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Abstract

In this paper, we study a discrete predator—prey system with modified Holling-Tanner
functional response. We derive conditions of existence for flip bifurcations and Hopf
bifurcations by using the center manifold theorem and bifurcation theory. Numerical
simulations including bifurcation diagrams, maximum Lyapunov exponents, and
phase portraits not only illustrate the correctness of theoretical analysis, but also
exhibit complex dynamical behaviors and biological phenomena. This suggests that
the small integral step size can stabilize the system into the locally stable coexistence.
However, the large integral step size may destabilize the system producing far richer
dynamics. This also implies that when the intrinsic growth rate of prey is high, the
model has bifurcation structures somewhat similar to the classic logistic one.

Keywords: Discrete-time predator—prey system; Flip bifurcation; Hopf bifurcation;
Chaos

1 Introduction

Predator—prey interactions have long been studied and continue to be one of the dominant
themes in both biology and mathematical biology due to their universal existence and im-
portance [1]. Recently, a predator—prey system with modified Holling—Tanner functional
response was given in [2, 3] as follows:

du _ ki

d_l: - I"M(]. - %) - a+bZ:cv’ (1)
dv _ h

@ = VvIs( =),

where r, K, k, a, b, ¢, s, h are positive constants, and # and v represent the population den-
sities of prey and predator, respectively. The prey grows logistically with carrying capacity
K and intrinsic growth rate r in the absence of predator. The predator consumes the prey
according to the functional response of Beddington—DeAngelis type kuv/(a + bu + cv) and
grows logistically with intrinsic growth rate s, and ¢v measures the mutual interference
between predators. The parameters &, a, b, and ¢ are the consumption rate, the saturation
constant, the saturation constant for an alternative prey, and the predator interference,
respectively. The carrying capacity u/h of predator is proportional to the population size
of the prey. The parameter % is the number of preys required to support one predator at
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equilibrium when v equals u//. The term v/u measures the loss in the predator population
due to rarity of its favorite food.

Applying the following scaling to (1),

k
t t, 5 ) T ’
= U X ViV 7 = B
- h
— >aq, — > m, — > h,
bK bK K
it becomes of the following form:
du _ B
d_I: =ru(l—u) - a+uu+‘;nv’ (2)
dv

¥ =vis- 1)

However, for a mathematical biology model, if the size of population is rarely small, or
the population has no overlapping generation, or people study population changes within
certain intervals of time, the discrete-time model would indeed be more suitable and re-
alistic than the continuous-time model [4—12]. On the other hand, numerical solutions
or approximate solutions of discrete-time models can be obtained more easily, and much
work has shown that discrete-time prey—predator models can produce a much richer set
of patterns than those observed in continuous-time models [13—18]. Thus, it is neces-
sary to consider the corresponding discrete model of system (2). Using the forward Euler

scheme to system (2), we therefore obtain the following discrete-time model:

ufj—i‘;nv]’
3)

u— u+8ru(l-u) -

v—v+8[v(s— %)],

where § is the integral step size. In this paper, we mainly focus on the dynamical behav-
ior of system (3) in the interior of the first quadrant of R?. More precisely, we discuss the
stability of fixed points of system (3) and rigorously prove that the map (3) undergoes the
flip bifurcation and Hopf bifurcation by using the center manifold theorem and bifurca-
tion theory. Meanwhile, resent numerical simulations not only to illustrate our results of
theoretical analysis, but also to explore complex dynamical behaviors.

The outline of this paper is as follows. In Sect. 2, we investigate in detail the existence
and local stability of fixed points of model (3). In Sect. 3, we derive sufficient conditions
for the existence of flip bifurcation and Hopf bifurcation. In Sect. 4, we present numerical
simulations to check our results of theoretical analysis and exhibit some complex and new

dynamical behaviors. In the end, we give a brief conclusion in Sect. 5.

2 Existence and stability of fixed points
From a biological point of view, system (3) must have positive values of  and v. We have

the following result.

