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Abstract
In this paper, a novel stage-structured single population model with state-dependent
maturity delay is formulated and analyzed. The delay is related to the size of
population and taken as a non-decreasing differentiable bounded function. The
model is quite different from previous state-dependent delay models in the sense
that a correction term, 1 – τ ′(z(t))ż(t), is included in the maturity rate. Firstly, positivity
and boundedness of solutions are proved without additional conditions. Secondly,
existence of all equilibria and uniqueness of a positive equilibrium are discussed.
Thirdly, local stabilities of the equilibria are obtained. Finally, permanence of the
system is analyzed, and explicit bounds for the eventual behaviors of the immature
and mature populations are established.
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1 Introduction
In a natural ecosystem, the individual members of the population have a life history that
takes them through two or more stages, especially, with regard to mammalian popula-
tions, which usually exhibit two distinct stages: immature and mature stages [1–4]. What
is more, the delay arises frequently as the maturation time from birth to adulthood un-
der the background of population dynamics, and there are different types of the maturity
time delay, such as discrete, distributed, stochastic, time-dependent and state-dependent
delays, etc. [4–11].

The authors of [12] considered and analyzed a growth model of blowflies with constant
maturity time delay. According to the data of blowflies growth experiments in [13], they
presented some numerical simulations to justify the theoretical analysis. Thus, it is more
practical to consider time delays and stage structures in the study of a population model.

In 1990, the authors of [14] developed and analyzed the following stage structure model
of population growth with a constant maturity time delay:

⎧
⎨

⎩

dx(t)
dt = αy(t) – γ x(t) – αy(t – τ )e–γ τ ,

dy(t)
dt = αy(t – τ )e–γ τ – βy2(t),

(1.1)
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where x(t) and y(t) represent the immature and mature population densities, respectively;
the time delay τ represents the time from birth to maturity; parameters α and γ repre-
sent the birth and death rates of the immature population, respectively; β represents the
mature death and overcrowding rate.

Before World War II, people discovered that juvenile seals needed five years to mature,
small whales needed seven to ten years, and big whales needed 12 to 15 years. After the
war, owing to the introduction of factory ships and capture of a large number of whales,
the number of the krill available for the seals and the remaining whales had a significant
increase. An interesting phenomenon was then observed that the maturity time of seals
and whales has shortened. Seals needed three to four years and small whales only took
five years. Additionally, there was a significant reduction of maturity time for large whales
[15]. Therefore, for Antarctic whale and seal populations, their maturity time is a function
of the number of krill. Furthermore, it is quite natural to suppose that the number of krill
available in a closed environment is a function of the total population.

This suggests that due to the environmental complexity, however, the time delay may be
constantly adjusted as the state changes, that is, the time delay is state-dependent and the
constant time delay is no longer reasonable (see [16–19]). In view of this, on the basis of
model (1.1), the authors of [5] changed the constant delay τ into a state-dependent delay
τ (z(t)) to formulate the following state-dependent delay model:

⎧
⎨

⎩

dx(t)
dt = αy(t) – γ x(t) – αy(t – τ (z(t)))e–γ τ (z(t)),

dy(t)
dt = αy(t – τ (z(t)))e–γ τ (z(t)) – βy2(t),

(1.2)

where the state-dependent time delay τ (z(t)) is taken to be an increasing differentiable
bounded function of the total population z(t) = x(t) + y(t).

Since then, more and more state-dependent delay differential equations were applied to
describe the dynamical behaviors of stage-structured models originated from population
growth [19–25].

In 2004, based on model (1.2), the authors of [26] studied the following stage-dependent
population model with a state-dependent time delay:

⎧
⎨

⎩

dx(t)
dt = R(y(t)) – γ x(t) – R(y(t – τ (z(t))))e–γ τ (z(t)),

dy(t)
dt = R(y(t – τ (z(t)))e–γ τ (z(t)) – βy(t),

(1.3)

where the immature birth rate R(y(t)) is taken as a general function of the present mature
population and the death rate for the mature one is a constant.

Subsequently, [27] and [28] investigated a two cooperative mature species system with
a state-dependent delay and a cooperative model composed of two species with a stage
structure and state-dependent maturity delays, respectively.

However, it is obvious that those state-dependent delay equations are all directly replac-
ing constant delays in classical models of the form

dX(t)
dt

=F
(
X(t – τ ), X(t)

)
, τ > 0,
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by state-dependent delays, hence one obtains the following equations:

dX(t)
dt

=F
(
X

(
t – τ

(
X(t)

))
, X(t)

)
.

