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Abstract
Based on the locally one-dimensional strategy, we propose two high order finite
difference schemes for solving two-dimensional linear parabolic equations. In the first
method, fourth order approximation in space and (2, 2) Padé formula in time are
considered. These lead to a fourth order finite difference scheme in both space and
time. For the second method, we employ sixth order approximation in space and
(3, 3) Padé formula in time. This yields a novel sixth order scheme in both space and
time. The methods are proved to be unconditionally stable, and the Sheng–Suzuki
barrier is successfully avoided. Numerical experiments are given to illustrate our
conclusions as well as computational effectiveness.
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1 Introduction
Consider the following two-dimensional linear parabolic equation:

∂u
∂t

= a
(

∂2u
∂x2 +

∂2u
∂y2

)
, (x, y, t) ∈ � × [0, T], (1)

together with the initial condition

u(x, y, 0) = φ0(x, y)

and boundary conditions

u(0, y, t) = g0, u(1, y, t) = g1, u(x, 0, t) = d0, u(x, 1, t) = d1,

where � = [0, l]× [0, l] is a spatial domain and l is a positive real number. φ0 is a sufficiently
smooth function and g0, g1, d0, d1 are constants.

Many efforts have been made to the development of accurate and stable methods for the
numerical solution of (1) [1–19]. Various high order methods [1–4, 6–9, 11–19] have been
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proposed. Among them, splitting strategies including alternating direction implicit (ADI)
and locally one-dimensional (LOD) methods have been extensively explored for high or-
der difference schemes [4, 6–9, 11–17]. These methods are extremely efficient for solving
multi-dimensional equations by converting multi-dimensional equations to successions of
one-dimensional equations. Subsequently, only sequences of linear tri-diagonal systems
need to be solved.

Recently, Dai and Nassar [15], Karra [16], developed a high order ADI difference scheme
and a high order LOD difference scheme, respectively, for solving the two-dimensional
parabolic equations with Dirichlet boundary conditions. Zhao et al. [17] proposed two
sets of high order LOD difference schemes to solve the two- and three-dimensional heat
problems with Neumann boundary conditions. Qin [7] proposed a family of ADI meth-
ods for the three-dimensional nonhomogeneous parabolic equation. All these schemes
obtain fourth order accuracy in space, but only second order accuracy in time, since the
Crank–Nicolson implicit method is employed for time discretization. Very recently, a
semi-discrete method and Padé approximations or the Runge–Kutta methods were ex-
ploited to increase the temporal accuracy [19–24]. Vu and Alexander [19] developed a
series of explicit exponential Runge–Kutta methods of high order for parabolic prob-
lems. For the one-dimensional hyperbolic equation, Gao and Chi [20] used semi-discrete
method to transform it into a system consisting of ordinary differential equations with re-
spect to time, whose exact solution containing an infinite matrix series was approximated
by (1, 1) and (2, 2) Padé approximations. They obtained two schemes with third and fifth
order accuracy in time, respectively. Liu et al. [21] used a similar strategy, (2, 2) and (3, 3)
Padé approximations for the time discretization and C3 quartic spline approximation for
space discretization, to get two higher order difference schemes for the one-dimensional
linear hyperbolic equation. Zhang [23] provided a (3, 3) Padé approximation method for
solving space fractional Fokker–Planck equations. Liu et al. [25] developed a series of com-
pact implicit schemes of fourth and sixth orders for solving differential equations involved
in geodynamics simulations. And Liu et al. [26] proposed a sixth order accuracy solution
to a system of nonlinear differential equations with coupled compact method.

This paper targets at the development of two high order LOD finite difference schemes
for solving two-dimensional parabolic equations. Sheng–Suzuki accuracy barrier [27] is
avoided. To achieve high order accuracies in both time and space, we successfully combine
high order approximations in the spatial discretization with techniques of semi-discrete
and high order Padé approximations in the temporal discretization [20, 21, 23]. The out-
line of this paper is as follows: Sect. 2 presents two splitting methods for solving (1). Their
stabilities are analyzed in Sect. 3. Numerical verification is carried out in Sect. 4. Further
comments and conclusions are given in Sect. 5.