Theorem 2.1 Assume that Q2 = {(u,v)|u > 0,v> 0,r8u + B6v— (1 +rd) < 0}. Then Q2 is an

invariant set for system (3) if § and s are enough small.
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Proof Suppose that (g, vg) € Q2. Then (11, v1) > 0if § is small enough, where

h
u1=uo+8[ruo(1—uo)—ﬂ} V1=v0+8[v0<s_ﬁ)],

a+ Uy + myy Up

Let L = rduy + Bdvy — (1 + r8). Then

h )
L= _,«252143 +7r8(1 +r8)ug — (1 +1r8) + ,38|:1 + 8(5_ ﬁ) _ &]Vo.
Uo a+ ug + myy

If § is small enough, then it follows that

h ) h 8
1+8(—ﬂ>—7r “o :1+83—8<ﬁ+7r o >>0.

Ug a+ Uy + mvyy Uo a+ Uy + mvy
Since vy < 1;;‘3, we have
2022 hvg réug
L<—réug+rs(1+rd)ug—(1+r8)+|1+8{s— — ) - ———— |(1 +71f)
10 a+ Ug + mvy
h
= —rzézug +7r8(1 +1rd)ugy + |:( - ﬂ) - L]8(1 +16).
Uo a+ Ug + mvy

If 5 is small enough, then we have

rug hvg
S<—mmmm8M8m8m ™+ —.
a+ Uy + mvy 1Z4)

Thus H = (s — Zﬂ)— M,
0 a+ug+mvgy
Let L(uo) = —r28%u3 + r8(1 + r8)uo + 8(1 + r8)H. Then L(ug) = §(1 + r8)H < 0.
Therefore, L < 0 if § is small enough. Then (1, v1) € Q if § and s are small enough, that
is, Q is an invariant set for system (3).

It is clear that the fixed points of model (3) satisfy the following equations:

u:u+6[ru(1—u)—%],

v=v+8[us— L) O

Lemma 2.1 For all parameter values, system (3) has two fixed points, the boundary fixed
point A(1,0) and the unique positive fixed point B(u,, v,) defined by

_ —(Bs +ahr — hr —msr) + V (Bs + ahr — hr — mrs)? + dahr*(h + ms)

2r(h + ms)

s
Vi = — Uy
h

Now, we perform the linear stability analysis of system (3) at each fixed point. The Jaco-
bian matrix J of (3) evaluated at any point (i, v) is given by

](u’ V) = (”11 alz) » (4)
az  ax
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where

an =1 +8|:}"(1 _2M) _ ﬂV(a +W1V) i|,

(@ + u+mv)?
SBu(a + u)
(@+u+m)?

h8v? 2hy
ajry = —— ﬂ22:1+8 S§——).
u u

ai =

Moreover, the characteristic equation of J(u, v) can be written as
A2+ p(u, V)X + q(u,v) = 0, (5)
where p(u,v) = —(a11 + az), q(u,v) = anaz — ana.

Lemma 2.2 ([11]) Let F(A) = A2 + P\ + Q, where P and Q are constants. Suppose that
F(1) > 0 and A, and Xy are two roots of F(\) = 0. Then
(i) |AMl<Yand|ry| <1ifand only if F(-1) >0 and Q < 1;

(i) |A1] <1 and|ry| > 1 (or|r1| > 1 and |Ay| < 1) ifand only if F(-1) < 0;

(ili) |A1]l>1and |ry| > 1 ifand only if F(-1) >0 and Q > 1;

(iv) A1 =-1and | 3| #1 ifand only if F(-1) =0 and P #0, 2;

(v) A1 and Ay are the conjugate complex roots and || = |A2| = 1 if and only if

P2-4Q<0and Q=1.

Suppose that A, and X, are two roots of (5), which are called eigenvalues of the fixed
point (#,v). The point (,v) is a sink if [A;| <1 and || < 1. A sink is locally asymptotic
stable. The point (u,v) is a source if |A;| > 1 and |Az| > 1. A source is locally unstable.
The point (u,v) is a saddle if |[A;| > 1 and [Ay| < 1 (or |A1] < 1 and |A;| > 1), and (u,v) is
nonhyperbolic if either |A;| =1 or |Ay| = 1.

