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Abstract
In this paper, we consider the following new nonlocal Dirichlet boundary value
problem:

{
–(a – b

∫
� |∇u|2 dx)�u = λu + g(x,u), x ∈ �,

u = 0, x ∈ ∂�,
(0.1)

where a and b are positive, λ is a positive parameter, 0≤ λ < aλ1, λ1 is the first
eigenvalue of operator –�. Under appropriate assumptions on the function g which
is of subcritical growth, we obtain a nontrivial solution.
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1 Introduction and main result
In this paper, we consider the following new nonlocal Dirichlet boundary value prob-
lem:

⎧⎨
⎩–(a – b

∫
�

|∇u|2 dx)�u = λu + g(x, u), x ∈ �,

u = 0, x ∈ ∂�,
(1.1)

where a and b are positive, λ is a positive parameter.
The search for a nontrivial solution of problem (1.1) is a new subject and of great sig-

nificance. We put forward a new nonlocal term a – b
∫
�

|∇u|2 dx, which is different from
the well known nonlocal term a + b

∫
�

|∇u|2 dx and presents a lot of interesting difficul-
ties.

Recently, mathematical studies have focused on the existence of solutions of the Kirch-
hoff type problem

⎧⎨
⎩–(a + b

∫
�

|∇u|2 dx)�u = g(x, u), x ∈ �,

u = 0, x ∈ ∂�,
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where a > 0, b > 0 and � is either a smooth bounded domain in R
N or � = R

N . The results
about problem with subcritical nonlinearity can be seen in [1–5] and the critical cases in
[6–13]. Here we do not present the results in detail, someone who is interested in them
can consult the references therein.

However, there are only few results about problem (1.1). When λ = 0 and g(x, u) = |u|p–2u
was of subcritical growth, Yin and Liu [14] considered

⎧⎨
⎩–(a – b

∫
�

|∇u|2 dx)�u = |u|p–2u, x ∈ �,

u = 0, x ∈ ∂�,

and obtained existence and multiplicity of nontrivial solutions. When λ = 0 and g(x, u) =
fλ(x)|u|p–2u, Lei [15] considered

⎧⎨
⎩–(a – b

∫
�

|∇u|2 dx)�u = fλ(x)|u|p–2u, x ∈ �,

u = 0, x ∈ ∂�.

Under some special conditions and for 1 < p < 2, the author obtained two solutions. Lei
[16] also investigated

⎧⎨
⎩–(a – b

∫
�

|∇u|2 dx)�u = λ
uγ , x ∈ �,

u = 0, x ∈ ∂�,

and, when 0 < γ < 1 and 0 < λ < λ∗, at least two positive solutions were obtained. Wang
[17] studied a nonlocal problem involving critical exponent, namely

⎧⎨
⎩–(a – b

∫
�

|∇u|2 dx)�u = |u|2u + μf (x), x ∈R
4,

u ∈ D1,2(R4),

for which infinitely many positive solutions and at least two positive solutions were found
for μ = 0 and μ ∈ (0,μ∗]. For some other important results the interested reader is also
referred to [18–21].

We are inspired by the above articles and consider a new problem which is different
from the mentioned above. Assume that nonlinearity g satisfies the following assump-
tions:

(g1) g is continuous, 1 ≤ i ≤ N , |g(x, u)| ≤ C(1 + |u|p–1) for some C > 0 and 2 < p < 2∗,
where 2∗ = 2N

N–2 if N ≥ 3, 2∗ = ∞ if N = 1 or 2;
(g2) g(x, u) = o(u) uniformly in x as u → 0;
(g3) u 	→ g(x,u)

u is positive for u 
= 0, nonincreasing on (–∞, 0) and nondecreasing on
(0, +∞).

Now, we state our main result.

Theorem 1.1 Suppose that conditions (g1)–(g3) and 0 ≤ λ < aλ1 hold, then problem (1.1)
has a nontrivial solution.
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2 Preliminary results
In this section, we present the variational results which will be used in the proof of Theo-
rem 1.1. Let E := H1

0 (�) be endowed with the usual norm

‖u‖ = 〈u, u〉1/2 =
(∫

�

|∇u|2
)1/2

.

