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Abstract
In this paper, we study a new boundary value problem of arbitrary order fractional
differential equations equipped with new integro-multipoint boundary conditions.
Existence and uniqueness results for the given problem are obtained by applying the
standard tools of fixed point theory. We also extend the problem at hand to its
inclusions case and prove an existence result for it by applying a fixed point theorem
due to Bohnenblust and Karlin.
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1 Introduction
Fractional calculus is a branch of mathematical analysis that deals with the derivatives and
integrals of arbitrary (non-integer) order. In fact fractional calculus has developed into an
important field of research during the last few decades in view of its widespread applica-
tions in a variety of disciplines such as physics, chemistry, biology, biophysics, blood flow
phenomena, control theory, wave propagation, signal and image processing, viscoelastic-
ity, financial mathematics, economics, etc. For theoretical background of the subject, we
refer the reader to the texts [1–4], while the application of fractional calculus can be found,
for instance, in [5–12]. An interesting feature of fractional-order operators is their nonlo-
cal nature that accounts for hereditary characteristics of many materials and processes in
contrast to the corresponding integer-order differential operators. Nowadays, fractional
derivatives appear naturally in the mathematical modeling of dynamical systems involving
fractals and chaos.

Boundary value problems of fractional-order differential equations and inclusions sup-
plemented with different types of boundary conditions have recently been investigated
by many researchers. Examples include classical, nonlocal, multi-point, periodic/anti-
periodic, and integral boundary conditions. The literature on the topic is now much en-
riched, and it contains a wide variety of results ranging from existence and uniqueness
theory to the analytic and numerical methods for solving such problems. Here, it is im-
perative to mention that nonlocal conditions [13, 14] are found to be more practical than

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1827-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1827-0&domain=pdf
http://orcid.org/0000-0003-3452-8922
mailto:aalsaedi@hotmail.com


Salem et al. Advances in Difference Equations        (2018) 2018:395 Page 2 of 19

the classical initial/boundary conditions in view of their ability to describe some peculiar-
ities of physical, chemical or other processes happening inside the domain. In the study
of blood flow problems, it is not always possible to assume the circular channels. To over-
come this issue, integral boundary conditions [15] provide an efficient approach and make
it possible to consider channels of arbitrary shape. Such conditions also play an important
role in the study of mathematical models for bacterial self-regularization [16] as these con-
ditions help to regularize ill-posed parabolic backward problems in time partial differen-
tial equations. Some recent work on the topic can be found in a series of papers [17–37]
and the references cited therein.

Motivated by recent works on nonlocal fractional order boundary value problems, we
investigate the existence and uniqueness of solutions for the following arbitrary order dif-
ferential equation:

cDqx(t) = f
(
t, x(t)

)
, 0 < t < 1, m – 1 < q ≤ m, m ≥ 2, m ∈ N , (1.1)

supplemented with a new type of integro-multipoint boundary conditions of the form:

⎧
⎨

⎩

∫ 1
0 x(s) ds =

∑p
j=1 βjx(σj), x′(0) = 0, x′′(0) = 0, . . . , x(m–2)(0) = 0,

a1x(1) + a2
cDq–1x(1) =

∑n–2
i=1 αi

∫ ηi
ξi

x(s) ds,
(1.2)

where cDq denotes the Caputo fractional derivative of order q, f is a given continuous
function, 0 < σ1 < σ2 < · · · < σp–1 < σp < ξ1 < η1 < · · · < ξn–2 < ηn–2 < 1 and αi, βj, a1, a2 ∈ R,
i = 1, 2, . . . , (n – 2), j = 1, 2, . . . , p.

The rest of the paper is organized as follows. Section 2 contains the basic concepts of
fractional calculus and an auxiliary lemma. In Sect. 3, we present the existence and unique-
ness results for problem (1.1)–(1.2), while Sect. 4 illustrates the results obtained in Sect. 3
with the aid of examples. The classical boundary conditions case of problem (1.1)–(1.2) is
discussed in Sect. 5. In the final section, we prove an existence result for the multi-valued
analogue of problem (1.1)–(1.2).

2 Preliminaries
Before presenting some auxiliary results, let us recall some preliminary concepts of frac-
tional calculus [1, 3].

Definition 2.1 Let g be a locally integrable real-valued function on –∞ ≤ a < t < b ≤ +∞.
The Riemann–Liouville fractional integral Iα

a of order α ∈R (α > 0) is defined as

Iα
a g(t) = (g ∗ Kα)(t) =

1
�(α)

∫ t

a
(t – s)α–1g(s) ds,

where Kα(t) = tα–1

�(α) , � denotes the Euler gamma function.

Definition 2.2 Let g ∈ L1[a, b], –∞ ≤ a < t < b ≤ +∞ and g ∗ Km–α ∈ W m,1[a, b], m =
[α] + 1, α > 0, where W m,1[a, b] is the Sobolev space defined as

W m,1[a, b] =
{

g ∈ L1[a, b] :
dm

dtm g ∈ L1[a, b]
}

.
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The Riemann–Liouville fractional derivative Dα
a of order α > 0 (m – 1 < α < m, m ∈ N) is

defined as

Dα
a g(t) =

dm

dtm I1–α
a g(t) =

1
�(m – α)

dm

dtm

∫ t

a
(t – s)m–1–αg(s) ds.

Definition 2.3 Let g ∈ L1[a, b], –∞ ≤ a < t < b ≤ +∞ and g ∗ Km–α ∈ W m,1[a, b], m = [α],
α > 0. The Caputo fractional derivative cDα

a of order α ∈ R (m – 1 < α < m, m ∈ N) is
defined as

cDα
a g(t) = Dα

a

[
g(t) – g(a) – g ′(a)

(t – a)
1!

– · · · – g(m–1)(a)
(t – a)m–1

(m – 1)!

]
.