2 High order difference methods
We superimpose the space-time domain � × [0, T] by an N × N × M mesh, where N , M
are positive integers. Let h = l/N denote the step size of space and τ = T/M for step size
of time. We further define

xi = ih, yj = jh, i, j = 0, 1, 2, . . . , N , tk = kτ , k = 0, 1, 2, . . . , M.
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Applying an LOD strategy, we split Eq. (1) to the following one-dimensional equations
ideally:

1
2

∂u
∂t

= a
∂2u
∂x2 , (2)

1
2

∂u
∂t

= a
∂2u
∂y2 . (3)

To advance the solution from tk to tk+1, we assume that Eq. (2) holds from tk to tk+ 1
2 , and

Eq. (3) holds from tk+ 1
2 to tk+1, respectively. We will investigate several high order semi-

discretization methodologies for dealing with (2) and (3), respectively.

2.1 O(τ 4 + h4) finite difference method
Firstly, we build the fourth order scheme in space for Eq. (2). To this end, we employ a
fourth order compact formula in [28] to discrete the second spatial derivative in x:

(
∂2u
∂x2

)
ij

=
(

1 +
h2

12
δ2

x

)–1

δ2
x uij + O

(
h4), (4)

where δ2
x is the second order central difference operator in the x-direction, which is defined

as δ2
x uij = (ui+1j –2uij +ui–1j)/h2. Substituting Eq. (4) into Eq. (2) and dropping the truncated

error O(h4), we acquire the following relation:

1
24

(
∂u
∂t

)
i+1,j

+
5

12

(
∂u
∂t

)
i,j

+
1

24

(
∂u
∂t

)
i–1,j

=
a
h2 ui+1,j –

2a
h2 ui,j +

a
h2 ui–1,j. (5)

This semi-discrete scheme is of fourth order accuracy in space. Consider the initial and
boundary conditions. The above can be rewritten into the following:

⎧⎨
⎩

A dU(t)
dt = BU(t) + G,

U(0) = φ0,
(6)

which is a system of ordinary differential equations with an unknown function at each
spatial grid point, where U(t) = [u1j, u2j, . . . , uN–1j]T , G = a

h2 [g0, 0, . . . , 0, g1]T , j = 1, 2, . . . , N –
1, and the matrices A and B of order N – 1 are given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

5
12

1
24

1
24

5
12

1
24

. . . . . . . . .
1

24
5

12
1

24
1

24
5

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(N–1)×(N–1)
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and

B =
a2

h2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

–2 1
1 –2 1

. . . . . . . . .
1 –2 1

1 –2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(N–1)×(N–1)

,

Eq. (6) can be comprised to

⎧⎨
⎩

dU(t)
dt = A–1BU(t) + A–1G,

U(0) = φ0.
(7)

The exact solution to (7) is

U(t) = –B–1G + etA–1B[
U(0) + B–1G

]
. (8)

Discretizing Eq. (8) in temporal variable t, we get

U
(
tk+ 1

2
)

= –B–1G + e(k+ 1
2 )τA–1B[

U(0) + B–1G
]
. (9)

After rearranging the above, we arrive at

U
(
tk+ 1

2
)

= –B–1G + e
τ
2 A–1B[

ekτA–1BU(0) + ekτA–1BB–1G
]
. (10)

Namely

U
(
tk+ 1

2
)

=
(
e

τ
2 A–1B – I

)
B–1G + e

τ
2 A–1BU(tk), (11)

where I is an identify matrix of order N – 1. Now, approximate e τ
2 A–1B to get the numerical

solution of fourth order in time is the key issue. The (2, 2) Padé approximation [29] is an
efficient approximation to eZ of fourth order, i.e.,

eZ =
(
12 – 6Z + Z2)–1(12 + 6Z + Z2) + O

(
Z4). (12)

Replacing the e τ
2 A–1B by the (2, 2) Padé approximation, we get

e
τ
2 A–1B =

[
12 – 3τA–1B +

(
τ

2
A–1B

)2]–1[
12 + 3τA–1B +

(
τ

2
A–1B

)2]
. (13)

Substituting Eq. (13) into Eq. (11), we acquire the following difference scheme:

U
(
tk+ 1

2
)

=
{[

12 – 3τA–1B +
(

τ

2
A–1B

)2]–1[
12 + 3τA–1B +

(
τ

2
A–1B

)2]
– I

}
B–1G

+
{[

12 – 3τA–1B +
(

τ

2
A–1B

)2]–1[
12 + 3τA–1B +

(
τ

2
A–1B

)2]}

× U
(
tk). (14)
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This recurrence relation is used to calculate U from tk to tk+ 1
2 . We can easily find that