The usual norm in the Lebesgue space Lp(�) is denoted by |u|p.
A function u ∈ E is called a weak solution of problem (1.1) if

a
∫

�

∇u∇v dx – b‖u‖2
∫

�

∇u∇v dx = λ

∫
�

uv dx –
∫

�

g(x, u)v dx, ∀v ∈ E.

Moreover, our assumptions imply that the solutions of (1.1) are the critical points of the
functional defined in E by

I(u) =
a
2
‖u‖2 –

b
4
‖u‖4 –

λ

2

∫
�

|u|2 dx –
∫

�

G(x, u) dx.

It is easy to see for ∀u, v ∈ E,

〈
I ′(u), v

〉
= a

∫
�

∇u∇v dx – b‖u‖2
∫

�

∇u∇v dx – λ

∫
�

uv dx –
∫

�

g(x, u)v dx.

Let λi (i = 1, 2, . . . ) be the eigenvalues of operator –� with zero Dirichlet boundary condi-
tion. It is well known that each eigenvalue λi is positive, isolated and has finite multiplicity,
the smallest eigenvalue λ1 being simple and λi → ∞ as i → ∞. Here we only need the first
eigenvalue of –�, where λ1 = infu
=0

∫
� |∇u|2∫
� |u|2 and assume that 0 ≤ λ < aλ1.

3 Proof of Theorem 1.1
In this section, we will prove Theorem 1.1, so from now on we always suppose that (g1)–
(g3) hold. First, (g1) and (g2) imply that for each ε > 0 there is a Cε > 0 such that

∣∣g(x, u)
∣∣ ≤ ε|u| + Cε|u|p–1 for all u ∈R. (3.1)

And using (g2) and (g3), one can easily check that

G(x, u) ≥ 0 and g(x, u)u ≥ 2G(x, u) > 0 if u 
= 0. (3.2)

Lemma 3.1 If 0 ≤ λ < aλ1, then there exists a sequence {un} ⊂ E satisfying I(un) → c,
I ′(un) → 0, where 0 < c < a2

4b .

Proof For λ1 = infu
=0

∫
� |∇u|2∫
� |u|2 , then

(
a –

λ

λ1

)∫
�

|∇u|2 ≤ a
∫

�

|∇u|2 – λ

∫
�

|u|2 ≤ a
∫

�

|∇u|2.
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Also by (3.1), we can choose a sufficiently small ε = λ1
2 (a – λ

λ1
), and then

I(u) =
a
2
‖u‖2 –

b
4
‖u‖4 –

λ

2

∫
�

|u|2 –
∫

�

G(x, u)

≥ 1
2

(
a –

λ

λ1

)∫
�

|∇u|2 –
b
4

(∫
�

|∇u|2
)2

–
ε

2

∫
�

|u|2 –
Cε

p

∫
�

|u|p

≥ 1
2

(
a –

λ

λ1

)∫
�

|∇u|2 –
b
4
‖u‖4 –

ε

2λ1

∫
�

|∇u|2 –
C1Cε

p
‖u‖p

≥ 1
4

(
a –

λ

λ1

)
‖u‖2 –

b
4
‖u‖4 –

C1Cε

p
‖u‖p,

Since 4 < p < 2∗, for small enough ρ > 0, for all u ∈ E and ‖u‖ = ρ , it holds that I(u) = γ > 0.
On the other hand, for u 
= 0 and t ∈R,

I(tu) =
at2

2
‖u‖2 –

bt4

4
‖u‖4 –

λt2

2

∫
�

|u|2 –
∫

�

G(x, tu),

so that when t → ∞, we have I(tu) → –∞. This means that there is a t1 such that u1 =
t1u ∈ E, ‖u1‖ > ρ and I(u1) < 0. As a consequence, by the mountain pass lemma without
(PS) condition [22], there exists a sequence {un} ⊂ E such that I(un) → c, I ′(un) → 0 for

c = inf
h∈	

max
u∈h([0,1])

I(u) ≥ γ > 0,

where

	 =
{

h ∈ C
(
[0, 1], E

)
: h(0) = 0, h(1) = u1

}
.

