

= –r2δ2u2
0 + rδ(1 + rδ)u0 +

[(

s –
hv0

u0

)

–
ru0

a + u0 + mv0

]

δ(1 + rδ).

If s is small enough, then we have

s <
ru0

a + u0 + mv0
+

hv0

u0
.

Thus H = (s – hv0
u0

) – ru0
a+u0+mv0

< 0.
Let L(u0) = –r2δ2u2

0 + rδ(1 + rδ)u0 + δ(1 + rδ)H . Then L(u0) = δ(1 + rδ)H < 0.
Therefore, L < 0 if δ is small enough. Then (u1, v1) ∈ � if δ and s are small enough, that

is, � is an invariant set for system (3).
It is clear that the fixed points of model (3) satisfy the following equations:

⎧
⎨

⎩

u = u + δ[ru(1 – u) – βuv
a+u+mv ],

v = v + δ[v(s – hv
u )]. �

Lemma 2.1 For all parameter values, system (3) has two fixed points, the boundary fixed
point A(1, 0) and the unique positive fixed point B(u∗, v∗) defined by

u∗ =
–(βs + ahr – hr – msr) +

√
(βs + ahr – hr – mrs)2 + 4ahr2(h + ms)
2r(h + ms)

,

v∗ =
s
h

u∗.

Now, we perform the linear stability analysis of system (3) at each fixed point. The Jaco-
bian matrix J of (3) evaluated at any point (u, v) is given by

J(u, v) =

(
a11 a12

a21 a22

)

, (4)
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where

a11 = 1 + δ

[

r(1 – 2u) –
βv(a + mv)

(a + u + mv)2

]

,

a12 = –
δβu(a + u)

(a + u + mv)2 ,

a21 =
hδv2

u2 , a22 = 1 + δ

(

s –
2hv
u

)

.

Moreover, the characteristic equation of J(u, v) can be written as

λ2 + p(u, v)λ + q(u, v) = 0, (5)

where p(u, v) = –(a11 + a22), q(u, v) = a11a22 – a12a21.

Lemma 2.2 ([11]) Let F(λ) = λ2 + Pλ + Q, where P and Q are constants. Suppose that
F(1) > 0 and λ1 and λ2 are two roots of F(λ) = 0. Then

(i) |λ1| < 1 and |λ2| < 1 if and only if F(–1) > 0 and Q < 1;
(ii) |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) if and only if F(–1) < 0;

(iii) |λ1| > 1 and |λ2| > 1 if and only if F(–1) > 0 and Q > 1;
(iv) λ1 = –1 and |λ2| �= 1 if and only if F(–1) = 0 and P �= 0, 2;
(v) λ1 and λ2 are the conjugate complex roots and |λ1| = |λ2| = 1 if and only if

P2 – 4Q < 0 and Q = 1.

Suppose that λ1 and λ2 are two roots of (5), which are called eigenvalues of the fixed
point (u, v). The point (u, v) is a sink if |λ1| < 1 and |λ2| < 1. A sink is locally asymptotic
stable. The point (u, v) is a source if |λ1| > 1 and |λ2| > 1. A source is locally unstable.
The point (u, v) is a saddle if |λ1| > 1 and |λ2| < 1 (or |λ1| < 1 and |λ2| > 1), and (u, v) is
nonhyperbolic if either |λ1| = 1 or |λ2| = 1.

Theorem 2.2 The eigenvalues of the fixed point A(1, 0) are λ1 = 1 – δr and λ2 = 1 + δs.
(i) A(1, 0) is a saddle if 0 < δ < 2

r ;
(ii) A(1, 0) is a source if δ > 2

r ;
(iii) A(1, 0) is nonhyperbolic if δ = 2

r .

Let

FA =
{

(a, h, m, r, s, δ,β) : δ =
2
r

,β , a, h, m, r, s > 0
}

.