Remark 2.4 If g ∈ Cm[a, b], then the Caputo fractional derivative cDα
a of order α ∈R (m –

1 < α < m, m ∈N) is defined as

cDα
a [g](t) = I1–α

a g(m)(t) =
1

�(m – α)

∫ t

a
(t – s)m–1–αg(m)(s) ds.

In the sequel, the Riemann–Liouville fractional integral Iα
a and the Caputo fractional

derivative cDα
a with a = 0 are respectively denoted by Iα and cDα .

Definition 2.5 A function x ∈ Cm[0, 1] satisfying problem (1.1)–(1.2) is called its solution
on [0, 1].

Relative to the linear variant of problem (1.1)–(1.2), we consider the following lemma.

Lemma 2.6 Let g ∈ C(0, 1) ∩ L(0, 1) and � = A2A3 – A1A4 	= 0. Then the solution of the
linear fractional differential equation cDqx(t) = g(t), m – 1 < q ≤ m, supplemented with the
boundary conditions (1.2) is given by

x(t) =
∫ t

0

(t – s)q–1

�(q)
g(s) ds – λ1(t)

[ n–2∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
g(u) du

)
ds

– a1

∫ 1

0

(1 – s)q–1

�(q)
g(s) ds – a2

∫ 1

0
g(s) ds

]

– λ2(t)

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
g(u) du

)
ds –

p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
g(s) ds

]

, (2.1)

where

λ1(t) =
A2 – A1tm–1

�
, λ2(t) =

A4 – A3tm–1

�
,

A1 = 1 –
p∑

j=1

βj, A2 =
1
m

–
p∑

j=1

βjσ
m–1
j ,

A3 =
n–2∑

i=1

αi(ηi – ξi) – a1, A4 =
n–2∑

i=1

αi
ηm

i – ξm
i

m
–

(
a1 + a2

(m – 1)!
�(m – q + 1)

)
.

(2.2)
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Proof It is well known that the general solution of the fractional differential equation
cDqx(t) = g(t), m – 1 < q ≤ m, can be written as

x(t) =
∫ t

0

(t – s)q–1

�(q)
g(s) ds – c0 – c1t – · · · – cm–2tm–2 – cm–1tm–1, (2.3)

where c0, c1, c2, . . . , cm–1 are unknown arbitrary constants. Using the boundary conditions
x′(0) = 0, . . . , x(m–2)(0) = 0 in (2.3), we get c1 = 0, . . . , cm–2 = 0. Thus (2.3) takes the form

x(t) =
∫ t

0

(t – s)q–1

�(q)
g(s) ds – c0 – cm–1tm–1. (2.4)

Making use of the first and last conditions of (1.2) in (2.4), we find a system of algebraic
equations in c0 and cm–1 given by

⎧
⎨

⎩
A1c0 + A2cm–1 = φ1,

A3c0 + A4cm–1 = φ2,
(2.5)

where A1, A2, A3, A4 are given by (2.2), and

φ1 =
∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
g(u) du

)
ds –

p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
g(s) ds,

φ2 =
n–2∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
g(u) du

)
ds – a1

∫ 1

0

(1 – s)q–1

�(q)
g(s) ds – a2

∫ 1

0
g(s) ds.

Solving system (2.5) for c0 and cm–1 together with notations (2.2), we get

c0 =
1
�

(A2φ2 – φ1A4), cm–1 =
1
�

(A3φ1 – A1φ2),

which, on substituting in (2.4), yields solution (2.1). We can establish the converse of the
lemma by direct computation. This completes the proof. �

3 Existence and uniqueness results
Denote by C([0, 1],R) the Banach space of all continuous functions from [0, 1] → R en-
dowed with the norm ‖x‖ = sup{|x(t)|, t ∈ [0, 1]}. In view of Lemma 2.6, we transform prob-
lem (1.1)–(1.2) into a fixed point problem as x = ϕx, where the operator ϕ : C([0, 1],R) →
C([0, 1],R) is defined by

(ϕx)(t) =
∫ t

0

(t – s)q–1

�(q)
f
(
s, x(s)

)
ds – λ1(t)

[ n–2∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
f
(
u, x(u)

)
du

)
ds

– a1

∫ 1

0

(1 – s)q–1

�(q)
f
(
s, x(s)

)
ds – a2

∫ 1

0
f
(
s, x(s)

)
ds

]

– λ2(t)

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
f
(
u, x(u)

)
du

)
ds

–
p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
f
(
s, x(s)

)
ds

]

, t ∈ [0, 1]. (3.1)
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For the sake of computational convenience, let us set

� =
1

�(q + 1)
+ λ1

( n–2∑

i=1

|αi(η
q+1
i – ξ

q+1
i )|

�(q + 2)
+

|a1|
�(q + 1)

+ |a2|
)

+ λ2

(
1

�(q + 2)
+

p∑

j=1

|βjσ
q
j |

�(q + 1)

)

, (3.2)

�1 = � –
1

�(q + 1)
= λ1

( n–2∑

i=1

|αi(η
q+1
i – ξ

q+1
i )|

�(q + 2)
+

|a1|
�(q + 1)

+ |a2|
)

+ λ2

(
1

�(q + 2)
+

p∑

j=1

|βjσ
q
j |

�(q + 1)

)

, (3.3)

where

λ1 = max
t∈[0,1]

∣∣λ1(t)
∣∣ =

1
|�|

(|A2| + |A1|
)
, λ2 = max

t∈[0,1]

∣∣λ2(t)
∣∣ =

1
|�|

(|A4| + |A3|
)
.

Now we are in a position to present our main results concerning the existence and
uniqueness of solutions of problem (1.1)–(1.2). Our first result is based on a nonlinear
alternative of Leray–Schauder type.