Eq. (14) gets fourth order accuracy in both time and space. A similar approach is used to
tackle Eq. (3) to obtain a recurrence relation which can calculate from tk+ 1

2 to tk+1. Fourth
order approximation for the second spatial derivative of y is given by

(
∂2u
∂y2

)
ij

=
(

1 +
h2

12
δ2

y

)–1

δ2
y uij + O

(
h4), (15)

where δ2
y is the second order central difference operator in the y-direction which is defined

as δ2
y uij = (uij+1 – 2uij + uij–1)/h2. Substituting Eq. (15) into Eq. (3) and dropping the trun-

cated errors O(h4), we obtain the following semi-discrete scheme of fourth order accuracy
in space:

1
24

(
∂u
∂t

)
i,j+1

+
5

12

(
∂u
∂t

)
i,j

+
1

24

(
∂u
∂t

)
i,j–1

=
a
h2 ui,j+1 –

2a
h2 ui,j +

a
h2 ui,j–1. (16)

Consider the initial and boundary conditions, they can be rewritten as a system of ordinary
differential equations:

⎧⎨
⎩

dU(t)
dt = A–1BU(t) + A–1F ,

U(k + 1
2 ) = φk+ 1

2
,

(17)

where U(t) = [ui1, ui2, . . . , uiN–1]T , F = a
h2 [d0, 0, . . . , 0, d1]T , i = 1, 2, . . . , N – 1, and the matri-

ces A and B are defined as before. The exact solution of Eq. (17) is

U(t) = –B–1F + etA–1B
[

U
(

k +
1
2

)
+ B–1F

]
. (18)

We discretize Eq. (18) in time and receive

U
(
tk+1) = –B–1F + e(k+1)τA–1B

[
U

(
k +

1
2

)
+ B–1F

]
. (19)

Rearranging Eq. (19) leads to

U
(
tk+1) =

(
e

τ
2 A–1B – I

)
B–1F + e

τ
2 A–1BU

(
tk+ 1

2
)
. (20)

Replacing the e τ
2 A–1B by the (2, 2) Padé approximation, we obtain

U
(
tk+1) =

{[
12 – 3τA–1B +

(
τ

2
A–1B

)2]–1[
12 + 3τA–1B +

(
τ

2
A–1B

)2]
– I

}
B–1F

+
{[

12 – 3τA–1B +
(

τ

2
A–1B

)2]–1[
12 + 3τA–1B +

(
τ

2
A–1B

)2]}

× U
(
tk+ 1

2
)
. (21)
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Combining Eq. (14) with Eq. (21), we obtain a fourth-order difference scheme in both time
and space for solving Eq. (1) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(tk+ 1
2 ) = {[12 – 3τA–1B + ( τ

2 A–1B)2]–1

× [12 + 3τA–1B + ( τ
2 A–1B)2] – I}B–1G

+ {[12 – 3τA–1B + ( τ
2 A–1B)2]–1

× [12 + 3τA–1B + ( τ
2 A–1B)2]}U(tk),

U(tk+1) = {[12 – 3τA–1B + ( τ
2 A–1B)2]–1

× [12 + 3τA–1B + ( τ
2 A–1B)2] – I}B–1F

+ {[12 – 3τA–1B + ( τ
2 A–1B)2]–1

× [12 + 3τA–1B + ( τ
2 A–1B)2]}U(tk+ 1

2 ).

(22)

Applying Eq. (22), we may complete the entire calculation from tk to tk+1. Due to the use
of fourth order scheme for discretizing the space variables and (2, 2) Padé approximation
for the temporal variable, it is not difficult to find that equations in (22) are of fourth order
accuracy in both time and space.