Is this approach appropriate and in line with population modeling? Since if the maturity
delay is not constant but state-dependent, then changes in the number of mature individ-
uals do not only depend on reproduction and death, but also on the changing definition of
maturity, that is, changes of τ (X(t))). As we shall show later, the correct extension of model
(1.2) in terms of a state-dependent mature delay involves a correction term, 1 –τ ′(z(t))ż(t),
which takes into account the aforesaid changes.

Moreover, Macdonald [29] indicated that one must begin with an age structured model
to incorporate maturation data in a model, which is indispensably formulated in terms
of partial differential equations. This way it is guaranteed that the model can properly be
substituted by that formulated according to a functional differential equation.

Our paper is organized as follows. In Sect. 2, we formulate a novel specie stage-
structured model with a state-dependent maturation delay. In Sect. 3, we discuss the pos-
itivity and boundedness of solutions, as well as the existence of all equilibria and unique-
ness of a positive equilibrium. In Sect. 4, we analyze the linear stability of equilibria. In
Sect. 5, we discuss the permanence of the system. Finally, in Sect. 6, we briefly discuss and
summarize our results.

2 Model formulation and hypotheses
2.1 Model formulation
Motivated by [8, 29, 30], we begin with a two-stage population model (immature and ma-
ture stages). In order to distinguish immature individuals, x(t), from mature ones, y(t), we
introduce a threshold age τ (z(t)), which is the maturation time for an immature individual
that matures at time t depending on the total population z(t) = x(t) + y(t). Let ρ(t, a) be the
density of population of age a at time t. Then the number of immature individuals, x(t),
and mature individuals, y(t), respectively, are given by

x(t) =
∫ τ (z(t))

0
ρ(t, a) da and y(t) =

∫ ∞

τ (z(t))
ρ(t, a) da.

The evolution of population is represented by the following age structure partial differen-
tial equations [31, 32]:

∂ρ(t, a)
∂t

+
∂ρ(t, a)

∂a
= –γρ(t, a), if a ≤ τ

(
z(t)

)
,

∂ρ(t, a)
∂t

+
∂ρ(t, a)

∂a
= –βy(t)ρ(t, a), if a > τ

(
z(t)

)
,

(2.1)

where each individual from x(t) dies at a constant rate γ and that from y(t) at a non-
constant rate βy(t).

Taking the derivatives of x(t) and y(t), respectively, and combining with (2.1), we get

dx(t)
dt

= ρ(t, 0) – γ x(t) –
[
1 – τ ′(z(t)

)
ż(t)

]
ρ
(
t, τ

(
z(t)

))
,

dy(t)
dt

=
[
1 – τ ′(z(t)

)
ż(t)

]
ρ
(
t, τ

(
z(t)

))
– ρ(t,∞) – βy2(t).
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It is necessary to note that a prime refers to differentiation with respect to z, and a dot
indicates differentiation with respect to time t, namely, τ̇ (z(t)) = dτ (z(t))/dt = τ ′(z(t))ż(t).

Because any individual cannot live forever, ρ(t,∞) is regarded as zero. We assume
that the immature population produces at a constant rate α, so the term ρ(t, 0) = αy(t)
represents the number of immature individuals born at time t. Therefore, for t ≥ τ̃ =
max{τ (z(t))}, we obtain

ρ
(
t, τ

(
z(t)

))
= ρ

(
t – τ

(
z(t)

)
, 0

)
= αy

(
t – τ

(
z(t)

))
e–γ τ (z(t)).

As a result, we have the following stage-structured population model with a state-
dependent delay:

⎧
⎨

⎩

dx(t)
dt = αy(t) – γ x(t) – α[1 – τ ′(z(t))ż(t)]y(t – τ (z(t)))e–γ τ (z(t)),

dy(t)
dt = α[1 – τ ′(z(t))ż(t)]y(t – τ (z(t)))e–γ τ (z(t)) – βy2(t).

(2.2)

Model (2.2) is clearly different from the previous state-dependent delay equations in the
sense that it includes the correction term 1 – τ ′(z(t))ż(t) in the maturity rate.

As in [5, 26, 28, 30], to have the possibility of mature individuals becoming immature
only by birth, one needs some conditions ensuring that t – τ (z(t)) is a strictly increasing
function of t. As a matter of fact, from a biological point of view, it is natural that t –τ (z(t))
is a strictly increasing function of t. Assume that r(ξ ) is the developmental proportion at
time ξ . Then, when an immature individual moves to the mature state from t – τ (z(t)) to
t, the cumulative rate of development r should be equal to one, namely,

1 =
∫ t

t–τ (z(t))
r(ξ ) dξ .