Lemma 3.1 (Nonlinear alternative for single-valued maps [38]) Let C([0, 1],R) be a closed
and convex subset of Banach space E and U be an open subset of C([0, 1],R) with 0 ∈ U .
Suppose that F : U → C([0, 1],R) is a continuous, compact (that is, F(U) is a relatively
compact subset of C([0, 1],R)) map. Then either (i) F has a fixed point in U , or (ii) there
are u ∈ ∂U (the boundary of U in C([0, 1],R)) and λ ∈ (0, 1) with u = λF(u).

Theorem 3.2 Let f : [0, 1] ×R →R be a continuous function such that the following con-
ditions hold:

(A1) There exist a function p ∈ C([0, 1],R+) and a nondecreasing function ν : R+ → R
+

such that |f (t, x)| ≤ p(t)ν(‖x‖) for all (t, x) ∈ [0, 1] ×R;
(A2) There exists a positive constant M > 0 such that M

‖p‖ν(M)� > 1, where ‖p‖ =
maxt∈[0,1] |p(t)| and � is given by (3.2).

Then problem (1.1)–(1.2) has at least one solution on [0, 1].

Proof We complete the proof in several steps. First of all, we show that the operator
ϕ : C([0, 1],R) → C([0, 1],R) denoted by (3.1) maps bounded sets into bounded sets in
C([0, 1],R). For a positive number r, let Br = {x ∈ C([0, 1],R) : ‖x‖ ≤ r} be a bounded set
in C([0, 1],R). Then, by assumption (A1), we obtain

∣∣(ϕx)(t)
∣∣ ≤ max

t∈[0,1]

{∫ t

0

(t – s)q–1

�(q)
∣∣f

(
s, x(s)

)∣∣ds

+
∣∣λ1(t)

∣∣
[ n–2∑

i=1

|αi|
∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
∣∣f

(
u, x(u)

)∣∣du
)

ds

+ |a1|
∫ 1

0

(1 – s)q–1

�(q)
∣
∣f

(
s, x(s)

)∣∣ds + |a2|
∫ 1

0

∣
∣f

(
s, x(s)

)∣∣ds

]
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+
∣∣λ2(t)

∣∣
[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
∣∣f

(
u, x(u)

)∣∣du
)

ds

+
p∑

j=1

|βj|
∫ σj

0

(σj – s)q–1

�(q)
∣
∣f

(
s, x(s)

)∣∣ds

]}

≤ ‖p‖ν(‖x‖)
[

1
�(q + 1)

+ λ1

( n–2∑

i=1

|αi(η
q+1
i – ξ

q+1
i )|

�(q + 2)
+

|a1|
�(q + 1)

+ |a2|
)

+ λ2

(
1

�(q + 2)
+

p∑

j=1

|βjσ
q
j |

�(q + 1)

)]

≤ ‖p‖ν(‖x‖)�,

where we have used (3.2). Next we show that ϕ maps bounded sets into equicontinuous
sets of C([0, 1],R). Let 0 < τ1 < τ2 < 1 and x ∈ Br , where Br is a bounded set of C([0, 1],R).
Then we have

∣∣ϕx(τ2) – ϕx(τ1)
∣∣

≤
∣∣
∣∣

∫ τ1

0

(τ2 – s)q–1 – (τ1 – s)q–1

�(q)
f
(
s, x(s)

)
ds +

∫ τ2

τ1

(τ2 – s)q–1

�(q)
f
(
s, x(s)

)
ds

∣∣
∣∣

+
|τm–1

2 – τm–1
1 |

|�|

[

|A1|
( n–2∑

i=1

|αi|
∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
∣∣f

(
u, x(u)

)∣∣du
)

ds

+ |a1|
∫ 1

0

(1 – s)q–1

�(q)
∣∣f

(
s, x(s)

)∣∣ds + |a2|
∫ 1

0

∣∣f
(
s, x(s)

)∣∣ds

)

+ |A3|
(∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
∣
∣f

(
u, x(u)

)∣∣du
)

ds

+
p∑

j=1

|βj|
∫ σj

0

(σj – s)q–1

�(q)
∣
∣f

(
s, x(s)

)∣∣ds

)]

≤ ‖p‖ν(r)

[
2(τ2 – τ1)q + |τ q

2 – τ
q
1 |

�(q + 1)

+
|τm–1

2 – τm–1
1 |

|�|

{

|A1|
( n–2∑

i=1

|αi(η
q+1
i – ξ

q+1
i )|

�(q + 2)
+

|a1|
�(q + 1)

+ |a2|
)

+ |A3|
(

1
�(q + 2)

+
p∑

j=1

|βjσ
q
j |

�(q + 1)

)}]

.

Obviously the right-hand side of the above inequality tends to zero independently of x ∈ Br

as τ2 –τ1 → 0. In view of the foregoing arguments, it follows by the Arzela–Ascoli theorem
that ϕ : C([0, 1],R) → C([0, 1],R) is completely continuous.

The result will follow from (Lemma 3.1) once it is established that the set of all solutions
to equations x = λϕx for λ ∈ [0, 1] is bounded. Let x be a solution of problem (1.1)–(1.2).
Then, for t ∈ [0, 1], as in the first step, we can find that

‖x‖ =
∥∥λ(ϕx)(t)

∥∥ ≤ ‖p‖ν(‖x‖)�,
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which can alternatively be written as

‖x‖
‖p‖ν(‖x‖)�

≤ 1.

By condition (A2), there exists M > 0 such that ‖x‖ 	= M. Let us set U = {x ∈ C([0, 1],R) :
‖x‖ < M} and note that the operator ϕ : U → C([0, 1],R) is continuous and completely
continuous. From the choice ofU , there is no x ∈ ∂U such that x = λϕ(x) for some λ ∈ (0, 1).
Consequently, we deduce by Lemma 3.1 that ϕ has a fixed point x ∈ U , which is a solution
of problem (1.1)–(1.2). This completes the proof. �

In the following result, we prove the existence of solutions for problem (1.1)–(1.2) by
applying Krasnoselskii’s fixed point theorem.