Because

max
t∈[0,1]

I(tu1) = max
t∈[0,1]

{
at2

2
‖u1‖2 –

bt4

4
‖u1‖4 –

λt2

2

∫
�

|u1|2 –
∫

�

G(x, tu1)
}

< max
t∈[0,1]

{
at2

2
‖u1‖2 –

bt4

4
‖u1‖4

}

≤ a2

4b
,

it is easy to obtain that 0 < c < a2

4b according to the definition of c. �

Lemma 3.2 Under the condition c < a2

4b , I satisfies the (PS)c condition, i.e., any (PS)c se-
quence of I has a convergent subsequence.

Proof We drew on the experience of [14]. Let {un} ⊂ E be such that I(un) → c, I ′(un) → 0.
Since by (3.2)

c + o(1) = I(un) –
1
2
〈
I ′(un), un

〉
=

a
2
‖un‖2 –

b
4
‖un‖4 –

λ

2

∫
�

|un|2 –
∫

�

G(x, un)
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–
[

a
2
‖un‖2 –

b
2
‖un‖4 –

λ

2

∫
�

|un|2 –
1
2

g(x, un)
]

≥ b
4
‖un‖4,

we know that {un} is bounded in E. By passing to a subsequence, still denoted {un}, we
may assume that there is a u ∈ E such that

un ⇀ u in E,

un → u in Ls(�) for s ∈ [1, 2∗),

un(x) → u(x) for a.e. x ∈ �.

On account of

o(1) =
〈
I ′(un), un – u

〉
=

(
a – b‖un‖2)∫

�

∇un∇(un – u) – λ

∫
�

un(un – u) –
∫

�

g(x, un)(un – u)

and

∣∣∣∣
∫

�

un(un – u)
∣∣∣∣ ≤

(∫
�

|un|2
) 1

2
(∫

�

|un – u|2
) 1

2
,

also by (3.1)
∣∣∣∣
∫

�

g(x, un)(un – u)
∣∣∣∣

≤ ε

∣∣∣∣
∫

�

un(un – u)
∣∣∣∣ + Cε

∣∣∣∣
∫

�

|un|p–2un(un – u)
∣∣∣∣

≤ ε

(∫
�

|un|2
) 1

2
(∫

�

|un – u|2
) 1

2
+ Cε

(∫
�

(|un|p–1) p
p–1

) p–1
p

(∫
�

(|un – u|p)) 1
p

,

because un → u in Ls(�), s ∈ [1, 2∗), the above two formulas show that when n → ∞,

(
a – b‖un‖2)∫

�

∇un∇(un – u) → 0. (3.3)

If there exists a subsequence of {un}, still denoted {un}, satisfying ‖un‖2 → a
b , define a

functional

ϕ(u) =
λ

2

∫
�

|u|2 +
∫

�

G(x, u), u ∈ E.

Then

〈
ϕ′(u), v

〉
= λ

∫
�

uv +
∫

�

g(x, u)v, u, v ∈ E,

and

〈
ϕ′(un) – ϕ′(u), v

〉
= λ

∫
�

(un – u)v +
∫

�

[
g(x, un) – g(x, u)

]
v.
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Claim. 〈ϕ′(un) – ϕ′(u), v〉 → 0, ∀v ∈ E.