Theorem 2.2 The eigenvalues of the fixed point A(1,0) are .y =1 —8r and hy =1 + 8s.
(i) A(1,0) is a saddle if0<§ < %;
(i) A(1,0) is a source if § > %;
(iii) A(1,0) is nonhyperbolic if § = %

Let
2
Fy = {(a,h,m,r,s,é,ﬂ) 18 = —,ﬁ,a,h,m,r,s>0}.
r

It can be easily seen that one of the eigenvalues of A(1,0) is —1 and the other is neither 1
nor —1 when all parameters of system (3) locate in F4. Then the center manifold of sys-
tem (3) at A(1,0) is v = 0 when parameters are in F,4. The map (3) restricted to this center
manifold is the classic logistic model # — ru(1 — u). It is well known that the predator pop-
ulation becomes extinct and the prey undergoes the period-doubling bifurcation to chaos
by choosing the bifurcation parameter r. Therefore, the fixed point A(1,0) can undergo

flip bifurcation when parameters vary in a small neighborhood of Fj.
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The characteristic equation of the Jacobian matrix J(u, v) evaluated at the unique posi-
tive fixed point B(u,, v4) can be written as

A2 —(2+G8)A + (1 +G8 + Hss?) =0, (6)
where
Bu,vy
G =5 * - 9
ST (@ + uy + mv,)?
Bav,

H:ru + .
U a+ g + mvy)?

Let
F(A) =2 = (2 + GO)A + (1 + G8 + Hss?).
Then
F(1) = Hs8? > 0, F(-1) =4+ 2G& + Hss>.

Theorem 2.3
(i) B(u.,vs) is a sink if one of the following conditions holds:
(i.1) —24/Hs<G<0and0< 4 < —%;
(i.2) G < —-2+/Hsand 0 < § < =G=¥G"—4Hs g%‘;
(ii) B(uy,vs) is a source if one of the following conditions holds:
g
(ii.1) —24/Hs<G<0and§ > —%;
(ii.2) G < —-2+/Hsand § > =GV G =4/s W;
(ii.3) G > 0;
(iii) B(uy, v4) is a saddle if the following conditions hold:
g

G<-2+VHs and

-G —+/G2—-4Hs 5 -G+ G2 —-4Hs
<d< ;
Hs Hs

(iv) B(uy, vi) is nonhyperbolic if one of the following conditions holds:
(iv.l) G < —2+4/Hsand § = =GEvG=4/s 'HGSZ‘“{S and 8 #-2,-%;
(iv.2) —2+/Hs<G<0and§ = —Hﬁs.

From the Jury criterion and the preceding analysis it can be easily seen that one of the
eigenvalues of the unique positive fixed point B(u,, v,) is —1 and the other is neither 1
nor -1 if (iv.1) of Theorem 2.3 holds. When (iv.2) of Theorem 2.3 is true, the eigenvalues
of the unique positive fixed point B(u,, v,) are a pair of conjugate complex numbers with
modulus one.

Let

-G —+/G? - 4Hs
Hs

F31 = {(S,ﬂ,a,h,m,r,s):S :81 = ,G<—2\/HS,,3,6l,h,m,V,S>0}
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and

G+ /G2 —4Hs

Fpy = {(S,ﬂ,a,h,m,r,s):S:SQ - — ,G<—2vH,ﬁ,a,h,m,r,s>0}.

Hs

Then the unique positive fixed point B(u., v.) may undergo the flip bifurcation when pa-
rameters vary in a small neighborhood of Fg; or Fp,.
Let

G
Hp = {(S,ﬂ,a,h,m,r,s):S =8y = —ﬁ,—2vHs< G<0,,3,a,h,m,r,s>0}.
s

Then the unique positive fixed point B(u,, v,) may undergo the Hopf bifurcation when the
parameters vary in a small neighborhood of Hp.

3 Flip bifurcation and Hopf bifurcation
Based on the previous analysis, in this section, we mainly focus on the flip bifurcation
and Hopf bifurcation of the unique positive fixed point B(u,v,). Then, we choose the
integral step size § as a bifurcation parameter for investigating the Flip bifurcation and
Hopf bifurcation of B(u,, v.) by using the center manifold theorem and bifurcation the-
ory.
We first discuss the flip bifurcation of system (3) at B(u,, v.) when the parameters vary
in a small neighborhood of Fg;. Similar arguments can be applied to the other case of F;.
Taking the parameters (8, 8,4, h, m, r, s) arbitrarily from Fg;, we consider system (3) with
(8,B,a,h,m,r,s) € Fp; described by

o],

u—u+ Sl[ru(l - u) T a+u+rmv (7)

v—v+8[v(s— %)].