Taking the derivative with respect to t, we obtain

1 – τ ′(z(t)
)
ż(t) =

r(t)
r(t – τ (z(t)))

> 0.

It implies that t – τ (z(t)) is a strictly increasing function of t and the maturity time delay
τ (z(t)) doesn’t change arbitrarily over time.

2.2 Model hypotheses
The hypotheses for model (2.2) are as follows:

(A1) Parameters α, γ , β are all positive constants;
(A2) The state-dependent maturity time delay τ (z) is an increasing differentiable

bounded function of the total population z = x + y, where τ ′(z) ≥ 0, τ ′′(z) ≤ 0, and
0 < τm ≤ τ (z) ≤ τM with τ (0) = τm and τ (+∞) = τM .

Throughout this paper, we will do qualitative analysis for system (2.2). The initial con-
ditions for system (2.2) are

y(s) = 	(s) ≥ 0,

x(s) = 
(s) ≥ 0 for all s ∈ [–τM, 0],



Wang et al. Advances in Difference Equations  (2018) 2018:364 Page 5 of 15

with


(0) =
∫ 0

–τ (z(0))
α	(s)eγ s ds,

which denotes the size of the immature population surviving to time t = 0, where τ (z(0))
is the maturation time at t = 0, namely,

τ
(
z(0)

)
= τ

(

	(0) +
∫ 0

–τ (z(0))
α	(s)eγ s ds

)

.

3 Preliminary results
In this section, we will discuss the positivity and boundedness of solutions and the exis-
tence of all equilibria and uniqueness of a positive equilibrium.

3.1 Positivity and boundedness
Theorem 3.1 Let 	(t) ≥ 0, 
(t) ≥ 0 for –τM ≤ t ≤ 0 and 	(0) > 0. Then y(t) > 0 and
x(t) > 0 for all t ≥ 0.

Proof Since 1 – τ ′(z(t))ż(t) > 0, for –τM ≤ t ≤ 0, we obtain

ẏ(t) ≥ –βy2(t).

By comparison, y(t) ≥ y1(t) where y1(t) is the solution of ẏ1(t) = –βy2
1(t), y1(0) = 	(0) > 0.

Therefore, y(t) > 0 for all –τM ≤ t ≤ 0. We can continue the argument to all positive times,
so y(t) > 0 for all t ≥ 0. Now let us prove the positivity of x(t). Integrating the first equation
of (2.2), we get

x(t) = e–γ t
(


(0) +
∫ t

0
αy(s)eγ s ds –

∫ t–τ (z(t))

–τ (z(0))
αy(s)eγ s ds

)

= e–γ t
(∫ 0

–τ (z(0))
αy(s)eγ s ds +

∫ t

0
αy(s)eγ s ds –

∫ t–τ (z(t))

–τ (z(0))
αy(s)eγ s ds

)

=
∫ t

t–τ (z(t))
αy(s)eγ s ds.

By the positivity of y(t) and τ (z(t)), we have x(t) > 0. The proof is complete. �

Remark 3.1 In Theorem 3.5 of [5] and Theorem 2.6 of [28], one needs the following strin-
gent conditions for τ ′(z(t)) to ensure the positivity of x:

(i) τ ′(z) < 4β/α2;
(ii) τ ′(z) > 0 is small enough so that the inequality

Km

∫ t

t–τm

eγ s ds > �
∫ t–τm

–τ

α2τ ′(z)
4β – α2τ ′(z)

eγ s ds,

holds for all values of t, where Km > 0 and y(t) > Km for all t ≥ 0.
As a matter of fact, according to Theorem 3.1, we see that neither of these conditions is

necessary.
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Theorem 3.2 Let 	(t) ≥ 0, 
(t) ≥ 0 for –τM ≤ t ≤ 0 and 	(0) > 0, then the solution
(x(t),y(t)) of system (2.2) is uniformly ultimately bounded for t ≥ 0.

Proof Define a Lyapunov function as follows:

V (t) = x(t) + y(t).

Calculating the time derivative of V (t) along the solutions of system (2.2), we obtain

V̇ (t) = ẋ(t) + ẏ(t)

= αy(t) – γ x(t) – βy2(t)

= –γ V (t) + (α + γ )y(t) – βy2(t)

≤ –γ V (t) + M,

where M > 0 is the maximum of the quadratic function (α + γ )y(t) – βy2(t). There-
fore, lim supt→∞ V (t) ≤ M/γ and the solution of system (2.2) is uniformly ultimately
bounded. �

Obviously, it implies that z(t) is bounded, which will be used in the proof of Theorem
5.1. In addition, x(t) ≤ M/γ and y(t) ≤ M/γ , which is the ultimate upper bound for all the
solutions. For the upper bound of each solution, we have the following results.