It can be easily seen that one of the eigenvalues of A(1, 0) is –1 and the other is neither 1
nor –1 when all parameters of system (3) locate in FA. Then the center manifold of sys-
tem (3) at A(1, 0) is v = 0 when parameters are in FA. The map (3) restricted to this center
manifold is the classic logistic model u → ru(1 – u). It is well known that the predator pop-
ulation becomes extinct and the prey undergoes the period-doubling bifurcation to chaos
by choosing the bifurcation parameter r. Therefore, the fixed point A(1, 0) can undergo
flip bifurcation when parameters vary in a small neighborhood of FA.
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The characteristic equation of the Jacobian matrix J(u, v) evaluated at the unique posi-
tive fixed point B(u∗, v∗) can be written as

λ2 – (2 + Gδ)λ +
(
1 + Gδ + Hsδ2) = 0, (6)

where

G = –s – ru∗ +
βu∗v∗

(a + u∗ + mv∗)2 ,

H = ru∗ +
βav∗

(a + u∗ + mv∗)2 .

Let

F(λ) = λ2 – (2 + Gδ)λ +
(
1 + Gδ + Hsδ2).

Then

F(1) = Hsδ2 > 0, F(–1) = 4 + 2Gδ + Hsδ2.

Theorem 2.3
(i) B(u∗, v∗) is a sink if one of the following conditions holds:

(i.1) –2
√

Hs < G < 0 and 0 < δ < – G
Hs ;

(i.2) G < –2
√

Hs and 0 < δ < –G–
√

G2–4Hs
Hs ;

(ii) B(u∗, v∗) is a source if one of the following conditions holds:
(ii.1) –2

√
Hs < G < 0 and δ > – G

Hs ;
(ii.2) G < –2

√
Hs and δ > –G+

√
G2–4Hs
Hs ;

(ii.3) G ≥ 0;
(iii) B(u∗, v∗) is a saddle if the following conditions hold:

G < –2
√

Hs and
–G –

√
G2 – 4Hs

Hs
< δ <

–G +
√

G2 – 4Hs
Hs

;

(iv) B(u∗, v∗) is nonhyperbolic if one of the following conditions holds:
(iv.1) G < –2

√
Hs and δ = –G±√

G2–4Hs
Hs and δ �= – 2

G , – 4
G ;

(iv.2) –2
√

Hs < G < 0 and δ = – G
Hs .

From the Jury criterion and the preceding analysis it can be easily seen that one of the
eigenvalues of the unique positive fixed point B(u∗, v∗) is –1 and the other is neither 1
nor –1 if (iv.1) of Theorem 2.3 holds. When (iv.2) of Theorem 2.3 is true, the eigenvalues
of the unique positive fixed point B(u∗, v∗) are a pair of conjugate complex numbers with
modulus one.

Let

FB1 =
{

(δ,β , a, h, m, r, s) : δ = δ1 =
–G –

√
G2 – 4Hs

Hs
, G < –2

√
Hs,β , a, h, m, r, s > 0

}
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and

FB2 =
{

(δ,β , a, h, m, r, s) : δ = δ′
1 =

–G +
√

G2 – 4Hs
Hs

, G < –2
√

Hs,β , a, h, m, r, s > 0
}

.

Then the unique positive fixed point B(u∗, v∗) may undergo the flip bifurcation when pa-
rameters vary in a small neighborhood of FB1 or FB2.

Let

HB =
{

(δ,β , a, h, m, r, s) : δ = δ2 = –
G
Hs

, –2
√

Hs < G < 0,β , a, h, m, r, s > 0
}

.

Then the unique positive fixed point B(u∗, v∗) may undergo the Hopf bifurcation when the
parameters vary in a small neighborhood of HB.

3 Flip bifurcation and Hopf bifurcation
Based on the previous analysis, in this section, we mainly focus on the flip bifurcation
and Hopf bifurcation of the unique positive fixed point B(u∗, v∗). Then, we choose the
integral step size δ as a bifurcation parameter for investigating the Flip bifurcation and
Hopf bifurcation of B(u∗, v∗) by using the center manifold theorem and bifurcation the-
ory.

We first discuss the flip bifurcation of system (3) at B(u∗, v∗) when the parameters vary
in a small neighborhood of FB1. Similar arguments can be applied to the other case of FB2.

Taking the parameters (δ,β , a, h, m, r, s) arbitrarily from FB1, we consider system (3) with
(δ,β , a, h, m, r, s) ∈ FB1 described by

⎧
⎨

⎩

u → u + δ1[ru(1 – u) – βuv
a+u+mv ],

v → v + δ1[v(s – hv
u )].

(7)

Then the map (7) has a unique positive fixed point B(u∗, v∗) with eigenvalues λ1 = –1 and
λ2 = 3 + Gδ1 with |λ2| �= 1 by Theorem 2.3.

