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Abstract
Most stochastic age-dependent capital systems cannot be solved explicitly, so it is
necessary to develop numerical methods and study the properties of numerical
solutions. In this paper, we consider a class of stochastic age-dependent capital
systems with Poisson jumps and fractional Brownian motion (fBm) and investigate
the convergence of the split-step θ -method (SSθ ) for this system. It is proved that the
numerical approximation solutions converge to the analytic solutions for the
equations, and the order of approximation is also provided. Finally, a numerical
experiment is simulated to illustrate that the SSθ method has better accuracy than
the Euler method.
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1 Introduction
For the past few years, stochastic age-dependent capital systems have become increasingly
important mathematical tools to portray many financial phenomena in the real world.
However, most stochastic age-dependent capital systems cannot be solved explicitly, so it
is necessary to develop numerical methods and study the properties of numerical solu-
tions. Recently, the study of numerical methods for the stochastic age-dependent capital
system has received a great deal of attention. For example, Zhang et al. [1] discussed the
exponential stability of Euler approximation for the stochastic age-dependent capital sys-
tem with Poisson jumps, and further studied the convergence of Euler method for a class of
stochastic age-dependent capital systems with random jump magnitudes and Markovian
switching [2, 3]. Subsequently, Zhang et al. [4] constructed a split-step backward Euler
(SSBE) method for stochastic age-dependent capital system with Markovian switching,
and proved that the SSBE method converges with strong order of one half to the exact so-
lution under the given conditions. In the above literature works, uncertainties in the finan-
cial market (i.e., randomness of the external environment) were considered in the form of
a standard Brownian motion because of the imperfection of financial market itself, includ-
ing innovations in technique, introduction of new products, natural disasters, and changes
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in laws or government policies. However, the randomness of the external environment is
not always well modeled by the standard Brownian motion because of the long-range de-
pendence of price of the financial products. In recent years, some researchers adopted
fractional Brownian motion (fBm) to describe this long-range dependence of price in the
financial market [5–9]. Therefore, it is a very interesting topic to take Poisson jumps and
fBm into account for the stochastic capital systems, and we will consider the following
system in this paper:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂K (a,t)
∂t = [– ∂Kt–

∂a – μ(a, t)Kt– + f (t, Kt– )] dt + g(t, Kt– ) dBH (t)

+ h(t, Kt– ) dN(t), in D,

K(0, t) = ϕ(t) = γ (t)A(t)F(L(t),
∫ A

0 K(a, t) da), in t ∈ [0, T],

K(a, 0) = K0(a), in a ∈ [0, A],

N(t) =
∫ A

0 K(a, t) da, in t ∈ [0, T],

(1)

where Kt– = lims→t– K(a, s), ∂Kt–
∂a = lims→t– ∂Ks

∂a , D = (0, A) × (0, T). K(a, t) is the stock of
capital goods of age a at time t, the total output produced at time t is denoted by N(t), a
is the age of the capital, the investment ϕ(t) is a new capital, and f (t, K(a, t)) in the capital
of age a are the endogenous variables. The maximum physical lifetime of the capital is
defined as A, the planning interval of calendar time [0, T], the depreciation rate μ(a, t) of
the capital, and the capital density K0(a) (the initial distribution of the capital over age)
are given. γ (t) ∈ (0, 1) and A(t) denote the accumulative rate and the technical progress
at the moment of t, respectively. F(L(t), N(t)) is the production function and L(t) is the
labor force. f (t, Kt– ) dt + g(t, Kt– ) dBH (t) + h(t, Kt– ) dN(t) denotes effects of the external
environment for system (1) which depends on t and K(a, t). BH (t) is a fractional Brownian
motion with Hurst parameter H ∈ ( 1

2 , 1), N(t) is a scalar Poisson process with intensity
λ > 0, and we assume that BH (t) is independent of N(t).