Theorem 3.3 Let 	(t) ≥ 0 for –τM ≤ t ≤ 0 and 	(0) > 0. Then there exists a � = �(	) > 0
such that y(t) ≤ � for t ≥ 0, where � = max{sup–τM≤t≤0 	(t),αβ–1e–γ τm}.

Proof Our proof is divided into three cases.
Case (a). Firstly, we start with the case where both y(t) and z(t) are eventually monotonic.

If z(t) is eventually decreasing, since z(t) = x(t) + y(t), then y(t) is bounded. Suppose that
both y(t) and z(t) are eventually increasing, i.e., ẏ(t) ≥ 0 and ż(t) ≥ 0 for all t > T for some
T ≥ 0. Then for t > T + τM

ẏ(t) = α
[
1 – τ ′(z(t)

)
ż(t)

]
y
(
t – τ

(
z(t)

))
e–γ τ (z(t)) – βy2(t)

≤ α
[
1 – τ ′(z(t)

)
ż(t)

]
y(t)e–γ τ (z(t)) – βy2(t)

≤ αy(t)e–γ τ (z(t)) – βy2(t),

since y(t – τ (z(t))) ≤ y(t). This implies that for t > T , we have

y(t) ≤ αβ–1[1 – τ ′(z(t)
)
ż(t)

]
e–γ τ (z(t))

≤ αβ–1e–γ τm .

Case (b). Next, we assume that both y(t) and z(t) are oscillatory. Suppose that there are
two sequences {tn}∞n=1 and {sm}∞m=1 such that ẏ(tn) = 0 and ż(sm) = 0, y(tn) and z(sm) are
local maxima of y(t) and z(t), respectively, and that for all 0 < t < tn and 0 < t < sm, where
m, n ∈ N , we have y(t) ≤ y(tn) and z(t) ≤ z(sm). For any given tn, let tm = max{tn|tn ≤ tm}.
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If tm = sm, then by using similar methods as in the case (a), we see that y(t) ≤ αβ–1e–γ τm

for all t < tm.
If tm < sm and y(tm) ≤ y(sm), then ẏ(sm) > 0 for all t < tm. Otherwise, there exists a t ∈

(tm, sm) such that ẏ(t) = 0, which contradicts the definition of tm. Therefore, we obtain

ẏ(sm) = α
[
1 – τ ′(z(sm)

)
ż(sm)

]
y
(
sm – τ

(
z(sm)

))
e–γ τ (z(sm)) – βy2(sm)

≤ αy(sm)e–γ τm – βy2(sm).

This implies that y(t) ≤ αβ–1e–γ τm .
If tm < sm and y(sm) ≤ y(tm), then it is clear that y(t) is bounded above.
Case (c). We discuss the case where one of y(t) and z(t) is oscillatory and the other is

eventually monotonic. Without loss of generality, suppose that y(t) is oscillatory and z(t)
is eventually increasing since the other cases can be worked out similarly. Therefore, there
is a sequence {tn}∞n=1 such that ẏ(tn) = 0, y(tn) is a local maximum of y(t), and y(t) ≤ y(tn)
for all 0 < t < tn. For the same sequence {tn}∞n=1 presented above, there exists an N > 0 such
that ż(tn) ≥ 0 from the eventual monotonicity of z(t), and thus y(t) is bounded above.

Therefore, choosing �(	) = max{sup–τM≤t≤0 	(t),αβ–1e–γ τm}, the proof is complete. �

Theorem 3.4 Let 	(t) > 0 for –τM ≤ t ≤ 0. Then there exists a �(	) = 
(0) + αγ –1� such
that x(t) ≤ � for all t ≥ 0.

Proof Firstly, � is a functional depending only on 	(t), since 
(0) =
∫ 0

–τs
α	(s)eγ s ds. Then

from system (2.2),

dx(t)
dt

= αy(t) – γ x(t) – α
[
1 – τ ′(z(t)

)
ż(t)

]
y
(
t – τ

(
z(t)

))
e–γ τ (z(t)).