Lemma 3.3 (Krasnoselskii’s fixed point theorem [39]) Let V be a bounded, closed, convex,
and nonempty subset of a Banach space W . Let G1, G2 be the operators such that (a) G1v1 +
G2v2 ∈ V whenever v1, v2 ∈ V ; (b) G1 is compact and continuous; (c) G2 is a contraction
mapping. Then there exists v ∈ V such that v = G1v + G2v.

Theorem 3.4 Let f : [0, 1] ×R →R be a continuous function satisfying the conditions:
(A3) |f (t, x) – f (t, y)| ≤ L|x – y| for all t ∈ [0, 1], L > 0, x, y ∈ R;
(A4) There exists a function μ ∈ C([0, 1],R+) with ‖μ‖ = maxt∈[0,1] |μ(t)| such that

|f (t, x)| ≤ μ(t) for all (t, x) ∈ [0, 1] ×R.
Then there exists at least one solution for problem (1.1)–(1.2) on [0, 1] provided that L�1 <
1, where �1 is given by (3.3).

Proof By assumption (A4), we can fix r ≥ �‖μ‖, where � is given by (3.2), and consider
the closed set Br = {x ∈ C([0, 1],R+) : ‖x‖ ≤ r}. We define the operators P and Q on Br as

(Px)(t) =
∫ t

0

(t – s)q–1

�(q)
f
(
s, x(s)

)
ds, t ∈ [0, 1],

(Qx)(t) = –λ1(t)

[ n–2∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
f
(
u, x(u)

)
du

)
ds

– a1

∫ 1

0

(1 – s)q–1

�(q)
f
(
s, x(s)

)
ds – a2

∫ 1

0
f
(
s, x(s)

)
ds

]

– λ2(t)

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
f
(
u, x(u)

)
du

)
ds

–
p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
f
(
s, x(s)

)
ds

]

, t ∈ [0, 1].

Now we verify the assumptions of Lemma 3.3. For x, y ∈ Br , we have

‖Px + Qy‖ ≤ sup
t∈[0,1]

∣∣(Px)(t) + (Qy)(t)
∣∣

≤ sup
t∈[0,1]

{∫ t

0

(t – s)q–1

�(q)
∣
∣f

(
s, x(s)

)∣∣ds
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+
∣
∣λ1(t)

∣
∣
[ n–2∑

i=1

|αi|
∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
∣
∣f

(
u, x(u)

)∣∣du
)

ds

+ |a1|
∫ 1

0

(1 – s)q–1

�(q)
∣
∣f

(
s, x(s)

)∣∣ds + |a2|
∫ 1

0

∣
∣f

(
s, x(s)

)∣∣ds

]

+
∣∣λ2(t)

∣∣
[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
∣∣f

(
u, x(u)

)∣∣du
)

ds

+
p∑

j=1

|βj|
∫ σj

0

(σj – s)q–1

�(q)
∣∣f

(
s, x(s)

)∣∣ds

]}

≤ ‖μ‖
[

1
�(q + 1)

+ λ1

( n–2∑

i=1

|αi(η
q+1
i – ξ

q+1
i )|

�(q + 2)
+

|a1|
�(q + 1)

+ |a2|
)

+ λ2

(
1

�(q + 2)
+

p∑

j=1

|βjσ
q
j |

�(q + 1)

)]

= �‖μ‖ ≤ r,

where we have used (A4). This shows that Px + Qy ∈ Br .
Next we establish that Q is a contraction mapping. For x, y ∈ C([0, 1],R) and for each

t ∈ [0, 1], we obtain

‖Qx – Qy‖

≤ sup
t∈[0,t]

{
∣∣λ1(t)

∣∣
[ n–2∑

i=1

|αi|
∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
∣∣f

(
u, x(u)

)
– f

(
u, y(u)

)∣∣du
)

ds

+ |a1|
∫ 1

0

(1 – s)q–1

�(q)
∣∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣ds + |a2|
∫ 1

0

∣∣f
(
s, x(s)

)
– f

(
s, y(s)

)∣∣ds

]

+
∣
∣λ2(t)

∣
∣
[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
∣
∣f

(
u, x(u)

)
– f

(
u, y(u)

)∣∣du
)

ds

+
p∑

j=1

|βj|
∫ σj

0

(σj – s)q–1

�(q)
∣∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣ds

]}

≤ L

[

λ1

( n–2∑

i=1

|αi(η
q+1
i – ξ

q+1
i )|

�(q + 2)
+

|a1|
�(q + 1)

+ |a2|
)

+ λ2

(
1

�(q + 2)
+

p∑

j=1

|βjσ
q
j |

�(q + 1)

)]

‖x – y‖

≤ L�1‖x – y‖,

which shows that the operator Q is a contraction in view of assumption L�1 < 1.
Notice that the continuity of f implies that the operator P is continuous. Also, P is uni-

formly bounded on Br as

‖Px‖ ≤ sup
t∈[0,1]

{∫ t

0

(t – s)q–1

�(q)
∣∣f

(
s, x(s)

)∣∣ds
}

≤ ‖μ‖
�(q + 1)

.
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Finally we show the compactness of the operator P. By assumption (A3), we define
max(t,x)∈[0,1]×Br |f (t, x)| = f1. Then, for 0 < t2 < t1 < 1, we have

∣
∣Px(t1) – Px(t2)

∣
∣

=
∣
∣∣
∣

∫ t2

0

((t1 – s)q–1 – (t2 – s)q–1)
�(q)

f
(
s, x(s)

)
ds +

∫ t1

t2

(t1 – s)q–1

�(q)
f
(
s, x(s)

)
ds

∣
∣∣
∣

≤ f1

�(q + 1)
[
2(t1 – t2)q +

∣∣tq
1 – tq

2
∣∣] → 0 as (t1 – t2) → 0, independent of x ∈ Br .