2.2 O(τ 6 + h6) finite difference method
In [2], the authors presented a sixth order approximation for the second order derivative
together with the constant boundary conditions. To this end, we have

a
(

u0 – 2u1 + u2

h2

)

=
1
2

d
dt

(
3

32
u0 +

121
150

u1 +
127

1200
u2 –

1
150

u3 +
1

2400
u4

)
+ O

(
h6), (23)

a
(

ui–1 – 2ui + ui+1

h2

)

=
1
2

d
dt

(
–

1
240

ui–2 +
1

10
ui–1 +

97
120

ui +
1

10
ui+1 –

1
240

ui+2

)
+ O

(
h6)

for i = 2, 3, 4, . . . , N – 2 (24)

and

a
(

uN–2 – 2uN–1 + uN

h2

)

=
1
2

d
dt

(
3

32
uN –

121
150

uN–1 +
127

1200
uN–2 –

1
150

uN–3 +
1

2400
uN–4

)
+ O

(
h6). (25)

Based on the above, we discrete the second order spatial derivative of x in Eq. (2). This
gives the following system of ordinary differential equations:

⎧⎨
⎩

C dU(t)
dt = BU(t) + P,

U(0) = φ0.
(26)
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Matrix B is defined as before. And matrix C is defined as follows:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

121
300

127
2400 – 1

300
1

4800
1

20
97

240
1

20 – 1
480

– 1
480

1
20

97
240

1
20 – 1

480
. . . . . . . . . . . . . . .

– 1
480

1
20

97
240

1
20 – 1

480

– 1
480

1
20

97
240

1
20

1
4800 – 1

300
127

2400
121
300

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(N–1)×(N–1)

,

where U(t) = [u1j, u2j, . . . , uN–1j]T , P = a
h2 [g0, 0, . . . , 0, g1]T , and j = 1, 2, . . . , N – 1. The exact

solution to the system of ordinary differential equations can be formed as follows:

U(t) = –B–1g + etC–1B[
U(0) + B–1P

]
. (27)

We discretize Eq. (27) in time and rearrange it, we obtain

U
(
tk+ 1

2
)

=
(
e

τ
2 C–1B – I

)
B–1P + e

τ
2 C–1BU(tk). (28)

The (3, 3) Padé approximation [29] is employed to get sixth order accuracy for temporal
variable

eZ =
(
120 – 60Z + 12Z2 – Z3)–1(120 + 60Z + 12Z2 + Z3) + O

(
Z6). (29)

So e τ
2 C–1B can be written as

e
τ
2 C–1B =

[
120 – 30τC–1B + 3

(
τC–1B

)2 –
(

τ

2
C–1B

)3]–1

×
[

120 + 30τC–1B + 3
(
τC–1B

)2 +
(

τ

2
C–1B

)3]
. (30)

Substituting Eq. (30) into Eq. (28) and rearranging it, we gain

U
(
tk+ 1

2
)

=
{[

120 – 30τC–1B + 4
(
τC–1B

)2 –
(

τ

2
C–1B

)3]–1

×
[

120 + 30τC–1B + 3
(
τC–1B

)2 +
(

τ

2
C–1B

)3]
– I

}
B–1P

+
{[

120 – 30τC–1B + 4
(
τC–1B

)2 –
(

τ

2
C–1B

)3]–1

×
[

120 + 30τC–1B + 3
(
τC–1B

)2 +
(

τ

2
C–1B

)3]}
U

(
tk). (31)

Similarly, combining the O(h6) approximation method for discretizing the space variable
with y the (3, 3) Padé approximation for discretizing the temporal variable t to solve Eq. (3),
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we can get a recurrence relation which can accomplish the calculation from tk+ 1
2 to tk+1,

i.e.,

U
(
tk+1) =

{[
120 – 30τC–1B + 3

(
τC–1B

)2 –
(

τ

2
C–1B

)3]–1

×
[

120 + 30τC–1B + 3
(
τC–1B

)2 +
(

τ

2
C–1B

)3]
– I

}
B–1Q

+
{[

120 – 30τC–1B + 3
(
τC–1B

)2 –
(

τ

2
C–1B

)3]–1

×
[

120 + 30τC–1B + 3
(
τC–1B

)2 +
(

τ

2
C–1B

)3]}
U

(
tk+ 1

2
)
. (32)

The matrices B and C are defined as before, and the vector Q can be easily got. To achieve
recurrence calculation from tk to tk+1, combining Eq. (31) with Eq. (32), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(tk+ 1
2 ) = {[120 – 30τC–1B + 3(τC–1B)2 – ( τ