Up to now, the research on numerical solution of model (1) has been mainly focused on
Euler method and backward Euler (BE) method. However, these two methods lack flexi-
bility when they are applied to a stochastic age-dependent capital system. Fortunately, a
split-step θ -method (SSθ method) constructed by Ding et al. [10] for solving nonlinear
non-autonomous stochastic differential equations (SDEs) can make up for this shortcom-
ing for the first time. Recently, the SSθ method has attracted many scholars’ attention be-
cause of its advantages in dealing with the flexibility and the stability for the SDEs [11–18].
Researchers find that SSθ method or its improved forms have pretty stable properties, con-
vergence rates, and structure-preserving properties [14, 15, 18–20], and the SSθ method
includes Euler method and split-step backward Euler (SSBE) method by fixing θ = 0 and
θ = 1, respectively. However, as far as we know, few results on the convergence of SSθ

method for stochastic age-dependent capital models with Poisson jumps and fBm have
been reported. So, we will devote our main attention to the investigation of the following
problems of system (1) in this paper.

(Q1) Will the numerical solution converge to the exact solution when we apply the SSθ

method to the stochastic age-dependent capital models with Poisson jumps and
fBm (1)?

(Q2) Will convergence accuracy be better than previous numerical methods?
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To answer these questions, the outline of this paper is organized as follows. In Sect. 2, we
introduce some basic preliminaries which are essential for our investigation, and the split-
step θ -method for stochastic age-dependent capital system with Poisson jumps and fBm
is constructed. In Sect. 3, several lemmas which are useful for our main result are proved.
Then, in Sect. 4, we establish the main results that the numerical solution converges to
the analytical solution for system (1) in the mean square sense. In Sect. 5, a numerical
experiment is carried out to support our theoretical results. Finally, a brief conclusion and
our future works are presented in Sect. 6.

2 Preliminaries and the split-step θ -method
2.1 Preliminaries
In this section, we introduce some necessary definitions and assumptions needed for the
subsequent discussions. Throughout this paper, we denote by L2([0, A]) the space of func-
tions that are square-integrable over the domain [0, A]. Let

V = H1([0, A]
) ≡

{

ϕ

∣
∣
∣ϕ ∈ L2([0, A]

)
,
∂ϕ

∂a
∈ L2([0, A]

)
}

,

where ∂ϕ

∂a is generalized partial derivatives with respect to age a, V is a Sobolev space,
W = L2([0, A]) such that V ↪→ W ≡ W ′ ↪→ V ′. V ′ = W –1([0, A]) is the dual space of V .
We denote by ‖·‖, | · |, and ‖·‖∗ the norms in V , W , and V ′ respectively; by (·, ·) the scalar
product in W , and by 〈·, ·〉 the duality product between V and V ′, defined by

〈·, ·〉 =
∫ A

0
u · v da, u ∈ V , v ∈ V ′.

K is a real separable Hilbert space. For an operator B ∈ L(K , W ) is the space of all bounded
linear operators from K into W . We denote by ‖B‖2 the Hilbert–Schmidt norm, i.e., ‖B‖2

2 =
tr(BWBT ). Let (�,F , P) be a complete probability space with filtrations {Ft}t≥0 satisfying
the usual conditions (i.e., it is increasing and right continuous, and F0 contains all P-null
sets).

Let C = C([0, T]; W ) be the space of all continuous functions from [0, T] into W with
sup-norm ‖ϕ‖C = sup0≤s≤T |ϕ(s)|, LP

V = LP([0, T]; V ), and LP
W = LP([0, T]; W ).

Definition 2.1 A fractional Brownian motion (fBm) BH = {BH (t) : t ∈ R} for Hurst param-
eter H ∈ (0, 1) is a continuous and centered Gaussian process with covariance function

RH (t, s) = E
[
BH (t)BH(s)

]
=

1
2
(|t|2H + |s|2H – |t – s|2H)

, t, s ∈ R.

The fBm is then a standard Brownian motion when H = 1
2 .