Thus the operator P is relatively compact on Br . Hence, by the Arzela–Ascoli theorem, we
deduce that P is compact on Br . As the hypotheses of Lemma 3.3 are satisfied, so it follows
by its conclusion that problem (1.1)–(1.2) has at least one solution on [0, 1]. The proof is
completed. �

Finally we prove a uniqueness result for problem (1.1)–(1.2).

Theorem 3.5 Let f : [0, 1] ×R → R be a continuous function satisfying assumption (A3).
Then there exists a unique solution for problem (1.1)–(1.2) on [0, 1] if L� < 1, where � is
given by (3.2).

Proof We define Br = {x ∈ C([0, 1],R) : ‖x‖ ≤ r}, where maxt∈[0,1] |f (t, 0)| = M < ∞ and
r ≥ M�

1–L�
, and show that ϕBr ⊂ Br . For x ∈ Br , observe that

∣∣f (t, x)
∣∣ =

∣∣f (t, x) – f (t, 0) + f (t, 0)
∣∣ ≤ ∣∣f (t, x) – f (t, 0)

∣∣ +
∣∣f (t, 0)

∣∣

≤ L|x – 0| +
∣∣f (t, 0)

∣∣ ≤ L‖x‖ + M ≤ Lr + M.

Then, as in the proof of Theorem 3.2, one can obtain that ‖ϕx‖ ≤ (Lr + M)� ≤ r, which
implies that ‖ϕx‖ ≤ r for any x ∈ Br . Hence ϕBr ⊂ Br .

In order to show that the operator ϕ is a contraction, let x, y ∈ C([0, 1],R). Then, for each
t ∈ [0, 1], we obtain

‖ϕx – ϕy‖ ≤ max
t∈[0,1]

∣∣
∣∣
∣

∫ t

0

(t – s)q–1

�(q)
[
f
(
s, x(s)

)
– f

(
s, y(s)

)]
ds

+ λ1(t)

[(n–2)∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
[
f
(
u, x(u)

)
– f

(
u, y(u)

)]
du

)
ds

– a1

∫ 1

0

(1 – s)q–1

�(q)
[
f
(
s, x(s)

)
– f

(
s, y(s)

)]
ds

– a2

∫ 1

0

[
f
(
s, x(s)

)
– f

(
s, y(s)

)]
ds

]

+ λ2(t)

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
[
f
(
u, x(u)

)
– f

(
u, y(u)

)]
du

)
ds

+
p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
[
f
(
s, x(s)

)
– f

(
s, y(s)

)]
ds

]∣∣
∣∣
∣
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≤ L

[
1

�(q + 1)
+ λ1

( n–2∑

i=1

|αi(η
q+1
i – ξ

q+1
i )|

�(q + 2)
+

|a1|
�(q + 1)

+ |a2|
)

+ λ2

(
1

�(q + 2)
+

p∑

j=1

|βjσ
q
j |

�(q + 1)

)]

‖x – y‖

= L�‖x – y‖,

which shows that the operator ϕ is a contraction by the given assumption �L < 1. Hence,
by the contraction mapping principle (Banach fixed point theorem), we deduce that prob-
lem (1.1)–(1.2) has a unique solution on [0, 1]. This completes the proof. �

4 Examples
Consider the following fractional order differential equation:

cD
5
2 x(t) = f

(
t, x(t)

)
, t ∈ [0, 1], (4.1)

subject to the multi-point and multi-strip boundary conditions

∫ 1

0
x(s) ds =

3∑

j=1

βjx(σj), x′(0) = 0,

1
2

x(1) + cDq–1x(1) =
3∑

i=1

αi

∫ ηi

ξi

x(s) ds,

(4.2)

where q = 5
2 , m = 3, a1 = 1

2 , a2 = 1, σ1 = 1
28 , σ2 = 1

21 , σ3 = 1
14 , ξ1 = 1

9 , ξ2 = 3
9 , ξ3 = 5

9 , η1 = 2
9 ,

η2 = 4
9 , η3 = 6

9 , α1 = 1
15 , α2 = 1

10 , α3 = 1
5 , β1 = 1

18 , β2 = 1
9 , β3 = 1

6 , and f (t, x) will be fixed later.
Using the given values, we find that � ≈ 1.359267 and �1 ≈ 1.058366, where � and �1

are respectively given by (3.2) and (3.3).
To demonstrate the application of Theorem (3.2), we take

f
(
t, x(t)

)
=

1√
4 + t2

(
sin x +

1
2

+
|x|

2(1 + |x|)
)

, t ∈ [0, 1] (4.3)

in problem (4.1)–(4.2) and note that

∣
∣f (t, x)

∣
∣ ≤ 1√

4 + t2

(
1 + ‖x‖).

Here p(t) = 1√
4+t2 with ‖p‖ = 1

2 and ψ(‖x‖) = 1 + ‖x‖ (ψ(M) = 1 + M). By condition (A2),
that is, M

‖p‖ψ(M)� > 1, we find that M > 2.121425. Thus all the assumptions of Theorem 3.2
are satisfied. Hence, there exists at least one solution for problem (4.1)–(4.2) with f (t, x(t))
given by (4.3) on [0, 1].

Next we illustrate Theorems 3.4 and 3.5 by taking

f
(
t, x(t)

)
=

(sin x + tan–1 x)
√

(t2 + 25)
+

(
1 + t2)et , 0 < t < 1, (4.4)
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in problem (4.1)–(4.2), which satisfies the Lipschitz conditions (A3) with L = 2/5, that is,

∣∣f (t, x) – f (t, y)
∣∣ ≤ 2

5
‖x – y‖

and

∥
∥f (t, x)

∥
∥ ≤ (1 + π/2)√

t2 + 25
+

(
1 + t2)et = μ(t). (4.5)

Observe that L�1 ≈ 0.423346 < 1 and L� ≈ 0.543707 < 1. Clearly all the assumptions of
Theorem 3.4 are satisfied. Hence, by the conclusions of Theorem 3.4, we deduce that there
exists at least one solution for problem (4.1)–(4.2) with f (t, x(t)) given by (4.4) on [0, 1].