Choosing δ∗ as a bifurcation parameter, we consider a perturbation of (7) as follows:

⎧
⎨

⎩

u → u + (δ1 + δ∗)[ru(1 – u) – βuv
a+u+mv ],

v → v + (δ1 + δ∗)[v(s – hv
u )],

(8)

where |δ∗| 
 1 is a small perturbation parameter.
Assume that U = u – u∗,V = v – v∗. Then we transform the fixed point B(u∗, v∗) of the

map (8) into the origin. For convenience, we rewrite U and V as u and v, respectively.
Then we have

(
u
v

)

→

⎛

⎜
⎜
⎜
⎝

a11u + a12v + a13u2 + a14uv + a15v2 + a16u3 + a17u2v + a18uv2 + a19v3

+ b1uδ∗ + b2vδ∗ + b3u2δ∗ + b4uvδ∗ + b5v2δ∗ + o((|u| + |v| + |δ∗|)4),
a21u + a22v + a23u2 + a24uv + a25v2 + a26u3 + a27u2v + a28uv2 + a29v3

+ c1uδ∗ + c2vδ∗ + c3u2δ∗ + c4uvδ∗ + c5v2δ∗ + o((|u| + |v| + |δ∗|)4),

⎞

⎟
⎟
⎟
⎠

, (9)
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where

a11 = 1 + δ

[

–ru∗ +
βu∗v∗

(a + u∗ + mv∗)2

]

, a12 = –
δβu∗(a + u∗)

(a + u∗ + mv∗)2 ,

a13 = δ

[

–r +
βv∗(a + mv∗)

(a + u∗ + mv∗)3

]

,

a14 = –
δβ

(a + u∗ + mv∗)2

(

a +
2mu∗v∗

a + u∗ + mv∗

)

,

a15 =
δβmu∗(a + u∗)
(a + u∗ + mv∗)3 , a16 = –

δβv∗(a + mv∗)
(a + u∗ + mv∗)4 ,

a17 =
δβ

(a + u∗ + mv∗)3

(

a – mv∗ +
3mu∗v∗

a + u∗ + mv∗

)

,

a18 =
δβm

(a + u∗ + mv∗)3

(

a – u∗ –
3mu∗v∗

a + u∗ + mv∗

)

, a19 = –
δβm2u∗(a + u∗)
(a + u∗ + mv∗)4 ;

b1 = –ru∗ +
βu∗v∗

(a + u∗ + mv∗)2 , b2 = –
βu∗(a + u∗)

(a + u∗ + mv∗)2 ,

b3 = –r +
βv∗(a + mv∗)

(a + u∗ + mv∗)3 ,

b4 = –
β

(a + u∗ + mv∗)2

(

a +
2mu∗v∗

a + u∗ + mv∗

)

, b5 =
βmu∗(a + u∗)

(a + u∗ + mv∗)3

a21 =
δs2

h
, a22 = 1 – δs, a23 = –

δs2

hu∗
, a24 =

2δs
u∗

, a25 = –
δh
u∗

,

a26 =
δs2

hu2∗
, a27 = –

2δs
u2∗

, a28 =
δh
u2∗

, a29 = 0,

c1 =
s2

h
, c2 = –s, c3 =

s2

hu∗
, c4 =

2s
u∗

, c5 = –
h
u∗

,

(10)

and δ = δ1.
We construct the invertible matrix

T =

(
a12 a12

–1 – a11 λ2 – a11

)

,

and apply the translation (u, v)T = T(ũ, ṽ)T . Then the map (9) can be changed into

(
ũ
ṽ

)

→
(

–1 0
0 λ2

)(
ũ
ṽ

)

+

(
f (u, v, δ∗)
g(u, v, δ∗)

)

, (11)

where

f (u, v, δ∗) =
(λ2 – a11)a13 – a12a23

(1 + λ2)a12
u2 +

(λ2 – a11)a14 – a12a24

(1 + λ2)a12
uv

+
(λ2 – a11)a15 – a12a25

(1 + λ2)a12
v2

+
(λ2 – a11)a16 – a12a26

(1 + λ2)a12
u3 +

(λ2 – a11)a17 – a12a27

(1 + λ2)a12
u2v
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+
(λ2 – a11)a18 – a12a28