2 C–1B)3]–1

× [120 + 30τC–1B + 3(τC–1B)2 + ( τ
2 C–1B)3] – I}B–1P

+ {[120 – 30τC–1B + 3(τC–1B)2 – ( τ
2 C–1B)3]–1

× [120 + 30τC–1B + 3(τC–1B)2 + ( τ
2 C–1B)3]}U(tk),

U(tk+1) = {[120 – 30τC–1B + 3(τC–1B)2 – ( τ
2 C–1B)3]–1

× [120 + 30τC–1B + 3(τC–1B)2 + ( τ
2 C–1B)3] – I}B–1Q

+ {[120 – 30τC–1B + 3(τC–1B)2 – ( τ
2 C–1B)3]–1

× [120 + 30τC–1B + 3(τC–1B)2 + ( τ
2 C–1B)3]}U(tk+ 1

2 ).

(33)

Because of the use of the O(h6) approximation method in space and the (3, 3) Padé ap-
proximation in time, it is easy to see local truncation errors of the two equations in (33)
to be O(τ 6 + h6).

3 Stability and convergence analysis
Proposition 1 Assume that λ is an eigenvalue of matrix A–1B, and �x, a vector of dimension
N – 1, is a corresponding eigenvector. Then λ is real, and furthermore, λ ≤ 0.

Proof Let λ and x be eigenvalues and corresponding eigenvector of matrix A–1B, respec-
tively. They satisfy the following condition:

A–1B�x = λ�x

or

�xT B�x = λ�xT A�x.

Since

�xT B�x = –2
a2

h2

(
x2

1 + x2
2 + · · · + x2

N–1 – x1x2 – · · · – xN–2xN–1
)

= –
a2

h2

[
x2

1 + x2
N–1 + (x1 – x2)2 + (x2 – x3)2 + · · · (xN–2 – xN–1)2],
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hence

�xT B�x < 0

and

�xT A�x =
5

12
(
x2

1 + x2
2 + · · · + x2

N–1
)

+
1

12
(x1x2 + x2x3 + · · · + xN–2xN–1)

=
1
8
(
x2

1 + x2
N–1

)
+

1
12

(
x2

2 + x2
3 + · · · + x2

N–2
)

+
1

24
[
(x1 + x2)2 + (x2 + x3)2 · · · + (xN–2 + xN–1)2]

+
1
4
(
x2

1 + x2
2 + x2

3 + · · · + x2
N–2 + x2

N–1
)
.

Hence

�xT A�x > 0.

The above two results indicate that λ is real and λ ≤ 0. �

Proposition 2 Assume that μ is an eigenvalue of matrix C–1B, and �x, a vector of dimension
N – 1, is a corresponding eigenvector. Then μ is real and satisfies μ ≤ 0.

Proof For matrix C, we get

�xT C�x =
121
300

x2
1 +

127
2400

x1x2 –
1

300
x1x3 +

1
4800

x1x4 +
1

20
x1x2 +

97
240

x2

+
1

20
x2x3 –

1
480

x2x4 –
1

480
x1x3 +

1
20

x2x3 +
97

240
x2

3 +
1

20
x3x4

–
1

480
x3x5 –

1
480

x2x4 +
1

20
x3x4 +

97
240

x2
4 +

1
20

x4x5 –
1

480
x4x6

+ · · · –
1

480
xN–5xN–3 +

1
20

xN–4xN–3 +
97

240
x2

N–3 +
1

20
xN–3xN–2

–
1

480
xN–3xN–1 –

1
480

xN–4xN–2 +
1

20
xN–3xN–2 +

97
240

x2
N–2

+
1

20
xN–2xN–1 +

1
4800

xN–4xN–1 –
1

300
xN–3xN–1 +

127
2400

xN–2xN–1

+
121
300

x2
N–1.

Applying the inequalities

2xy ≥ –x2 – y2

and

2xy ≤ x2 + y2,
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we obtain

�xT C�x ≥
[

121
300

–
1
2

(
127

2400
+

1
4800

+
1

20

)
+

1
2

(
–

1
300

–
1

480

)]
x2

1

+
[

97
240

–
1
2

(
127

2400
+

3
20

)
–

1
2

× 2
480

]
x2

2

+
[

97
240

–
1
2

× 4
20

+
1
2

(
–

3
480

–
1

300

)]
x2

3

+
[

97
240

–
1
2

(
4

20
+

1
4800

)
–

1
2

× 4
480

]
x2

4 +
N–5∑
i=5

(
97

240
–

4
20

–
4

480

)
x2

i

+
[

97
240

–
1
2

(
4

20
+

1
4800

)
–

1
2

× 4
480

]
x2

N–4

+
[

97
240

–
1
2

× 4
20

+
1
2

(
–

3
480

–
1

300

)]
x2

N–3

+
[

97
240

–
1
2

(
127

2400
+

3
20

)
–

1
2

× 2
480

]
x2

N–2

+
[

121
300

–
1
2

(
127

2400
+

1
4800

+
1

20

)