Also the hypothesis of Theorem 3.5 holds, which implies that there exists a unique so-
lution for problem (4.1)–(4.2) with f (t, x(t)) given by (4.4) on [0, 1].

5 Classical boundary conditions case
Replacing cDq–1x(1) with x′(1) in the boundary conditions (1.2), we get

∫ 1

0
x(s) ds =

p∑

j=1

βjx(σj), x′(0) = 0, x′′(0) = 0, . . . , x(m–2)(0) = 0,

a1x(1) + a2x′(1) =
n–2∑

i=1

αi

∫ ηi

ξi

x(s) ds, 0 < σj < ξi < ηi < 1.

(5.1)

The fixed point problem associated with the fractional differential equation (1.1) and the
boundary conditions (5.1) is x = F̂x, where the operator F̂ : C([0, 1],R) → C([0, 1],R) is
modified to the one given by

(̂Fx)(t) =
∫ t

0

(t – s)q–1

�(q)
f
(
s, x(s)

)
ds

– λ1(t)

[ n–2∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
f
(
u, x(u)

)
du

)
ds

–
∫ 1

0

(
a1

(1 – s)q–1

�(q)
+ a2

(1 – s)q–2

�(q – 1)

)
f
(
s, x(s)

)
ds

]

– λ̂2(t)

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
f
(
u, x(u)

)
du

)
ds

–
p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
f
(
s, x(s)

)
ds

]

, t ∈ [0, 1], (5.2)

where

λ̂2(t) =
Â4 – A3tm–1

�
, Â4 =

n–2∑

i=1

αi
ηm

i – ξm
i

m
–

(
a1 + a2(m – 1)

)
. (5.3)
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Furthermore, we have

�̂ =
1

�(q + 1)

[

1 + λ1

( n–2∑

i=1

|αi(η
q+1
i – ξ

q+1
i )|

q + 1
+ |a1| + q|a2|

)

+ λ̂2

(
1

q + 1
+

p∑

j=1

∣
∣βjσ

q
j
∣
∣
)]

, (5.4)

�̂1 = �̂ –
1

�(q + 1)
, (5.5)

where

λ1 = max
t∈[0,1]

∣∣λ1(t)
∣∣ =

1
|�|

(|A2| + |A1|
)
,

λ̂2 = max
t∈[0,1]

∣
∣̂λ2(t)

∣
∣ =

1
|�|

(|Â4| + |A3|
)
.

With the aid of operator (5.2) and estimates (5.4) and (5.5), we can obtain the existence
results for the fractional differential equation (1.1) supplemented with the boundary con-
ditions (5.1) analogue to the ones for problem (1.1)–(1.2) established in Sect. 3.

6 Multi-valued case
In this section, we study the multi-valued analogue (inclusions case) of problem (1.1) given
by

⎧
⎪⎪⎨

⎪⎪⎩

cDqx(t) ∈ F(t, x(t)), 0 < t < 1, m – 1 < q ≤ m, m ≥ 2, m ∈ N ,
∫ 1

0 x(s) ds =
∑p

j=1 βjx(σj), x′(0) = 0, x′′(0) = 0, . . . , x(m–2)(0) = 0,

a1x(1) + a2
cDq–1x(1) =

∑n–2
i=1 αi

∫ ηi
ξi

x(s) ds,

(6.1)

where F : J ×R → 2R \ {∅} (J = [0, 1]) and the other quantities are the same as defined in
problem (1.1)–(1.2). We apply the Bohnenblust–Karlin fixed point theorem to prove the
existence of solutions for problem (6.1).

For the convenience of the reader, we briefly recall some preliminary concepts about
multi-valued maps [40, 41].

A multi-valued map H : X → 2X is (i) convex (closed) valued if H(x) is convex (closed)
for all x ∈ X, where (X,‖ · ‖) is a Banach space; (ii) bounded on a bounded set if H(B) =
⋃

x∈BH(x) is bounded in X for any bounded setB of X (that is, supx∈B{sup{|y| : y ∈H(x)}} <
∞); (iii) upper semi-continuous (u.s.c.) on X if, for each x0 ∈ X, the setH(x0) is a nonempty
closed subset of X and if, for each open set B of X containing H(x0), there exists an open
neighborhoodN of x0 such that H(N ) ⊆ B; (iv) completely continuous ifH(B) is relatively
compact for every bounded subset B of X; (v) completely continuous with nonempty com-
pact values, then H is u.s.c. if and only if H has a closed graph, that is, xn → x∗, yn → y∗,
yn ∈H(xn) imply y∗ ∈ H(x∗).

A multi-valued map H : X → 2X has a fixed point if there is x ∈ X such that x ∈H(x).
In the sequel, we denote by BCC(X) the set of all nonempty bounded, closed, and con-

vex subsets of X and L1(J ,R) denotes the Banach space of functions x : J → R which are
Lebesgue integrable and normed by ‖x‖L1 =

∫ 1
0 |x(t)|dt.
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Now we state the assumptions needed in the forthcoming analysis.
(M1) Let F : J × R → BCC(R); (t, x) → f (t, x) be measurable with respect to t for each

x ∈ R, u.s.c. with respect to x for a.e. t ∈ J , and for each fixed x ∈ R, the set SF ,x :=
{f ∈ L1(J ,R) : f (t) ∈ F(t, x) for a.e. t ∈ J} is nonempty.