Then the map (7) has a unique positive fixed point B(u,, v.) with eigenvalues A; = —1 and
Ap =3+ G&; with |13] # 1 by Theorem 2.3.
Choosing 8, as a bifurcation parameter, we consider a perturbation of (7) as follows:

Buv ],

u—>u+ (81 +8)[ru(l —u) - ®)

v— v+ (81 +8)[v(s - )],

where |3, | < 1 is a small perturbation parameter.
Assume that U = u — u,,V = v — v,. Then we transform the fixed point B(u,, v,) of the
map (8) into the origin. For convenience, we rewrite U and V as u and v, respectively.

Then we have

u
v
+ brub, + bavb, + b3S, + bauvd, + bsv28, + o((Jul + |v| + 184])%), ©)
9
Aol + AoV + Ao3U® + sV + AosV? + dogh® + Aoy UV + doguV* + a3 |

AU + A1V + A13U> + A1alV + disV? + A1l + a7 U’V + diguv? + arov®

+ CLUBy + CoV8, + C3U28y + CattVSy + c5V28, + o(([u] + |v] + |8.))F),
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where

UV,
an :1+8|:—ru* pusvs :|,

+ —_—
(@ + uy + mv,,)?

[ Bv.(a + mv,) :|
ap=8|-r+ ————

(@ + uy + mv,)3

2MU Vs

(2018) 2018:402

3Bu.(a + uy)

ad9g=———""—— "
2 (@ + uy + mv,)?’

3B
g =— a+
1 (@ + v, + mv,)?

SBmu(a + u,)
als=——""—"=, aie =
(@ + uy + mvy)

5B ( *
a3 =——————|a-mv'+

a+ Uy, +mv, >’
8Bvi(a + mv,)
(a+ uy + mv,)*

3mu,v*
a+ Uy + mv,

8Bm 3mu, v, 8Bm*u.(a + u,)

ag=—————|a-u, - ——— |, ag=———3

(@ + ty + mv,)3 a+ Uy + mv, (@ + uy + mv,)* (10)

Buyvy Bu(a+u,)
by =—rthy + ———————, by=———
(@ + vy + mv,)? (@ + uy + mv,,)?
Bvi(a + mv,)
by=—-r+ —— |
(@ + uy + mv,)3
B 21U,V Bmu(a + u,)

by =— a , by=——7——

(@ + uy + mv,)? a+ Uy + mv, (@ + uy + mv,)?

5s? 55> 28s Sh
an = ——, az =1-34s, dy=-—, dy=—), dys = ——,

h hu, Uy Uy

85> 28s 8h 0
a = 7> ay; =——5, azg = — dax =V,

hu? u? u?

s? s? 2s h
1=, ¢y = -5, c=—, ch=—, c5=——,
1=7 2 3 it 4 " 5 "
and § = §;.
We construct the invertible matrix
a a

T 12 12 ,

~l-a;; Ay—an

and apply the translation («,v)” = T(i,7)T. Then the map (9) can be changed into
U -1 0 U V0
*) - ) (flero), (11)
v 0 X/ \v g(u,v,6,)

where

(A2 —an)aiz — ands

(A2 —an)ais — anan

Flovd) = (1 + Ap)arz

(A2 —an)ais —anas ,
1+ Ag)aiz

(A2 —an)ais — anas 4

(1 + Xo)arz

(A2 —ar)ayy — anax; 2,

1+ Ax)ain

(1 + A)ain

Page 7 of 18
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(A2 —ay1)aig — arpass 2
(1 + Ap)ain

(A2 —an)aio — anan N (A2 —an)by — aacy
(1 + Ap)ain (1 +Az)ain

U,

(Ay — a11)by — aracy
(1+Ay)aiz

(A2 —a11)bs —ancs (A2 —a11)by — ancy
1+ Ax)ain : 1+ Ax)ain
(A2 —an)bs —aixcs ,
(1 + Az)ain
+o(lul + 1v] +18.1)"),
2u,v,5,) = (1 + a1)ais + annass 2t (1 + a1)ais + annas
1+ Ap)aiz (1+Az)ain
(1 +an)as + apas ,
(1 + Ap)ain
(1 + ai1)ais + ar2az6 B (1 + an)ar7 + anas; 2,
(1 + Ap)ain (1 + Ap)ain