Firstly,

λ

∫
�

(un – u)v ≤ λ

(∫
�

|un – u|2
) 1

2
(∫

�

|v|2
) 1

2
,

since un → u in L2(�), thus λ
∫
�

(un – u)v → 0.
Secondly, to prove the claim, we only need to prove

lim
n→∞

∫
�

∣∣g(x, un) – g(x, u)
∣∣|v| = 0. (3.4)

If (3.4) is not true, then there exist a constant ε0 > 0 and a subsequence uki such that

∫
�

∣∣g(x, uki ) – g(x, u)
∣∣|v| ≥ ε0, ∀i ∈N, (3.5)

Since un → u in Lp(�), passing to a subsequence if necessary, we can assume that∑∞
i=1 |uki – u|pp < +∞. Set

ω(x) =

[ ∞∑
i=1

∣∣uki (x) – u(x)
∣∣p

] 1
p

, ∀x ∈ �.

Then ω ∈ Lp(�). Note that for ∀i ∈N, x ∈ �,

∣∣g(x, uki ) – g(x, u)
∣∣|v|

≤ (∣∣g(x, uki )
∣∣ +

∣∣g(x, u)
∣∣)|v|

≤ [
ε
(|uki | + |u|) + Cε

(|uki |p–1 + |u|p–1)]|v|
≤ [

22ε
(|uki – u| + |u|) + 2pCε

(|uki – u|p–1 + |u|p–1)]|v|
≤ [

22ε
(|ω| + |u|) + 2pCε

(|ω|p–1 + |u|p–1)]|v|
:= f (x), (3.6)

and

∫
�

f (x) dx =
∫

�

[
22ε

(|ω| + |u|) + 2pCε

(|ω|p–1 + |u|p–1)]|v|
≤ 22ε

(|ω|2 + |u|2
)|v|2 + 2pCε

(|ω|p–1
p + |u|p–1

p
)|v|p < +∞.

(3.7)

Since uki → u a.e. in �, then by (3.6), (3.7) and Lebesgue Dominated Convergence Theo-
rem, we have

lim
i→∞

∫
�

∣∣g(
x, uki (x)

)
– g

(
x, u(x)

)∣∣|v| = 0,
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which contradicts (3.5). Hence (3.4) holds. Then the claim follows. By arbitrariness of v,
then

∥∥ϕ′(un) – ϕ′(u)
∥∥

E′ → 0,

and ϕ′(un) → ϕ′(u) in E′. While 〈I ′(un), v〉 = (a – b‖un‖2)〈un, v〉– 〈ϕ′(un), v〉, 〈I ′(un), v〉 → 0,
a – b‖un‖2 → 0, hence ϕ′(un) → 0, i.e.,

〈
ϕ′(u), v

〉
= λ

∫
�

uv +
∫

�

g(x, u)v = 0, ∀v ∈ E,

and then we have

λu(x) + g
(
x, u(x)

)
= 0 for a.e. x ∈ �,

by the fundamental lemma of the variational method (see [23]). It follows that u = 0. So

ϕ(un) =
λ

2

∫
�

|un|2 +
∫

�

G(x, un) → λ

2

∫
�

|u|2 +
∫

�

G(x, u) = 0.

Hence we see that I(un) = a
2 ‖un‖2 – b

4 ‖un‖4 – λ
2
∫
�

|un|2 –
∫
�

G(x, un) → a2

4b from ‖un‖2 →
a
b . This is a contradiction to I(un) → c < a2

4b . Then a – b‖un‖2 → 0 is not true and any
subsequence of {a – b‖un‖2 → 0} does not converge to zero. Therefore there exists a δ > 0
such that |a – b‖un‖2| > δ > 0 when n is large enough. It is clear that {a – b‖un‖2 → 0} is
bounded. It follows from (3.3) that

∫
�

∇un∇(un – u) → 0. So ‖un‖ → ‖u‖. Hence un → u
in E due to the uniform convexity of E. �

Proof of Theorem 1.1 According to Lemma 3.1, there exists a sequence {un} ∈ E satisfying
I(un) → c > 0, I ′(un) → 0. By Lemma 3.2, {un}, which is the sequence obtained by Lemma
3.1, possesses a convergent to u subsequence (still denoted by {un}). So it follows from
the continuity that I(un) → c > 0, I ′(un) → 0. But I(0) = 0, therefore u 
= 0, that is, u is a
nontrivial solution of problem (1.1). �
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