+
1
2

(
–

1
300

–
1

480

)]
x2

N–1 > 0,

and we also have proved that �xT B�x < 0. According to the two results, we obtain that the
eigenvalue μ of matrix C–1B is real and satisfies μ ≤ 0. �

Theorem 1 Finite difference schemes (22) and (33) are unconditionally stable, respectively.

Proof Let λi (i = 1, 2, . . . , N – 1) be eigenvalues of matrix A–1B, then

12 + 3τλi + ( τ
2 λi)2

12 – 3τλi + ( τ
2 λi)2 ≤ 1,

and thus

ρ(H1) = max
i

[12 + 3τλi + ( τ
2 λi)2

12 – 3τλi + ( τ
2 λi)2

]
≤ 1.

Let μi (i = 1, 2, . . . , N – 1) be eigenvalues of matrix C–1B, then

120 + 30τμi + 3(τμi)2 + ( τ
2 μi)3

120 – 30τμi + 3(τμi)2 – ( τ
2 μi)3 ≤ 1,

we get

ρ(H2) = max
i

[120 + 30τμi + 3(τμi)2 + ( τ
2 μi)3

120 – 30τμi + 3(τμi)2 – ( τ
2 μi)3

]
≤ 1,
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where

H1 =
[

12 – 3τA–1B +
(

τ

2
A–1B

)2]–1[
12 + 3τA–1B +

(
τ

2
A–1B

)2]
,

H2 =
[

120 – 30τC–1B + 3
(
τC–1B

)2 –
(

τ

2
C–1B

)3]–1

×
[

120 + 30τC–1B + 3
(
τC–1B

)2 +
(

τ

2
C–1B

)3]
,

ρ(H1) and ρ(H2) are the spectral radii of H1 and H2, respectively. This shows that the new
developed schemes (22) and (33) are unconditionally stable bypassing the accuracy barrier
theorem [27]. �

Theorem 2 Difference schemes (22) and (33) are unconditionally convergent, respectively.

Proof From the derivation process of the schemes, it is readily seen that local truncation
errors of (22) and (33) are O(τ 4 + h4) and O(τ 6 + h6), respectively. So, they are consistent
with the initial-boundary problem considered. And in Theorem 1, we have proved that
the two schemes are unconditionally stable, therefore we can naturally declare that the
difference schemes (22) and (33) are unconditionally convergent by the Lax equivalence
theorem [30] regardless of the Courant number. �

4 Numerical experiments
In this section, we consider two problems whose exact solutions are given to numeri-
cally illustrate the validity and effectiveness of our schemes as compared with those of the
Peaceman–Rachford (P–R) method [11]. All computations are completed on a P4/2.4G
private computer using double precision arithmetic.

We estimate the rate of convergence of each method through the asymptotic formula

Rate =
log(Error(h1)/ Error(h2))

log(h1/h2)
,

in which Error(h1) and Error(h2) are L2-norm errors based on different mesh sizes h = h1

and h = h2, respectively.

Problem 1

∂u
∂t

=
∂2u
∂x2 +

∂2u
∂y2 , 0 ≤ x, y ≤ 1, t > 0,

together with proper initial-boundary conditions. The exact solution of this problem is

u(x, y, t) = e–2π2t sin(πx) sin(πy).