Remark 2.2 By Definition 2.1, we obtain that a fBm BH (t) has the following properties:
(i) BH (0) = 0 and E[BH(t)] = 0 for all t ≥ 0;

(ii) BH (t) has homogeneous increments, i.e., BH (t + s) – BH (s) has the same law of
BH (t) for all t, s ≥ 0;

(iii) BH (t) is a Gaussian process and E[BH(t)]2 = t2H , t ≥ 0, for all H ∈ (0, 1);
(iv) BH (t) has continuous trajectories;
(v) For any α > 0, every s, t ∈ R, we have E[|BH(t) – BH(s)|α] = E[|BH (1)|α]|t – s|αH .
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In order to analyze the stochastic age-dependent capital system with Poisson jumps and
fBm (1), we impose the following standard hypotheses:

(A1) f (t, 0) = 0, g(t, 0) = 0, h(t, 0) = 0, t ∈ [0, T];
(A2) (The Lipschitz condition) There exists a positive constant l for all x, y ∈ W , and ∀t,

such that

∣
∣f (t, y) – f (t, x)

∣
∣ ∨ ∥

∥g(t, y) – g(t, x)
∥
∥

2 ∨ ∣
∣h(t, y) – h(t, x)

∣
∣ ≤ l|y – x|;

(A3) μ(a, t) is a nonnegative measurable function in D, γ (t) and A(t) are nonnegative
continuous functions in [0, T] such that

⎧
⎨

⎩

0 ≤ μ0 ≤ μ(a, t) ≤ μ̄ < ∞, μ0 and μ̄ are nonnegative constants;

0 < γ (t)A(t) ≤ η, η is a nonnegative constant in [0, T];

(A4)
⎧
⎨

⎩

F(L, N) ≥ 0 (F(L, 0) = 0), ∂F(L,N)
∂L > 0;

0 < ∂F(L,N)
∂N ≤ δ, where δ is a positive constant.

Now, we give the theorem concerning the existence and uniqueness of solution for sys-
tem (1), which is essential to discussing the numerical solution of our system.

Theorem 2.3 Under assumptions (A1)–(A4), system (1) has a unique continuous solution
K(a, t) on D.

The proof of this theorem is similar to that in Zhang et al. [21].

2.2 The split-step θ -method
In this subsection, we present the SSθ method, and give the discrete scheme for system (1).
Let τj denote the jth jump of occurrence time N(t). For example, suppose that jumps arrive
at distinct, ordered times τ1 < τ2 < · · · , let 0, t1, t2, . . . , tm be the deterministic grid points
of [0, T]. We will construct approximate solution to (1) at a discrete set of times τn (n =
1, 2, . . .). This set is the superposition of the random jump times of the Poisson process
in [0, T] and satisfies max |τi+1 – τi| < t (for the sake of simplicity, we denote t as ).
Obviously, the random Poisson jump times can be computed without any knowledge of
the realized path of (1). Let  = tn+1 – tn, BH

n = BH (tn+1) – BH (tn), Nn = N(tn+1) – N(tn)
denote the increment of the time, fBm, and Poisson process respectively. For system (1),
the SSθ method is defined by the iterative scheme for the time increment  = T

m � 1,

Qn∗
t = Qn

t –
∂Qn+1

t
∂a

 + (1 – θ )
(
–μ(a, tn)Qn

t + f
(
tn, Qn

t
))



+ θ
(
–μ(a, tn)Qn∗

t + f
(
tn, Qn∗

t
))

, (2)

Qn+1
t = Qn∗

t + g
(
tn, Qn∗

t
)
BH

n + h
(
tn, Qn∗

t
)
Nn, (3)

with initial values Q0
t = K(a, 0) = K0, Qn

t is the numerical approximation of K(a, tn) with
tn = n, n = 0, 1, 2, . . . . Because when θ = 0, the SSθ method becomes the explicit method,
and when θ = 1, the SSθ method is the SSBE method, so we let θ ∈ (0, 1).
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We will state and prove the following result which is useful for the main result of this
paper.