Integrating this expression, for t > 0, we get

x(t) = e–γ t
(0) + αe–γ t
∫ t

0
ers[y(s) –

(
1 – τ ′(z)ż(s)

)
e–γ τ (z(s))y

(
s – τ

(
z(s)

))]
ds

≤ e–γ t
(0) + αe–γ t
∫ t

0
eγ sy(s) ds

≤ e–γ t
(0) + αe–γ t
∫ t

0
eγ s�ds

= e–γ t
(0) + αγ –1�
(
1 – e–γ t) < 
(0) + αγ –1�.

Thus, choosing �(	) = 
(0) + αγ –1�, we complete the proof. �

3.2 Existence and patterns of equilibria
The purpose of this section is to investigate the existence and patterns of equilibria (x, y)
of system (2.2), which satisfy

⎧
⎨

⎩

αy – γ x – α[1 – τ ′(z)ż]ye–γ τ (z) = 0,

α[1 – τ ′(z)ż]ye–γ τ (z) – βy2 = 0.
(3.1)

It is clear that system (2.2) has an equilibrium E0 = (0, 0).
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Theorem 3.5 System (2.2) has exactly one nontrivial equilibrium E∗ = (x∗, y∗), where
αe–γ τ (z∗) = αe–γ τ (x∗+y∗) = βy∗.

Proof Due to ż = ẋ + ẏ, if there is a nontrivial equilibrium E∗ = (x∗, y∗), it must satisfy the
following equations:

⎧
⎨

⎩

αy – γ x – αye–γ τ (z) = 0,

αye–γ τ (z) – βy2 = 0.
(3.2)

Adding the two equations of (3.2), we have

x = g(y) = γ –1(αy – βy2).

It is essential that we need 0 < y < αβ–1 to make sure that x > 0. According to Theorem
3.3 and αβ–1e–rτm < αβ–1, we will discuss the existence and uniqueness of nontrivial equi-
librium in 
 = {y ∈ R|0 < y < αβ–1e–rτm} ⊂ R. Define f : 
 → R as a continuous mapping
by

f (y) = h(y) – βy = αe–γ τ (y+g(y)) – βy,

where h(y) = αe–γ τ (y+g(y)) is a bounded function, namely αe–γ τM ≤ h(y) ≤ αe–γ τm .
Since f (0) = αe–γ τ (0) > 0, f (αβ–1e–rτm ) = αe–rτ (αβ–1e–rτm +g(αβ–1e–rτm )) – αe–rτm < 0, this im-

plies that f (y) has at least one positive zero point y∗.
Note that

f ′(y) = – αe–γ τ (y+g(y))τ ′(y + g(y)
)
(γ + α – 2βy) – β ,

f ′(0) = – αe–γ τmτ ′(0)(γ + α) – β < 0,

f ′′(y) =αe–γ τ (y+g(y))[τ ′(y + g(y)
)]2(γ + α – 2βy)2 + 2αβe–γ τ (y+g(y))τ ′(y + g(y)

)

–
α

γ
e–γ τ (y+g(y))τ ′′(y + g(y)

)
(γ + α – 2βy)2 > 0.

Without loss of generality, assume that f (y) has two positive roots and the right positive
root is denoted as y∗. If f ′(y∗) ≥ 0, we have f (αβ–1e–rτm ) > 0 due to f ′′(y) > 0, giving us a
contradiction. Therefore, f (y) has a unique positive root in the interval (0,αβ–1e–rτm ), so
system (2.2) has a unique nontrivial equilibrium. The proof is complete. �

Remark 3.2 By the proof of Theorem 3.5, we have f ′(y∗) < 0, namely

y∗τ ′(z∗)(2βy∗ – γ – α
)

< 1. (3.3)

4 Stability of equilibria
In this section, we study the linearized stability of the two equilibria E0 and E∗ by lineariz-
ing system (2.2). Since the delay is a function depending on the state variables x and y,
linearizing an equation with state-dependent delay is not completely straightforward. In
1996, Cooke and Huang [33] solved the linearization problem of state-dependent delay
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differential equations by “freezing the delay” at an equilibrium. We use the same method
to linearize system (2.2). To do so, let E∗ be an arbitrary equilibrium and x = x∗ + x1 and
y = y∗ + y1. We shall give the details of linearizing the first equation of system (2.2), and
linearizing the second could be accomplished similarly. The first equation is linearized as
follows:

ẋ1 = α
(
y∗ + y1

)
– γ

(
x∗ + x1

)

– α
[
1 – τ ′(z∗ + x1 + y1

)(
x′

1 + y′
1
)]

y
(
t – τ

(
z∗ + x1 + y1

))
e–γ τ (z∗+x1+y1)

= –γ x1 + αy1 + αy∗τ ′z∗(γ + α – 2βy∗)y1e–γ τ (z∗) – αe–γ τ (z∗)y1
(
t – τ

(
z∗))

= –γ x1 +
[
α + αy∗τ ′(z∗)(γ + α – 2βy∗)e–γ τ (z∗)]y1 – αe–γ τ (z∗)y1

(
t – τ

(
z∗)).