Table 1 gives the L2-norm errors (Error) and the convergence rate (Rate) by using scheme
(22), scheme (33), and the P–R scheme with h = τ = 1/10, 1/20, 1/30, 1/40 at T = 1. The
data in Table 1 show that scheme (22) and scheme (33) have overall fourth order and sixth
order accuracy, respectively.
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Table 1 L2-norm error and convergence rate for Problem 1 with h = τ at T = 1

h P–R scheme Fourth order scheme (22) Sixth order scheme (33)

Error Rate Error Rate Error Rate

1/10 1.09(–9) 3.84(–11) 2.39(–13)
1/20 4.16(–10) 1.39 2.28(–12) 4.07 3.62(–15) 6.04
1/30 2.01(–10) 1.79 4.46(–13) 4.02 3.15(–16) 6.02
1/40 1.16(–10) 1.91 1.41(–13) 4.00 5.55(–17) 6.04

Table 2 L2-error and convergence rate for Problem 1 with h = 0.02 at T = 1

τ P–R scheme Fourth order scheme (22) Sixth order scheme (33)

Error Rate Error Rate Error Rate

1/10 7.89(–9) 3.37(–11) 2.51(–13)
1/20 1.16(–9) 2.76 2.21(–12) 3.93 3.83(–15) 6.03
1/30 4.00(–10) 2.62 4.34(–13) 4.01 3.48(–16) 5.92
1/40 1.93(–10) 2.53 1.38(–13) 3.98 5.77(–17) 6.25

Table 3 L2-error and convergence rate for Problem 1 with τ = 0.001 at T = 1

h P–R scheme Fourth order scheme (22) Sixth order scheme (33)

Error Rate Error Rate Error Rate

1/10 2.39(–10) 1.08(–12) 1.26(–14)
1/20 5.62(–11) 2.09 6.70(–14) 4.01 2.02(–16) 5.96
1/30 2.46(–11) 2.04 1.32(–14) 4.00 1.78(–17) 5.99
1/40 1.37(–11) 2.03 4.19(–15) 3.99 3.16(–18) 6.00

To verify the accuracy in time, we fix spatial grid size h = 0.02 and decrease the temporal
sizes from 1/10 to 1/40 in Table 2. It shows that scheme (22) and scheme (33) achieve the
expected fourth order and sixth order accuracy in time, respectively. Table 3 shows the L2-
norm error at T = 1 when we fix temporal grid size τ = 0.001 and decrease the spatial grid
sizes from 1/10 to 1/40. The results in Table 3 confirm that scheme (22) and scheme (33)
are fourth order and sixth order accuracy in space, respectively. These computed results
are in full agreement with the theoretical accuracy order. Figure 1 depicts the absolute
error obtained from scheme (22) and scheme (33) with h = τ = 1/20 at T = 1. It indicates
that the present schemes indeed achieve a very high accuracy on comparably coarse mesh,
as compared to conventional P–R splitting methods.

Problem 2

∂u
∂t

=
1

17π2

(
∂2u
∂x2 +

∂2u
∂y2

)
, 0 ≤ x, y ≤ 4, t > 0.

The exact solution of this problem is

u(x, y, t) = e–t sin(4πx) sin(πy).

We design this problem to let the solution u change much faster in x direction than in y
direction. To evaluate the overall convergence rate of the present two schemes for solving
Problem 2, we choose h = τ = 1/10, 1/20, 1/30, 1/40 at T = 1 in Table 4. The data show that
the present scheme (22) has an overall fourth order convergence rate and scheme (33) has
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Figure 1 The exact solution (a), the absolute error obtained from P–R scheme (b), present fourth order
scheme (c), and present sixth order scheme (d), with h = τ = 1/20 at T = 1, Problem 1

Table 4 L2-norm error and convergence rate for Problem 2 with h = τ at T = 1

h P–R scheme Fourth order scheme (22) Sixth order scheme (33)

Error Rate Error Rate Error Rate

1/10 1.08(–2) 7.36(–3) 1.31(–3)
1/20 1.08(–2) 0.00 4.57(–4) 4.01 2.15(–5) 5.92
1/30 5.03(–3) 1.88 8.95(–5) 4.02 1.91(–6) 5.97
1/40 2.84(–3) 1.99 2.82(–5) 4.01 3.40(–7) 5.99

Table 5 L2-norm error for Problem 2 with τ = 0.2 at T = 1

h r = τ /h P–R scheme Fourth order scheme (22) Sixth order scheme (33)