Vi

*

(1 +an)ais + arodasg 5
(1 +)ar
(1 + a1)ars + araasg By (1 +an)by + apc
(1 +22)ar (1 +22)ar
(1 +an)bs +aacy
(1 + Ap)ain

U,

*

(1 +ay)bs +aics , (1 +a11)bs + aracs
(1 + ry)arz * (1 + ry)arz

(1 +an)bs +aics ,
[l
(1 + Ag)ain

+o((jul + vl +18.0)"),

and u = api + a1, v=—(1+an)i + Ay — an)v.
Next, we apply the center manifold theorem [19] to determine the dynamics of the fixed
point (i, V) = (0,0) at 8, = 0. Then there exists a center manifold of the map (11), which

can be represented as follows:
W*(0,0) = {(i, V)|V = h(i,8.), h(0,0) = 0, Dh(0,0) = 0}.
Assume that
h(@t,8.) = ay i + asiid, + azd? + O((|al +15.1)°), (12)

where O((|7Z] + 184])3) is a function of order at least three in their variables (i, 8.,).

Then, the center manifold must satisfy

N (@i, 8,)) = h(=it + f (i, h(it, 8.), 8.), 8.) = (i, 8.) — g (i, (7, 8.),8.),8,) = 0. (13)
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Substituting (11) and (12) into (13) and comparing the coefficients of (12), we obtain

1

2
= ————- 41| (1 + a11)ais + apans
ap(1-213) {anl ]

ay

—ap(1+an)[(1+a1)aw + apnan]

+ (1 +an)*[(1+ a1)ais + anass |},
1

@ = el b+ ana]

+(L+an)[(1+an)b, +anc)},

6l3:0.

Therefore, the map (10) restricted to the center manifold W*(0,0) is given by

F:it— —it+ il + haoitb, + h3it>8, + haitd? + hsit® + O((|5l| . |5*|)4), (14)
where
h = ———{a%,[(ha - _
1 (1 + Ay)an {“12[( 2 —a11)d13 ﬂ126123]

— a1 +an)[(Aa - an)as — arzas]

+(1+a11)*[ (A2 — ar)ars — annass |},
B 1
C (1+A)an {
C (1+d)an

hy ara[ (A2 — a11)by — apper ] = (1 + an)[ (A2 — a11)bs — ancr |},

hs {2a3,[ (A2 — a11)ars — arpans)

+aa(hy = 2a1 — 1)[ (A2 — a11)a14 — @124

=2(1 +a11)(A2 — a11)[ (A2 — a11)ars — arzass |}
a

! (1 +A2)ar
1

" (1 +A2)ar

{a2[ (A2 = a1)by — arper] + (Ao — an)[ (A2 — an)by — arzcs |}
{a1,[ (k2 — a11)bs — aracs] — arn(1 + an1)[ (k2 — a11)ba — araca ]

+ (1 +a11)*[ (A2 — a11)bs — anacs ]},
ap
= Ao — by - Ao — Ao — by — ,
(1+A2)a12{a12[( 2 —ai)b 611261]"’( 2 ﬂu)[( 2 —an)by 6112C2]}
C(L+Ay)ar

ha

hs {2a1,[ (2 — an1)ars — arpa0s]

+aa(hy = 2ay — D[(hy — a11)a14 — @124
=20 —an)(1 + an)[ (A2 — an)ars — arass | }

3
+ ————— 145, (A2 — a11)a16 — a12a2
(1 + Ax)ain { 12[ ]

-(l+an)’ [()»2 —ay)ag - 61126129] }
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92F 1 3F 92F _ _
saass + 295, aa2)00) = 2 and &y = (

Then we have the following results.

3 2
Let a; = ( %%+(%%)2)|(0,0)=h5+h%

Theorem 3.1 If a1 #0 and oy # 0, then the map (3) undergoes a flip bifurcation at the
unique positive fixed point B(u., v.) when the parameter § varies in a small neighborhood of
Fpg1. Moreover, if ay > 0 (resp., oy < 0), then the period-2 orbits that bifurcate from B(u, v,)

are stable (resp., unstable).