Therefore, the linearized system of (2.2) is

⎧
⎨

⎩

ẋ1 = –γ x1 + [α + αy∗τ ′(z∗)(γ + α – 2βy∗)e–γ τ (z∗)]y1 – αe–γ τ (z∗)y1(t – τ (z∗)),

ẏ1 = –[αy∗τ ′(z∗)(γ + α – 2βy∗)e–γ τ (z∗) + 2βy∗]y1 + αe–γ τ (z∗)y1(t – τ (z∗)).

This leads to the following characteristic equation:

(λ + γ )
(
λ + 2βy∗ + θ∗ – αe–τ (z∗)(γ +λ)) = 0, (4.1)

where

θ∗ = αy∗τ ′(z∗)(γ + α – 2βy∗)e–γ τ (z∗).

4.1 Linearized stability of the extinction equilibrium E0

For the extinction equilibrium E0 = (0, 0), (4.1) reduces to

(λ + γ )
(
λ – αe–τ (0)(γ +λ)) = 0.

Clearly, λ = –γ < 0 is one of these eigenvalues. All the other eigenvalues λ satisfy the equa-
tion λeτ (0)(γ +λ) = α > 0, which always has a real, positive solution. Hence E0 = (0, 0) is a
saddle point. We have the following result.

Theorem 4.1 The extinction equilibrium E0 = (0, 0) is a saddle point and is unstable.

4.2 Linearized stability of the nontrivial equilibrium E∗

Theorem 4.2 The nontrivial equilibrium E∗ = (x∗, y∗) is locally asymptotically stable.

Proof The characteristic equation

(λ + γ )
(
λ + 2βy∗ + θ∗ – αe–τ (z∗)(γ +λ)) = 0,

that is,

(λ + γ )
(
λ – βy∗e–τ (z∗)λ + η

)
= 0, (4.2)
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where

η = βy∗[2 + y∗τ ′(z∗)(γ + α – 2βy∗)].

Obviously, equation (4.2) has a negative real root λ = –γ .
Other roots are given by the following equation:

G(λ) = λ – βy∗e–τ (z∗)λ + η = 0. (4.3)

By inequality (3.3) of Remark 3.2, we have G(0) = η – βy∗ > 0. Hence, zero is not the root
of equation (4.3).

Now, let us prove that equation (4.3) has no purely imaginary roots.
Assume that equation (4.3) has a purely imaginary root λ = iv, where v > 0. Substituting

it into equation (4.3) and separating the real and the imaginary parts, we obtain
⎧
⎨

⎩

v = –βy∗ sin(τ (z∗)v),

η = βy∗ cos(τ (z∗)v).

Given (sin(τ (z∗)v))2 + (cos(τ (z∗)v))2 = 1 and inequality (3.3), we have

v2 =
(
βy∗)2 – η2

=
(
βy∗)2 –

(
βy∗)2[2 + y∗τ ′(z∗)(γ + α – 2βy∗)]2

=
(
βy∗)2[1 –

(
2 + y∗τ ′(z∗)(γ + α – 2βy∗))2]

< 0,

which is a contradiction. Therefore, equation (4.3) has no purely imaginary roots, and each
root of the characteristic equation has a negative real part. The proof is complete. �

5 Permanence
In this section, we will discuss the permanence of system (2.2) by using the method of
[5, 28], and obtain explicit bounds for the eventual behaviors of x(t) and y(t), which are
independent of the initial conditions.

Definition 5.1 System (2.2) is said to be permanent if there exist positive constants m, n,
M, and N such that every positive solution (x(t), y(t)) of system (2.2) satisfies

m ≤ lim inf
t→∞ x(t) ≤ lim sup

t→∞
x(t) ≤ M,

n ≤ lim inf
t→∞ y(t) ≤ lim sup

t→∞
y(t) ≤ N .

In order to obtain explicit bounds for the eventual behavior of y(t), we first investigate
the upper and lower bounds of limt→∞ y(t) in the case where y(t) is eventually monotone.