Error Error Error

1/40 8 1.85(–3) 2.94(–5) 3.39(–7)
1/80 16 3.07(–4) 2.97(–6) 5.02(–9)
1/160 32 8.47(–4) 1.32(–7) 1.46(–10)

an overall sixth order convergence rate. In order to verify the unconditional stability and
unconditional convergence of the present methods, we choose the different mesh ratios r,
which is defined as r = τ /h at T = 1 in Table 5. It is easy to observe that the present methods
are unconditionally stable. The exact solution and the absolute error obtained from the P–
R scheme, the fourth order scheme, and the sixth order scheme with h = τ = 1/20 at T = 1
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Figure 2 The exact solution (a), the absolute error obtained from P–R scheme (b), present fourth order
scheme (c), and present sixth order scheme (d), with h = τ = 1/20 at T = 1, Problem 2

are plotted in Fig. 2 for Problem 2. It shows that our splitting methods can still produce
very accurate solution via significantly coarse grid in the situation bypassing the accuracy
barrier successfully.

5 Conclusion
In this paper, we propose two types of high order splitting finite difference schemes for
solving the two-dimensional parabolic equation. Based on the LOD strategy, we separate
the two-dimensional equation into two one-dimensional equations to construct the new
schemes. Traditional splitting accuracy barrier is bypassed naturally. Semi-discretized for-
mulas are utilized to get high order finite difference schemes without any influence of
Courant numbers. We apply the fourth order and the sixth order approximation to dis-
crete the spatial variables, (2, 2) Padé and (3, 3) Padé approximation to discrete the tem-
poral variable, respectively. We obtain two splitting schemes being fourth order and sixth
order accuracy in both time and space, respectively. By rigorous matrix analysis, we show
that all finite difference schemes involved are unconditionally stable. Two testing experi-
ments are carried out to demonstrate the high accuracies and efficiencies of our new LOD
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schemes. It is worthy of being pointed out that the present methods can be straightfor-
wardly extended to the three, or more, dimensional linear parabolic equations. Higher
order and stable splitting methods can also be constructed in similar ways. We plan to
report results from forthcoming research in this aspect in the near future.

Appendix
A sixth order finite difference for the one-dimensional steady diffusion equation

∂2u
∂x2 = f (x), 0 < x < 1

with the boundary condition

u(0) = α, u(1) = β .

Let h = 1
N denote the step size of space, and define xi = ih, i = 0, 1, 2, . . . , N . Based on Tay-

lor’s series expansion of continuous functions, we get

f ′′(xi)h2 =
–fi–2 + 16fi–1 – 30fi + 16fi+1 – fi+2

12
+ O

(
h6).

For i = 2, 3, . . . , N – 1, we obtained

ui–1 – 2ui + ui+1

h2 =
1

30
(fi–1 + 28fi + fi+1) +

1
20

f ′′(xi)h2 + O
(
h6)

=
1

30
(fi–1 + 28fi + fi+1) +

–fi–2 + 16fi–1 – 30fi + 16fi+1 – fi+2

240
+ O

(
h6)

= –
1

240
fi–2 +

1
10

fi–1 +
97

120
fi +

1
10

fi –
1

240
fi+2 + O

(
h6).

At the grid point 1, the sixth order formula is expressed as follows:

u0 – 2u1 + u2

h2 =
1

30
(f2 + 28f1 + f0) +

1
20

[
6
5
(
f0 – 2f1 + f2 –

h2

10
(
f ′′(x0) + f ′′(x2)

))]

+ O
(
h6)

=
(

1
30

+
3

50

)
f0 +

(
28
30

–
3

25

)
f1 +

(
1

30
+

3
50

)
f2 –

h2

200
f ′′(x0)

–
h2

200
f ′′(x2) + O

(
h6)

=
(

1
30

+
3

50
+

1
2400

)
f0 +

(
28
30

–
3

25
–

16
2400

)
f1

+
(

1
30

+
3

50
+

30
2400

)
f2 –

16
2400

f3 +
1

2400
f4 –

h2

200
f ′′(x0) + O

(
h6)

=
3

32
f0 +

121
150

f1 +
127

1200
f2 –

1
150

f3 +
1

2400
f4 –

h2

200
f ′′(x0) + O

(
h6).
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Similarly, we can construct the sixth order formula at grid point N – 1:

uN–2 – 2uN–1 + uN

h2 =
3

32
fN –

121
150

fN–1 +
127

1200
fN–2 –

1
150

fN–3

+
1

2400
fN–4 –

h2

200
f ′′(xN ) + O

(
h6).

We can see more details in Ref. [2]. For the sake of completeness, we repeated the above
deduction here.
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