Next, we discuss the Hopf bifurcation of B(u, v,) when the parameters (3, 8, a, h, m, 1, s)
vary in a small neighborhood of Hg. Taking the parameters (8, 8, a, h, m, r, s) arbitrary from

Hjp, we consider system (3) with (8, 8,a, h,m,r,s) € Hg represented by

Buv ],
a+u+my (15)

u— u+8[rul —u) -

V= v+ 8[v(s— %)].

Then the map (15) has a unique positive fixed point B(u, v,).
Then we choose 3, as a bifurcation parameter and consider a perturbation of (15) as

follows:

b ),

u— u+ 8y +8)[ru(l —u) - T (16)

V= v+ (8 + 8,)[V(s — %)],

where |5, | < 1 is a small perturbation parameter.
Assume that U = u — u, and V = v — v,. Then we transform the fixed point B(u,, v,) of
the map (16) into the origin. For convenience, we rewrite U and V as u and v, respectively.

Then we have

11U + A2V + A13U> + A4V + disV? + diglh® + aju’v
u +aisuv® + arov® + o((Ju| + |v])%),
g 2 2 3 2 (17)
1% a1 + dyV + dosU™ + dya UV + A5V + dArglh™ + A7 U™V

+ aggu? + axov® + o((Ju| + |v])%),

where a11, a12, a13, 14, a1, a1e, a17, A1s, A19, A21, A22, @23, A4, A25, A6, A27, A28, A29 ATE
given in (10) by substituting 8 for &, + S,
Then the characteristic equation associated with the linearization of model (17) at
(u,v) = (0,0) is given by
)”2 +P(5_*))» + q(g*) =0,

where

P(S*) =-2-G(8 + S*),

q(8,) =1+ G(8y +8,.) + Hs(82 + 8,)°.
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Since (8, B,a,h,m,r,s) € Hg, there exists a pair of complex conjugate eigenvalues A, A
with modulus 1 at («,v) = (0,0) by Theorem 2.3, where

i} 8) i - . G(8y +8,) . i(8y + 6,
A,A:—%:I:é 44(6.) - p*(6) =1+ (22+ ):I:l(2; \vams—a a)

Then we have [A| = v/g(8,), [ = ‘;‘Tﬂb*io = —% > 0_

In addition, we require that when 8, = 0, A", A" # 1, n = 1,2, 3,4, which is equivalent to
p(0) #-2,0,1,2. Note that (8, 8,a,h,m,r,s) € Hg, so p(0) # —2,2. Thus we only need to
satisfy p(0) #0, 1, which leads to

G? +# 2Hs, 3Hs. (19)

G§o

In the following, we investigate the normal form of the map (17) at 8, = 0. Put u = 1+ =

and w = 572\/ 4Hs — G2. Using the translation

()2 2)6)

the model (17) becomes

B _ [ -0\ (&), F (i, ) 20)
7 o pl\v g’

<t ™

where
Fm o~ 1 2 2 3 2 2 3
f(@1,v) = ﬂ—(algu + aruy + a5V’ + ayelt’ + ayu’v + arguv’ + aor’)
12
4
+o((lul + v])"),
i~ ~ (n — ar1)ais — aiada3 2 (1 — ar1)ais — arndn
gu,v) = U+ uv

wain wain

(4 — ar1)ais — arndas 2 (1 — ar1)ais — arndae 3
+ V7 + u
wai wdai

(1 — an1)ar7 — arada; 2 (1 — ar1)aig — a1adag )
+ uv+ uv
wain wain

(1 —ar1)arg — arndzg 4 4
+ - v+ 0((|u| + |v|) ),

and u = aypit, v= (U — ay1)i — w.
Let

it = _a_[a%zﬂB +anan(pn —an) +ais(n - ﬂ11)2],
12

1
Jav = P [wﬂlzllm +20(p — ﬂn)&lls],
12

~ 2w%as
vw = T )

a2
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~ 6
i =~ — [a16a3, + arraty(n — an1) + arsarn(u — an)® + ao(pu — an)?),
12
7 2 2 2 7 2
iy = a—[wantllg + wargarn(p —an) + 3w - an)?), o = —207 (a1 + 3a19),
12
~ 6603(119
Jow = ,
a2