Theorem 5.1 Suppose that y(t) is eventually monotone. Then

αβ–1e–γ τM ≤ lim
t→∞ y(t) ≤ αβ–1e–γ τm .
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Proof Since y(t) is eventually monotone and bounded, there exists a 0 ≤ y < ∞ such that
limt→∞ y(t) = y and limt→∞ ẏ(t) = 0. Because the zero solution is unstable by Theorem 4.1,
we obtain y �= 0, namely 0 < y < ∞. For the boundedness of z(t) and ż(t) = –γ z(t) + (α +
γ )y(t) – βy2(t), according to the Barbǎlat lemma [34], we have limt→∞ ż(t) = 0. Thus, from
system (2.2), taking the limit superior as t → ∞, we get that

0 ≤ y
[
αe–γ lim inft→∞ τ (z(t)) – βy

]
.

Hence y ≤ αβ–1e–γ lim inft→∞ τ (z(t)) ≤ αβ–1e–γ τm by combining with the hypotheses (A2).
Similarly, from system (2.2), taking the limit infimum as t → ∞, we obtain that

0 ≥ y
[
αe–γ lim supt→∞ τ (z(t)) – βy

]
.

Thus y ≥ αβ–1e–γ lim supt→∞ τ (z(t)) ≥ αβ–1e–γ τM by the hypotheses (A2). The proof is com-
plete. �

Now let us show explicit bounds, independent of initial conditions, for y(t).

Theorem 5.2 There exist positive constants n and N such that, for any positive solution
(x(t), y(t)) of model (2.2),

n ≤ lim inf
t→∞ y(t) ≤ lim sup

t→∞
y(t) ≤ N ,

where n = αβ–1e–γ τM , N = αβ–1e–γ τm .

Proof Our proof is split into two cases.
In the first case, y(t) is eventually monotonic. According to Theorem 5.1 and the defini-

tions of superior and inferior limits, the claim is true.
Secondly, we consider an oscillatory y(t). We only show that lim supt→∞ y(t) ≤ αβ–1 ×

e–γ τm , because the other inequality can be obtained analogously. Define the sequence {tm}
as those times for which y(t) obtains its local maximum, i.e., ẏ(tm) = 0, ÿ(tm) < 0.

Let ŷ = lim supm→∞ y(tm). Then ŷ = lim supt→∞ y(t). If ŷ ≤ αβ–1e–γ τm , we are done.
Therefore, we assume that

ŷ > αβ–1e–γ τm . (5.1)

Then 0 = ẏ(tm) = α[1 – τ ′(zm)ż(tm)]y(t – τ (zm))e–γ τ (z(tm)) – βy2(tm), where zm = z(tm) =
x(tm) + y(tm).

Now let us choose a subsequence of {tm}, labeled as {tm1}, so that limm1→∞ y(tm1 ) = ŷ
and lim supm1→∞ z(tm1 ) = ẑ.

We then choose a subsequence of {tm1}, labeled as {tm2}, so that limm2→∞ z(tm2 ) = ẑ and
lim supm2→∞ y(tm2 – τ (zm2 )) = ỹ.

Finally, we choose a subsequence of {tm2}, labeled as {tm3}, so that limm3→∞ y(tm3 –
τ (zm3 )) = ỹ.
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Then from (2.2) and (5.1), taking the limit as m1 → ∞, m2 → ∞, m3 → ∞,

0 = α
[
1 – τ ′ (̂z) ˙̂z]ỹe–γ τ (̂z) – β ŷ2

< α
[
1 – τ ′ (̂z) ˙̂z]e–γ τ (̂z)(̃y – ŷ).

If ỹ ≤ ŷ, we have a contradiction. Therefore, assuming ỹ > ŷ, we can choose a value tn

for m, m1, m2, m3 such that ẏ(tn) = 0, ÿ(tn) < 0, and lim supn→∞ y(tn) ≥ ỹ > ŷ. However, this
contradicts the definition of ỹ, therefore ỹ > ŷ cannot be true, which eliminates the last
possibility. The proof is complete. �

Now let us give estimates for x by using the estimates obtained in Theorem 5.1. It should
be noted that we can find a T(ε) > 0 so large that

αβ–1e–γ τM – ε ≤ y(t) ≤ αβ–1e–γ τm + ε (5.2)

for any given ε > 0 whenever t ≥ T . Clearly, inequality (5.2) is also valid for those t ≥
T + τM .

Theorem 5.3 There exist positive constants m and M such that, for any positive solution
(x(t), y(t)) of model (2.2),

m ≤ lim inf
t→∞ x(t) ≤ lim sup

t→∞
x(t) ≤ M,

where m = α2γ –1β–1e–γ τM (1 – e–γ τm ), M = α2γ –1β–1e–γ τm (1 – e–γ τM ).