Lemma 2.4 Let assumptions (A2) and (A3) hold, when 0 <  < 1
θ (l+μ̄) , system (1) can be

solved uniquely for Qn∗
t with probability one.

Proof Let Φ(Qn∗
t ) = y + θ[–μ(a, tn)Qn∗

t + f (tn, Qn∗
t )], y ∈ L2

W , and use assumptions (A2)
and (A3), we can derive directly from (2) that

∣
∣Φ(u) – Φ(v)

∣
∣ ≤ θ

[∣
∣f (t, u) – f (t, v)

∣
∣ +

∣
∣μ(a, t)(u – v)

∣
∣
]

≤ θ(l + μ̄)|u – v|, ∀u, v ∈ W .

Then we can obtain the result via the contraction mapping theorem [22]. �

Following Lemma 2.4, it is convenient for us to use the continuous time approximation
solution in our strong convergence analysis. Now, we define the two step functions for
t ∈ [tn, tn+1) as follows:

Z1(t) = Z1(a, t) =
m–1∑

n=0

Qn
t 1[n,(n+1))(t), (4)

Z2(t) = Z2(a, t) =
m–1∑

n=0

Qn∗
t 1[n,(n+1))(t), (5)

where 1G is the indicator function for the set G. When t ∈ [tn, tn+1), Lemma 2.4 can ensure
the existence of Qn∗

t for system (1). So we can define

Qt = Qn
t +

[

–
∂Qn+1

t
∂a

+ (1 – θ )
(
–μ(a, t)Qn

t + f
(
t, Qn

t
))

]

(t – tn) + θ
(
–μ(a, t)Qn∗

t

+ f
(
t, Qn∗

t
))

(t – tn) + g
(
t, Qn∗

t
)(

BH (t) – BH (tn)
)

+ h
(
t, Qn∗

t
)(

N(t) – N(tn)
)
. (6)

Thus the integral form of (6) can be written as follows:

Qt = K0 –
∫ t

0

∂Qs

∂a
ds +

∫ t

0
(1 – θ )

[
–μ(a, s)Z1(s) + f

(
s, Z1(s)

)]
ds

+
∫ t

0
θ
[
–μ(a, s)Z2(s) + f

(
s, Z2(s)

)]
ds +

∫ t

0
g
(
s, Z2(s)

)
dBH

s

+
∫ t

0
h
(
s, Zs(s)

)
dNs, (7)

with initial value Q0 = K(a, 0), Qt = K(a, t).
It is straightforward to check that Z1(a, tn) = Qn

t , Z2(a, tn) = Qn∗
t , hence we regard Qt as a

continuous-time extension of the discrete approximation Qn
t , the main aim of this paper

is to prove a strong convergence result for Qt .

3 Several lemmas
In this section, we provide several lemmas which are useful for the proof of our results.



Kang and Zhang Advances in Difference Equations  (2018) 2018:371 Page 6 of 20

The next two lemmas give the pth moment boundedness of analytical solution Kt and
numerical solution Qt for (1). And the proofs of them are similar to those of Zhang et
al. [21].

Lemma 3.1 Under assumptions (A1)–(A4), for any p ≥ 2, there exists C1 > 0 such that

E

[
sup

0≤t≤T
|Kt|p

]
≤ C1.

Lemma 3.2 Under assumptions (A1)–(A4), for any p ≥ 2, there exists a constant C2 > 0
such that

E

[
sup

0≤t≤T
|Qt|p

]
≤ C2.

The next lemma shows the relationship between E|Qn∗
t | and E|Qn

t |.

Lemma 3.3 Under assumptions (A1)–(A4), let E| ∂Qn+1
t

∂a |2 < ∞ and 0 <  < min{1, 1
θ (l+μ̄) ,

1
3
√

2(μ̄2+l2)
}, there exist constants C3 > 0 and C4 > 0 such that

E
∣
∣Qn∗

t
∣
∣2 ≤ C3 + C4E

∣
∣Qn

t
∣
∣2.