(1 + λ2)a12
uv2

+
(λ2 – a11)a19 – a12a29

(1 + λ2)a12
v3 +

(λ2 – a11)b1 – a12c1

(1 + λ2)a12
uδ∗

+
(λ2 – a11)b2 – a12c2

(1 + λ2)a12
vδ∗

+
(λ2 – a11)b3 – a12c3

(1 + λ2)a12
u2δ∗ +

(λ2 – a11)b4 – a12c4

(1 + λ2)a12
uvδ∗

+
(λ2 – a11)b5 – a12c5

(1 + λ2)a12
v2δ∗

+ o
((|u| + |v| + |δ∗|

)4),

g(u, v, δ∗) =
(1 + a11)a13 + a12a23

(1 + λ2)a12
u2 +

(1 + a11)a14 + a12a24

(1 + λ2)a12
uv

+
(1 + a11)a15 + a12a25

(1 + λ2)a12
v2

+
(1 + a11)a16 + a12a26

(1 + λ2)a12
u3 +

(1 + a11)a17 + a12a27

(1 + λ2)a12
u2v

+
(1 + a11)a18 + a12a28

(1 + λ2)a12
uv2

+
(1 + a11)a19 + a12a29

(1 + λ2)a12
v3 +

(1 + a11)b1 + a12c1

(1 + λ2)a12
uδ∗

+
(1 + a11)b2 + a12c2

(1 + λ2)a12
vδ∗

+
(1 + a11)b3 + a12c3

(1 + λ2)a12
u2δ∗ +

(1 + a11)b4 + a12c4

(1 + λ2)a12
uvδ∗

+
(1 + a11)b5 + a12c5

(1 + λ2)a12
v2δ∗

+ o
((|u| + |v| + |δ∗|

)4),

and u = a12ũ + a12ṽ, v = –(1 + a11)ũ + (λ2 – a11)ṽ.
Next, we apply the center manifold theorem [19] to determine the dynamics of the fixed

point (ũ, ṽ) = (0, 0) at δ∗ = 0. Then there exists a center manifold of the map (11), which
can be represented as follows:

W c(0, 0) =
{

(ũ, ṽ)|ṽ = h(ũ, δ∗), h(0, 0) = 0, Dh(0, 0) = 0
}

.

Assume that

h(ũ, δ∗) = a1ũ2 + a2ũδ∗ + a3δ
2
∗ + O

((|ũ| + |δ∗|
)3), (12)

where O((|ũ| + |δ∗|)3) is a function of order at least three in their variables (ũ, δ∗).
Then, the center manifold must satisfy

N
(
h(ũ, δ∗)

)
= h

(
–ũ + f

(
ũ, h(ũ, δ∗), δ∗

)
, δ∗

)
– λ2h(ũ, δ∗) – g

(
ũ, h(ũ, δ∗), δ∗

)
, δ∗) = 0. (13)
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Substituting (11) and (12) into (13) and comparing the coefficients of (12), we obtain

a1 =
1

a12(1 – λ2
2)

{
a2

12
[
(1 + a11)a13 + a12a23

]

– a12(1 + a11)
[
(1 + a11)a14 + a12a24

]

+ (1 + a11)2[(1 + a11)a15 + a12a25
]}

,

a2 =
1

a12(1 + λ2)2

{
–a12

[
(1 + a11)b1 + a12c1

]

+ (1 + a11)
[
(1 + a11)b2 + a12c2

]}
,

a3 = 0.

Therefore, the map (10) restricted to the center manifold W c(0, 0) is given by

F : ũ → –ũ + h1ũ2 + h2ũδ∗ + h3ũ2δ∗ + h4ũδ2
∗ + h5ũ3 + O

((|ũ| + |δ∗|
)4), (14)

where

h1 =
1

(1 + λ2)a12

{
a2

12
[
(λ2 – a11)a13 – a12a23

]

– a12(1 + a11)
[
(λ2 – a11)a14 – a12a24

]

+ (1 + a11)2[(λ2 – a11)a15 – a12a25
]}

,

h2 =
1

(1 + λ2)a12

{
a12

[
(λ2 – a11)b1 – a12c1

]
– (1 + a11)

[
(λ2 – a11)b2 – a12c2

]}
,

h3 =
a2

(1 + λ2)a12

{
2a2

12
[
(λ2 – a11)a13 – a12a23

]

+ a12(λ2 – 2a11 – 1)
[
(λ2 – a11)a14 – a12a24

]