(M2) For each ρ > 0, there exists a function pρ ∈ L1(J ,R+) such that ‖F(t, x)‖ = sup{|v| :
v(t) ∈ F(t, x)} ≤ pρ(t) for each (t, x) ∈ J ×R with |x| ≤ ρ , and

lim inf
ρ→+∞

(∫ 1
0 pρ(t) dt

ρ

)
= μ < ∞. (6.2)

The proof of our main result is based on the following lemmas.

Lemma 6.1 (Bohnenblust–Karlin [42]) Let D ⊂ X be nonempty bounded, closed, and con-
vex. Let H : D → 2X \ {0} be u.s.c. with closed, convex values such that H(D) ⊂ D and H(D)
is compact. Then H has a fixed point.

Lemma 6.2 ([43]) Let F be a multi-valued map satisfying condition (M1), and φ is linear
continuous from L1(J ,R) → C(J ,R). Then the operator φ ◦ SF : C(J ,R) → BCC(C(J ,R)),
x �→ (φ ◦ SF )(x) = φ(SF ,x) is a closed graph operator in C(J ,R) × C(J ,R).

Theorem 6.3 Assume that (M1) and (M2) hold and that

μ�2 < 1, (6.3)

where μ is given by (6.2) and

�2 =
1

�(q)

{

1 + λ1

( n–2∑

i=1

∣∣αiη
q
i
∣∣ + |a1| + |a2|�(q)

)

+ λ2

(

1 +
p∑

j=1

∣∣βjσ
q–1
j

∣∣
)}

. (6.4)

Then there exists at least one solution for problem (6.1) on J .

Proof We first transform problem (6.1) into a fixed point problem by introducing a multi-
valued map � : C(J ,R) → 2C(J ,R) as follows:

�(x) =

{

h ∈ C[0, 1] : h(t) =
∫ t

0

(t – s)q–1

�(q)
f (s) ds

– λ1(t)

[ n–2∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
f (u) du

)
ds

– a1

∫ 1

0

(1 – s)q–1

�(q)
f (s) ds – a2

∫ 1

0
f (s) ds

]

– λ2(t)

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
f (u) du

)
ds

–
p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
f (s) ds

]

, f ∈ SF ,x

}

.
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It will be shown that the operator � satisfies the hypothesis of Lemma 6.1 and hence it
will have a fixed point. This will establish the existence of a solution for problem (6.1).

Let us first show that �(x) is convex for each x ∈ C(J ,R). For h1, h2 ∈ �(x), there exist
f1, f2 ∈ SF ,x such that, for each t ∈ J , we get

hi(t) =
∫ t

0

(t – s)q–1

�(q)
fi(s) ds

– λ1(t)

[ n–2∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
fi(u) du

)
ds

– a1

∫ 1

0

(1 – s)q–1

�(q)
fi(s) ds – a2

∫ 1

0
fi(s) ds

]

– λ2(t)

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
fi(u) du

)
ds –

p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
fi(s) ds

]

,

i = 1, 2.

For 0 ≤ σ ≤ 1 and each t ∈ J , we obtain

[
σh1 + (1 – σ )h2

]
(t)

=
∫ t

0

(t – s)q–1

�(q)
[
σ f1(s) + (1 – σ )f2(s)

]
ds

– λ1(t)

[ n–2∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
[
σ f1(s) + (1 – σ )f2(s)

]
du

)
ds

– a1

∫ 1

0

(1 – s)q–1

�(q)
[
σ f1(s) + (1 – σ )f2(s)

]
ds – a2

∫ 1

0

[
σ f1(s) + (1 – σ )f2(s)

]
ds

]

– λ2(t)

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
[
σ f1(s) + (1 – σ )f2(s)

]
du

)
ds

–
p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
[
σ f1(s) + (1 – σ )f2(s)

]
ds

]

.

As SF ,x is convex (F has convex values), therefore one can infer that σh1 + (1 –σ )h2 ∈ �(x).
In the next step, we show that there exists a positive number ρ such that �(Bρ) ⊆ Bρ ,

where Bρ = {x ∈ C(J ,R) : ‖x‖ ≤ ρ}. For each positive constant ρ , observe that Bρ is
a bounded closed convex set in C(J ,R). If it is not true, then we can find a function
xρ ∈ Bρ , hρ ∈ �(xρ) with ‖�(xρ)‖ > ρ for each positive number ρ such that

hρ(t) =
∫ t

0

(t – s)q–1

�(q)
fρ(s) ds

– λ1(t)

[ n–2∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
fρ(u) du

)
ds



Salem et al. Advances in Difference Equations        (2018) 2018:395 Page 15 of 19

– a1

∫ 1

0

(1 – s)q–1

�(q)
fρ(s) ds – a2

∫ 1

0
fρ(s) ds

]

– λ2(t)

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
fρ(u) du

)
ds –

p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
fρ(s) ds

]

for some fρ ∈ SF ,xρ . On the other hand, using (M2), we find that

ρ <
∥∥�(xρ)

∥∥

≤
∫ t

0

(t – s)q–1

�(q)
pρ(s) ds

+
∣∣λ1(t)

∣∣
[ n–2∑

i=1

|αi|
∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
pρ(u) du

)
ds

+ |a1|
∫ 1

0

(1 – s)q–1

�(q)
pρ(s) ds + |a2|

∫ 1

0
pρ(s) ds

]

+
∣∣λ2(t)

∣∣
[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
pρ(u) du

)
ds +

p∑

j=1

|βj|
∫ σj

0

(σj – s)q–1

�(q)
pρ(s) ds

]

≤ �2

∫ 1

0
pρ(s) ds,

where �2 is given by (6.4). Dividing both sides of the above inequality by ρ and taking the
lower limit as ρ → ∞ together with notation (6.2), we obtain

1 ≤ μ�2,

which contradicts (6.3). Consequently, there exists a positive number ρ1 such that
�(Bρ1 ) ⊆ Bρ1 .