2
i = ol {“%2413[(,“ —an)aiz - 6112“23] +an(u— 6111)414[(,& —an)ay — 61120124]
12

+as(p - 6111)2 [(M —an)ais — 01126125] },
1

i = . {a2[ (1 - an)ars — arpans] + 2(u — ann)[(n — ar1)as — arass|},
1

- 2w
8w = —[(M —an)ais — tl1zﬂz5],
ar

- 6
Gz = P {ﬂi’g [(M —an)die — 61126126] + ﬂ%g(# - ﬂu)[(l«b —an)a; - ﬂ12ﬂz7]
12

+ap(u - 0111)2 [(M —an)as - ﬂuﬂzs] + (- 0111)3 [(M —an)a - 6112@9] };

2
iy = T {4%2 [(M —an)ai; - ﬂ12ﬂ27] +2a1 (1 — ﬂn)[(M —ay)aig - ﬂlzﬂzs]
12

+3(u — a11)*[ (1 — an)are — anan]},
G = 20{[(11 — an1)ars — araans | + 3(1 — ai1)ars — araan},

- 6w?
v = ——— [(M —an)a - ﬂ12ﬂ29]'
arz

Then the map (20) can undergo the Hopf bifurcation when the following discriminatory
quantity is not zero:

) (21)

85=0

0332 i}
y = [—Re<%§20511) - %|§11|2 = [Eoal* + Re(l‘le)]

where

1, - ~ - o B -

&0 = 3 [(faie — foo + 28aw) + i@ — G — 2fiw)]»
1o o

€11 = 2 [ai + fw) + i(Giie + &) ]»
1, - - - . B -

o2 = 3 [ — foo — 28iw) + i@ — Gow + 2fiw) ]
1.~ ~ - - . 5 - -

b =1¢ (i + S + Zaao + &) + i@aas + G — faaw — fiw) -

From the preceding analysis and theorem in [20] we have the following result.

Theorem 3.2 If condition (19) holds and y # 0, then the map (3) undergoes a Hopf bifur-
cation at the unique positive fixed point B(u,,v,) when the parameter § varies in a small
neighborhood of Hg. Moreover, if y < 0 (resp., y > 0), then an attracting (resp., repelling)
invariant closed curve bifurcates from the fixed point for § > §; (resp., 8 > 83).
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4 Numerical simulations
In this section, we present the bifurcation diagrams, phase portraits, and maximum Lya-
punov exponents for system (3) to illustrate our theoretical analysis and show the complex
dynamical behaviors by using numerical simulations. The bifurcation parameters are con-
sidered for the following three cases:

(i) Varying § in therange 1 <§ < 1.4 and fixingr=2,8=0.5,4=0.2, m=0.2,s = 0.6,

h=2.

(i) Varying§ in the range 2 <8 <3 and fixingr=1,8=0.5,4=0.2, m=0.2,s = 0.6,
h=2.

(ili) Varyingr in the range 2 <r <2.99 and fixingd =1, 8=0.5,a=0.2, m = 0.2, s = 0.6,
h=2.

Case (i). On the basis of Lemma 2.1, we know that the map (3) has one unique posi-
tive fixed point. By calculation the flip bifurcation of system (3) emerges from the fixed
point (i, v,) = (0.9410621,0.28231863) at § = 1.156171665 with o; = —1.729846926, o, =
0.7258371266, and (8, B,a, h,m,r,s) € Fg,, which illustrates Theorem 3.1. From Figs. 1(a),
(b) we observe that the fixed point B(,, v,) is stable for 0 < § < 1.156171665 and loses
its stability at the flip bifurcation parameter value § = 1.156171665. Also, there is a cas-
cade of period -2, 4, 6, 8, 16 orbits emerging. The maximum Lyapunov exponents cor-
responding to Figs. 1(a), (b) are shown in Fig. 1(c). The phase portraits associated with
Figs. 1(a), (b) are displayed in Fig. 2. It can be seen from Fig. 2 that there are chaotic
sets when § = [1.399, 1.4]. Further, Fig. 1(d) shows that if § = [1.399, 1.4], then the max-
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Figure 1 (a) Flip bifurcation diagram of map (3) in the (§, u) plane with initial value (0.9510621,0.29231863).
(b) Flip bifurcation diagram of map (3) in the (§,v) plane. () Maximum Lyapunov exponents corresponding to
(@) and (b). (d) Local amplification of (c) for § € [1.39,1.4]
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Figure 2 Phase portraits for various values of § corresponding to Figs. 1(a), (b)

imum Lyapunov exponents are larger than 0, which confirms the existence of chaotic
sets.