– 2(1 + a11)(λ2 – a11)
[
(λ2 – a11)a15 – a12a25

]}

+
a1

(1 + λ2)a12

{
a12

[
(λ2 – a11)b1 – a12c1

]
+ (λ2 – a11)

[
(λ2 – a11)b2 – a12c2

]}

+
1

(1 + λ2)a12

{
a2

12
[
(λ2 – a11)b3 – a12c3

]
– a12(1 + a11)

[
(λ2 – a11)b4 – a12c4

]

+ (1 + a11)2[(λ2 – a11)b5 – a12c5
]}

,

h4 =
a2

(1 + λ2)a12

{
a12

[
(λ2 – a11)b1 – a12c1

]
+ (λ2 – a11)

[
(λ2 – a11)b2 – a12c2

]}
,

h5 =
a1

(1 + λ2)a12

{
2a2

12
[
(λ2 – a11)a13 – a12a23

]

+ a12(λ2 – 2a11 – 1)
[
(λ2 – a11)a14 – a12a24

]

– 2(λ2 – a11)(1 + a11)
[
(λ2 – a11)a15 – a12a25

]}

+
1

(1 + λ2)a12

{
a3

12
[
(λ2 – a11)a16 – a12a26

]

– (1 + a11)3[(λ2 – a11)a19 – a12a29
]}

.
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Let α1 = ( ∂2F
∂ũ∂δ∗ + 1

2
∂F
∂δ∗

∂2F
∂ũ2 )|(0,0) = h2 and α2 = ( 1

6
∂3F
∂ũ3 + ( 1

2
∂2F
∂ũ2 )2)|(0,0) = h5 + h2

1.
Then we have the following results.

Theorem 3.1 If α1 �= 0 and α2 �= 0, then the map (3) undergoes a flip bifurcation at the
unique positive fixed point B(u∗, v∗) when the parameter δ varies in a small neighborhood of
FB1. Moreover, if α2 > 0 (resp., α2 < 0), then the period-2 orbits that bifurcate from B(u∗, v∗)
are stable (resp., unstable).

Next, we discuss the Hopf bifurcation of B(u∗, v∗) when the parameters (δ,β , a, h, m, r, s)
vary in a small neighborhood of HB. Taking the parameters (δ,β , a, h, m, r, s) arbitrary from
HB, we consider system (3) with (δ,β , a, h, m, r, s) ∈ HB represented by

⎧
⎨

⎩

u → u + δ2[ru(1 – u) – βuv
a+u+mv ],

v → v + δ2[v(s – hv
u )].

(15)

Then the map (15) has a unique positive fixed point B(u∗, v∗).
Then we choose δ̄∗ as a bifurcation parameter and consider a perturbation of (15) as

follows:

⎧
⎨

⎩

u → u + (δ2 + δ̄∗)[ru(1 – u) – βuv
a+u+mv ],

v → v + (δ2 + δ̄∗)[v(s – hv
u )],

(16)

where |δ̄∗| 
 1 is a small perturbation parameter.
Assume that U = u – u∗ and V = v – v∗. Then we transform the fixed point B(u∗, v∗) of

the map (16) into the origin. For convenience, we rewrite U and V as u and v, respectively.
Then we have

(
u
v

)

→

⎛

⎜
⎜
⎜
⎝

a11u + a12v + a13u2 + a14uv + a15v2 + a16u3 + a17u2v
+ a18uv2 + a19v3 + o((|u| + |v|)4),

a21u + a22v + a23u2 + a24uv + a25v2 + a26u3 + a27u2v
+ a28uv2 + a29v3 + o((|u| + |v|)4),

⎞

⎟
⎟
⎟
⎠

(17)

where a11, a12, a13, a14, a15, a16, a17, a18, a19, a21, a22, a23, a24, a25, a26, a27, a28, a29 are
given in (10) by substituting δ for δ2 + δ̄∗.