Now we show that �(Bρ) is equi-continuous. For 0 < t1 < t2 < 1, x ∈ Bρ , and h ∈ �(x),
there exists f ∈ SF ,x such that, for each t ∈ J , we have

h(t) =
∫ t

0

(t – s)q–1

�(q)
f (s) ds

– λ1(t)

[ n–2∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
f (u) du

)
ds

– a1

∫ 1

0

(1 – s)q–1

�(q)
f (s) ds – a2

∫ 1

0
f (s) ds

]

– λ2(t)

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
f (u) du

)
ds –

p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
f (s) ds

]

and

∣∣h(t2) – h(t1)
∣∣ ≤

∫ t1

0

[(t2 – s)q–1 – (t1 – s)q–1]
�(q)

pρ(s) ds +
∫ t2

t1

(t2 – s)q–1

�(q)
pρ(s) ds

+
∣∣A1

(
tm–1
2 – tm–1

1
)∣∣

[ n–2∑

i=1

|αi|
∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
pρ(u) du

)
ds
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+ |a1|
∫ 1

0

(1 – s)q–1

�(q)
pρ(s) ds + |a2|

∫ 1

0
pρ(s) ds

]

+
∣∣A3

(
tm–1
2 – tm–1

1
)∣∣

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
pρ(u) du

)
ds

+
p∑

j=1

|βj|
∫ σj

0

(σj – s)q–1

�(q)
pρ(s) ds

]

.

It is obvious that the right-hand side of the above inequality tends to zero independently
of x ∈ Bρ as t2 → t1. Hence � is equi-continuous. Since � satisfies the above three condi-
tions, it follows by the Ascoli–Arzela theorem that � is a compact multi-valued map.

Next, we show that the operator � has a closed graph. Let xn → x∗, hn ∈ �(xn) and
hn → h∗. We will show that h∗ ∈ �(x∗). For hn ∈ �(xn), we can find fn ∈ SF ,xn for each t ∈ J
such that

hn(t) =
∫ t

0

(t – s)q–1

�(q)
fn(s) ds

– λ1(t)

[ n–2∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
fn(u) du

)
ds

– a1

∫ 1

0

(1 – s)q–1

�(q)
fn(s) ds – a2

∫ 1

0
fn(s) ds

]

– λ2(t)

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
fn(u) du

)
ds –

p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
fn(s) ds

]

.

Thus, for each t ∈ J , we have to show that there exists f∗ ∈ SF ,x∗ such that

h∗(t) =
∫ t

0

(t – s)q–1

�(q)
f∗(s) ds

– λ1(t)

[ n–2∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
f∗(u) du

)
ds

– a1

∫ 1

0

(1 – s)q–1

�(q)
f∗(s) ds – a2

∫ 1

0
f∗(s) ds

]

– λ2(t)

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
f∗(u) du

)
ds –

p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
f∗(s) ds

]

.

Considering the continuous linear operator φ : L1(J ,R) → C(J ,R), we get

f �→ φ(f )(t) =
∫ t

0

(t – s)q–1

�(q)
f (s) ds

– λ1(t)

[ n–2∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
f (u) du

)
ds
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– a1

∫ 1

0

(1 – s)q–1

�(q)
f (s) ds – a2

∫ 1

0
f (s) ds

]

– λ2(t)

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
f (u) du

)
ds –

p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
f (s) ds

]

.

Note that

hn(t) – h∗(t) =
∫ t

0

(t – s)q–1

�(q)
(
fn(s) – f∗(s)

)
ds

– λ1(t)

[ n–2∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
(
fn(u) – f∗(u)

)
du

)
ds

– a1

∫ 1

0

(1 – s)q–1

�(q)
(
fn(s) – f∗(s)

)
ds – a2

∫ 1

0

(
fn(s) – f∗(s)

)
ds

]

– λ2(t)

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
(
fn(u) – f∗(u)

)
du

)
ds

–
p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
(
fn(s) – f∗(s)

)
ds

]

→ 0 as n → ∞.

In consequence, it follows by Lemma 6.2 that φ ◦ SF is a closed graph operator and that
hn(t) ∈ φ(SF ,xn ) as xn → x∗; therefore, Lemma 6.2 yields

h∗(t) =
∫ t

0

(t – s)q–1

�(q)
f∗(s) ds

– λ1(t)

[ n–2∑

i=1

αi

∫ ηi

ξi

(∫ s

0

(s – u)q–1

�(q)
f∗(u) du

)
ds

– a1

∫ 1

0

(1 – s)q–1

�(q)
f∗(s) ds – a2

∫ 1

0
f∗(s) ds

]

– λ2(t)

[∫ 1

0

(∫ s

0

(s – u)q–1

�(q)
f∗(u) du

)
ds –

p∑

j=1

βj

∫ σj

0

(σj – s)q–1

�(q)
f∗(s) ds

]

.

Hence, we deduce that � is a compact multi-valued map, u.s.c. with convex closed values.
Thus, the hypothesis of Lemma 6.1 holds true, and consequently its conclusion implies
that the operator � has a fixed point x, which is indeed a solution of problem (6.1). This
completes the proof. �

Remark 6.4 For a1 = 0, a2 = 1, our results obtained in Sects. 3 and 4 reduce to the ones
with the last condition in (1.2) of the form: cDq–1x(1) =

∑n–2
i=1 αi

∫ ηi
ξi

x(s) ds and x′(1) =
∑n–2

i=1 αi
∫ ηi
ξi

x(s) ds, respectively, which are indeed new. On the other hand, we obtain the
new results associated with the last condition in (1.2) of the form: x(1) =

∑n–2
i=1 αi

∫ ηi
ξi

x(s) ds
by fixing a1 = 1, a2 = 0.
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