Case (ii). According to Lemma 2.1, we know that the map (3) has one unique pos-
itive fixed point. After calculation, the Hopf bifurcation emerges from the fixed point
(44, v4) = (0.8833954475,0.2650186342) at § = 2.560064295 with y = —0.503038999 and
(8,B,a,h,m,r,s) € Hg. This shows the correctness of Theorem 3.2. From Figs. 3(a), (b)
we observe that the fixed point B(u,, vy) is stable for 0 < § < 2.560064295 and loses its
stability at the Hopf bifurcation parameter value § = 2.560064295. Then an attracting in-
variant cycle bifurcates from the fixed point since y = —0.503038999 < 0 by Theorem 3.2.
The maximum Lyapunov exponents corresponding to Figs. 3(a), (b) are calculated and

shown in Fig. 3(c). Figure 3(d) is a local amplifications for § € [2.75,2.9]. It can be easily

Page 14 0of 18
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Figure 3 (a) Hopf bifurcation diagram of map (3) in the (8, u) plane with initial value
(0.8933954475,0.2750186342). (b) Hopf bifurcation diagram of map (3) in the (8, v) plane. (€) Maximum
Lyapunov exponents corresponding to Figs. 3(a), (b). (d) Local amplification diagram of (a) for § € [2.75,2.9]

seen from Figs. 3(c), (d) that the maximum Lyapunov exponents are nonnegative for the
parameter § € [2.87,2.98], which implies the existence of chaos. Also, we observe from
Fig. 4 that there are period-10, period-20, period-30, and period-73 orbits and attracting
chaotic sets.

Case (iii). The bifurcation diagrams of system (3) in the (r,u#) and (r,v) planes for
2 <r <2.86aredisposed in Figs. 5(a), (b). The maximum Lyapunov exponent correspond-
ing to Fig. 5(a) is computed and plotted in Fig. 5(c), and the local amplification diagram
corresponding to (c) for § € [2.8,2.6] is shown in Fig. 5(d). From Figs. 5(a), (b) we can see
that there is a cascade of period-doubling emerging. From Fig. 5(d) we see that the maxi-
mum Lyapunov exponents corresponding to » = 2.85 are greater than 0, which implies the
existence of chaotic sets.

5 Conclusion

In this paper, we have mainly considered the complex behaviors of a predator—prey sys-
tem with modified Holling—Tanner functional response in R?. By using the center man-
ifold theorem and bifurcation theory we prove that the unique positive fixed point of
system (3) can undergo flip bifurcation and Hopf bifurcation. Most importantly, when
the integral step size § is chosen as a bifurcation parameter, numerical simulations show
that system (3) shows very rich nonlinear dynamical behaviors including stable coexis-
tence, period-doubling bifurcation leading to chaos, attracting invariant circles, and even
stranger chaotic attractors. According to Figs. 1 and 2, we can observe that the small in-

tegral step size § can stabilize the dynamical system (3), but the large integral step size
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Figure 4 Phase portraits for various values of § corresponding to Figs. 3(a), (c)

may destabilize the system producing more complex dynamical behaviors. Then it re-
minds of us that the integral step size may play a key role in exploring the dynamical be-
haviors. In addition, from Fig. 5 we can see that the appropriately intrinsic growth rate
r of prey can stabilize the dynamical system (3). However, the high intrinsic growth rate
may destabilize system (3). From a biological point of view, when the prey population
is submitted to the high intrinsic growth rate, the number of preys are abundant, and
the prey consumption by predator may have a marginal effect on the dynamics of prey.
Hence, the dynamical behavior of prey mainly depends on the population itself. Then,
system (3) becomes the classic logistic model and exhibits the period-doubling leading to

chaos.
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