Then the characteristic equation associated with the linearization of model (17) at
(u, v) = (0, 0) is given by

λ2 + p(δ̄∗)λ + q(δ̄∗) = 0,

where

p(δ̄∗) = –2 – G(δ2 + δ̄∗),

q(δ̄∗) = 1 + G(δ2 + δ̄∗) + Hs(δ2 + δ̄∗)2.
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Since (δ,β , a, h, m, r, s) ∈ HB, there exists a pair of complex conjugate eigenvalues λ, λ̄

with modulus 1 at (u, v) = (0, 0) by Theorem 2.3, where

λ, λ̄ = –
p(δ̄∗)

2
± i

2

√

4q(δ̄∗) – p2(δ̄∗) = 1 +
G(δ2 + δ̄∗)

2
± i(δ2 + δ̄∗)

2
√

4Hs – G2. (18)

Then we have |λ| =
√

q(δ̄∗), l = d|λ|
dδ̄∗ |δ̄∗=0 = – G

2 > 0.
In addition, we require that when δ̄∗ = 0, λn, λ̄n �= 1, n = 1, 2, 3, 4, which is equivalent to

p(0) �= –2, 0, 1, 2. Note that (δ,β , a, h, m, r, s) ∈ HB, so p(0) �= –2, 2. Thus we only need to
satisfy p(0) �= 0, 1, which leads to

G2 �= 2Hs, 3Hs. (19)

In the following, we investigate the normal form of the map (17) at δ̄∗ = 0. Put μ = 1 + Gδ2
2

and ω = δ2
2

√
4Hs – G2. Using the translation

(
u
v

)

=

(
a12 0

μ – a11 –ω

)(
ũ
ṽ

)

,

the model (17) becomes

(
ũ
ṽ

)

→
(

μ –ω

ω μ

)(
ũ
ṽ

)

+

(
f̃ (ũ, ṽ)
g̃(ũ, ṽ)

)

, (20)

where

f̃ (ũ, ṽ) =
1

a12

(
a13u2 + a14uv + a15v2 + a16u3 + a17u2v + a18uv2 + a19v3)

+ o
((|u| + |v|)4),

g̃(ũ, ṽ) =
(μ – a11)a13 – a12a23

ωa12
u2 +

(μ – a11)a14 – a12a24

ωa12
uv

+
(μ – a11)a15 – a12a25

ωa12
v2 +

(μ – a11)a16 – a12a26

ωa12
u3

+
(μ – a11)a17 – a12a27

ωa12
u2v +

(μ – a11)a18 – a12a28

ωa12
uv2

+
(μ – a11)a19 – a12a29

ωa12
v3 + o

((|u| + |v|)4),

and u = a12ũ, v = (μ – a11)ũ – ωṽ.
Let

f̃ũũ = –
2

a12

[
a2

12a13 + a14a12(μ – a11) + a15(μ – a11)2],

f̃ũṽ =
1

a12

[
ωa12a14 + 2ω(μ – a11)a15

]
,

f̃ṽṽ = –
2ω2a15

a12
,
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f̃ũũũ = –
6

a12

[
a16a3

12 + a17a2
12(μ – a11) + a18a12(μ – a11)2 + a19(μ – a11)3],

f̃ũũṽ =
2

a12

[
ωa17a2

12 + ωa18a12(μ – a11) + 3ω(μ – a11)2], f̃ũṽṽ = –2ω2(a18 + 3a19),

f̃ṽṽṽ =
6ω3a19

a12
,

g̃ũũ =
2

ωa12

{
a2

12a13
[
(μ – a11)a13 – a12a23

]
+ a12(μ – a11)a14

[
(μ – a11)a14 – a12a24

]

+ a15(μ – a11)2[(μ – a11)a15 – a12a25
]}

,

g̃ũṽ = –
1

a12

{
a12

[
(μ – a11)a14 – a12a24

]
+ 2(μ – a11)

[
(μ – a11)a15 – a12a25

]}
,

g̃ṽṽ =
2ω

a12

[
(μ – a11)a15 – a12a25

]
,

g̃ũũũ =
6

ωa12

{
a3

12
[
(μ – a11)a16 – a12a26

]
+ a2

12(μ – a11)
[
(μ – a11)a17 – a12a27

]

+ a12(μ – a11)2[(μ – a11)a18 – a12a28
]

+ (μ – a11)3[(μ – a11)a19 – a12a29
]}

,

g̃ũũṽ = –
2

a12

{
a2

12
[
(μ – a11)a17 – a12a27

]
+ 2a12(μ – a11)

[
(μ – a11)a18 – a12a28

]

+ 3(μ – a11)2[(μ – a11)a19 – a12a29
]}

,

g̃ũṽṽ = 2ω
{[

(μ – a11)a18 – a12a28
]

+ 3(μ – a11)a19 – a12a29
}

,

g̃ṽṽṽ = –
6ω2

a12

[
(μ – a11)a19 – a12a29

]
.