Proof Since the first equation of system (2.2) can be written in the integral equation form
and utilizing inequality (5.2), we have for t ≥ T + τM ,

x(t) =
∫ t

t–τ (z(t))
αy(ξ )e–γ (t–ξ ) dξ

≤
∫ t

t–τ (z(t))
α
(
αβ–1e–γ τm + ε

)
e–γ (t–ξ ) dξ

= α
(
αβ–1e–γ τm + ε

)
∫ t

t–τ (z(t))
e–γ (t–ξ ) dξ

= αγ –1(αβ–1e–γ τm + ε
)[

1 – e–γ τ (z(t))],

where ε > 0 is arbitrary. Thus we have

lim sup
t→∞

x(t) ≤ lim sup
t→∞

αγ –1(αβ–1e–γ τm + ε
)[

1 – e–γ τ (z(t))]

≤ αγ –1(αβ–1e–γ τm + ε
)(

1 – e–γ τM
)

= α2γ –1β–1e–γ τm
(
1 – e–γ τM

)
+ εαγ –1(1 – e–γ τM

)
.

Since ε is arbitrary, we get an upper bound on x(t).
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Similarly, we have for t ≥ T + τM that

x(t) ≥
∫ t

t–τ (z(t))
α
(
αβ–1e–γ τM – ε

)
e–γ (t–ξ ) dξ

= αγ –1(αβ–1e–γ τM – ε
)[

1 – e–γ τ (z(t))],

where ε > 0 is arbitrary. Then we obtain

lim inf
t→∞ x(t) ≥ lim inf

t→∞ αγ –1(αβ–1e–γ τM – ε
)[

1 – e–γ τ (z(t))]

≥ αγ –1(αβ–1e–γ τM – ε
)(

1 – e–γ τm
)

= α2γ –1β–1e–γ τM
(
1 – e–γ τm

)
– εαγ –1(1 – e–γ τm

)
.

Therefore, we get a lower bound on x(t) by the arbitrariness of ε. The proof is complete. �

Remark 5.1 In Theorem 5.6 of [14] and Theorem 5.4 of [28], one requires that τM < 2τm

for the lower bound to be positive. In fact, according to Theorem 5.3, we see that this
condition is not necessary.

6 Conclusions and discussions
In this paper, based on the biological observations that during World War II the matura-
tion time of seals and whales was not a fixed value, but depended on the total population
(immature and mature), starting with an age-structured model (2.1), we formulated and
analyzed a novel stage-structured model with state-dependent maturity delay.

Compared with the previous state-dependent delay equations (e.g., [5, 26, 28, 30]),
model (2.2) is not directly changing the constant delay τ into a state-dependent delay
τ (z(t)) but was obtained by reducing the age-structured population model, which has the
correction term 1 – τ ′(z(t))ż(t). Biologically speaking, model (2.2) is appropriate in terms
of population modeling. On the one hand, with the state-dependent maturity delay, the
changes in the number of mature individuals depend on reproduction and death and the
changing definition of maturity, which is in line with the correction term 1 – τ ′(z(t))ż(t).
On the other hand, we can represent x(t) in an integral form by some biological inductions,
namely

x(t) =
∫ t

t–τ (z(t))
αy(ξ )e–γ (t–ξ ) dξ .

Taking the derivatives of x(t), we obtain the first equation of model (2.2).
From a biological point of view, we show that t – τ (z(t)) should be a strictly increasing

function of t without any conditions and the derivative with respect to time of the state-
dependent maturity delay τ (z(t)) is strictly less than one. In addition, it is biologically rea-
sonable for the assumption of the delay τ (z(t)). The biological phenomenon mentioned
above, a non-decreasing delay, implies that a larger population leads to a longer develop-
mental duration, and it makes clear the stabilizing effect [15, 35].

Mathematically compared with [5, 28], first of all, the positivity and boundedness of
solutions are discussed, which do not need the stringent condition on τ ′(z(t)) to ensure
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the positivity of x. Then the existence and uniqueness of all equilibria are formulated,
which are different from the result of [5]. Besides, the nontrivial equilibrium E∗ is always
linearly stable without auxiliary conditions. Finally, we discuss some global properties of
the solutions of our model (2.2) and obtain explicit bounds for the eventual behaviors of
x(t) and y(t), which do not need the condition τM < 2τm for the lower bound of x(t).

Further research in this direction may consider more realistic complex models, for ex-
ample, a multi-stage structure population model with state-dependent delays and a multi-
population model with state-dependent delays.
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