Then the map (20) can undergo the Hopf bifurcation when the following discriminatory
quantity is not zero:

γ =
[

– Re

(
(1 – 2λ)λ̄2

1 – λ
ξ20ξ11

)

–
1
2
|ξ11|2 – |ξ02|2 + Re(λ̄ξ21)

]∣
∣
∣
∣
δ̄∗=0

, (21)

where

ξ20 =
1
8
[
(f̃ũũ – f̃ṽṽ + 2g̃ũṽ) + i(g̃ũũ – g̃ṽṽ – 2f̃ũṽ)

]
,

ξ11 =
1
4
[
(f̃ũũ + f̃ṽṽ) + i(g̃ũũ + g̃ṽṽ)

]
,

ξ02 =
1
8
[
(f̃ũũ – f̃ṽṽ – 2g̃ũṽ) + i(g̃ũũ – g̃ṽṽ + 2f̃ũṽ)

]
,

ξ21 =
1

16
[
(f̃ũũũ + f̃ũṽṽ + g̃ũũṽ + g̃ṽṽṽ) + i(g̃ũũũ + g̃ũṽṽ – f̃ũũṽ – f̃ṽṽṽ)

]
.

From the preceding analysis and theorem in [20] we have the following result.

Theorem 3.2 If condition (19) holds and γ �= 0, then the map (3) undergoes a Hopf bifur-
cation at the unique positive fixed point B(u∗, v∗) when the parameter δ varies in a small
neighborhood of HB. Moreover, if γ < 0 (resp., γ > 0), then an attracting (resp., repelling)
invariant closed curve bifurcates from the fixed point for δ > δ2 (resp., δ > δ2).
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4 Numerical simulations
In this section, we present the bifurcation diagrams, phase portraits, and maximum Lya-
punov exponents for system (3) to illustrate our theoretical analysis and show the complex
dynamical behaviors by using numerical simulations. The bifurcation parameters are con-
sidered for the following three cases:

(i) Varying δ in the range 1 ≤ δ ≤ 1.4 and fixing r = 2, β = 0.5, a = 0.2, m = 0.2, s = 0.6,
h = 2.

(ii) Varying δ in the range 2 ≤ δ ≤ 3 and fixing r = 1, β = 0.5, a = 0.2, m = 0.2, s = 0.6,
h = 2.

(iii) Varying r in the range 2 ≤ r ≤ 2.99 and fixing δ = 1, β = 0.5, a = 0.2, m = 0.2, s = 0.6,
h = 2.

Case (i). On the basis of Lemma 2.1, we know that the map (3) has one unique posi-
tive fixed point. By calculation the flip bifurcation of system (3) emerges from the fixed
point (u∗, v∗) = (0.9410621, 0.28231863) at δ = 1.156171665 with α1 = –1.729846926, α2 =
0.7258371266, and (δ,β , a, h, m, r, s) ∈ FB1 , which illustrates Theorem 3.1. From Figs. 1(a),
(b) we observe that the fixed point B(u∗, v∗) is stable for 0 < δ < 1.156171665 and loses
its stability at the flip bifurcation parameter value δ = 1.156171665. Also, there is a cas-
cade of period –2, 4, 6, 8, 16 orbits emerging. The maximum Lyapunov exponents cor-
responding to Figs. 1(a), (b) are shown in Fig. 1(c). The phase portraits associated with
Figs. 1(a), (b) are displayed in Fig. 2. It can be seen from Fig. 2 that there are chaotic
sets when δ = [1.399, 1.4]. Further, Fig. 1(d) shows that if δ = [1.399, 1.4], then the max-

Figure 1 (a) Flip bifurcation diagram of map (3) in the (δ,u) plane with initial value (0.9510621, 0.29231863).
(b) Flip bifurcation diagram of map (3) in the (δ, v) plane. (c) Maximum Lyapunov exponents corresponding to
(a) and (b). (d) Local amplification of (c) for δ ∈ [1.39, 1.4]



Zhao and Yan Advances in Difference Equations        (2018) 2018:402 Page 14 of 18

Figure 2 Phase portraits for various values of δ corresponding to Figs. 1(a), (b)

imum Lyapunov exponents are larger than 0, which confirms the existence of chaotic
sets.

Case (ii). According to Lemma 2.1, we know that the map (3) has one unique pos-
itive fixed point. After calculation, the Hopf bifurcation emerges from the fixed point
(u∗, v∗) = (0.8833954475, 0.2650186342) at δ = 2.560064295 with γ = –0.503038999 and
(δ,β , a, h, m, r, s) ∈ HB. This shows the correctness of Theorem 3.2. From Figs. 3(a), (b)
we observe that the fixed point B(u∗, v∗) is stable for 0 < δ < 2.560064295 and loses its
stability at the Hopf bifurcation parameter value δ = 2.560064295. Then an attracting in-
variant cycle bifurcates from the fixed point since γ = –0.503038999 < 0 by Theorem 3.2.
The maximum Lyapunov exponents corresponding to Figs. 3(a), (b) are calculated and
shown in Fig. 3(c). Figure 3(d) is a local amplifications for δ ∈ [2.75, 2.9]. It can be easily



Zhao and Yan Advances in Difference Equations        (2018) 2018:402 Page 15 of 18

Figure 3 (a) Hopf bifurcation diagram of map (3) in the (δ,u) plane with initial value
(0.8933954475, 0.2750186342). (b) Hopf bifurcation diagram of map (3) in the (δ, v) plane. (c) Maximum
Lyapunov exponents corresponding to Figs. 3(a), (b). (d) Local amplification diagram of (a) for δ ∈ [2.75, 2.9]

seen from Figs. 3(c), (d) that the maximum Lyapunov exponents are nonnegative for the
parameter δ ∈ [2.87, 2.98], which implies the existence of chaos. Also, we observe from
Fig. 4 that there are period-10, period-20, period-30, and period-73 orbits and attracting
chaotic sets.

Case (iii). The bifurcation diagrams of system (3) in the (r, u) and (r, v) planes for
2 ≤ r ≤ 2.86 are disposed in Figs. 5(a), (b). The maximum Lyapunov exponent correspond-
ing to Fig. 5(a) is computed and plotted in Fig. 5(c), and the local amplification diagram
corresponding to (c) for δ ∈ [2.8, 2.6] is shown in Fig. 5(d). From Figs. 5(a), (b) we can see
that there is a cascade of period-doubling emerging. From Fig. 5(d) we see that the maxi-
mum Lyapunov exponents corresponding to r = 2.85 are greater than 0, which implies the
existence of chaotic sets.

5 Conclusion
In this paper, we have mainly considered the complex behaviors of a predator–prey sys-
tem with modified Holling–Tanner functional response in R2. By using the center man-
ifold theorem and bifurcation theory we prove that the unique positive fixed point of
system (3) can undergo flip bifurcation and Hopf bifurcation. Most importantly, when
the integral step size δ is chosen as a bifurcation parameter, numerical simulations show
that system (3) shows very rich nonlinear dynamical behaviors including stable coexis-
tence, period-doubling bifurcation leading to chaos, attracting invariant circles, and even
stranger chaotic attractors. According to Figs. 1 and 2, we can observe that the small in-
tegral step size δ can stabilize the dynamical system (3), but the large integral step size
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Figure 4 Phase portraits for various values of δ corresponding to Figs. 3(a), (c)

may destabilize the system producing more complex dynamical behaviors. Then it re-
minds of us that the integral step size may play a key role in exploring the dynamical be-
haviors. In addition, from Fig. 5 we can see that the appropriately intrinsic growth rate
r of prey can stabilize the dynamical system (3). However, the high intrinsic growth rate
may destabilize system (3). From a biological point of view, when the prey population
is submitted to the high intrinsic growth rate, the number of preys are abundant, and
the prey consumption by predator may have a marginal effect on the dynamics of prey.
Hence, the dynamical behavior of prey mainly depends on the population itself. Then,
system (3) becomes the classic logistic model and exhibits the period-doubling leading to
chaos.
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Figure 5 (a) Bifurcation diagram of map (3) in the (r,u) plane with initial value (0.6, 0.3). (b) Bifurcation
diagram of map (3) in the (r, v) plane. (c) Maximum Lyapunov exponents corresponding to Figs. 3(a), (b).
(d) Local amplification diagram of (a) for δ ∈ [2.8, 2.6]
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