Proof Squaring both sides of (2) and using the elementary inequalities (a + b + c)2 ≤ 3a2 +
3b2 + 3c2 and |(1 – θ )x + θy|2 ≤ (1 – θ )|x|2 + θ |y|2, we obtain

∣
∣Qn∗

t
∣
∣2 ≤ 3

∣
∣Qn

t
∣
∣2 + 3

∣
∣
∣
∣
∂Qn+1

t
∂a

∣
∣
∣
∣

2

2 + 3(1 – θ )2[–μ(a, tn)Qn
t + f

(
tn, Qn

t
)]2

+ 3θ2[–μ(a, tn)Qn∗
t + f

(
tn, Qn∗

t
)]2

≤ 3
∣
∣Qn

t
∣
∣2 + 3

∣
∣
∣
∣
∂Qn+1

t
∂a

∣
∣
∣
∣

2

2 + 32[(–μ(a, tn)Qn
t + f

(
tn, Qn

t
))2

+
(
–μ(a, tn)Qn∗

t + f
(
tn, Qn∗

t
))2]. (8)

By assumptions (A2) and (A3), we get that

∣
∣Qn∗

t
∣
∣2 ≤ 3

∣
∣Qn

t
∣
∣2 + 3

∣
∣
∣
∣
∂Qn+1

t
∂a

∣
∣
∣
∣

2

2 + 62[∣∣μ(a, tn)Qn
t
∣
∣2 +

∣
∣f

(
tn, Qn

t
)∣
∣2]

+ 62[∣∣μ(a, tn)Qn∗
t

∣
∣2 +

∣
∣f

(
tn, Qn∗

t
)∣
∣2]

≤ 3
∣
∣Qn

t
∣
∣2 + 3

∣
∣
∣
∣
∂Qn+1

t
∂a

∣
∣
∣
∣

2

2 + 62(μ̄2 + l2)∣∣Qn
t
∣
∣2 + 62(μ̄2 + l2)∣∣Qn∗

t
∣
∣2. (9)

Taking mathematical expectation for both sides, we can get

E
∣
∣Qn∗

t
∣
∣2 ≤ 3

∣
∣
∣
∣
∂Qn+1

t
∂a

∣
∣
∣
∣

2

2 + 3
[
1 + 22(μ̄2 + l2)]

E
∣
∣Qn

t
∣
∣2 + 62(μ̄2 + l2)

E
∣
∣Qn∗

t
∣
∣2. (10)
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Since  < 1
3
√

2(μ̄2+l2)
, thus 1 – 62(μ̄2 + l2) ≥ 1

3 and 0 <  < 1, we have

E
∣
∣Qn∗

t
∣
∣2 ≤ 3E| ∂Qn+1

t
∂a |22

1 – 62(μ̄2 + l2)
+

3[1 + 22(μ̄2 + l2)]
1 – 62(μ̄2 + l2)

E
∣
∣Qn

t
∣
∣2

≤ 9E
∣
∣
∣
∣
∂Qn+1

t
∂a

∣
∣
∣
∣

2

+ 9
[
1 + 2

(
μ̄2 + l2)]

E
∣
∣Qn

t
∣
∣2

:= C3 + C4E
∣
∣Qn

t
∣
∣2, (11)

where C3 = 9E| ∂Qn+1
t

∂a |2, C4 = 9[1 + 2(μ̄2 + l2)]. �

Lemma 3.4 Under assumptions (A1)–(A4), there exists a constant C5 > 0 when 0 <  <
min{1, 1

θ (l+μ̄) , 1
3
√

2(μ̄2+l2)
} such that

E

[
sup

0≤t≤T
|Qt∧υn |2

]
≤ C5,

where τn = inf{t ≥ 0, |Kt| ≥ n}, σn = inf{t ≥ 0, |Qt| ≥ n} are the first time that Kt and Qt are
unbounded respectively, and υn = τn ∧ σn.

Proof In terms of Eq. (7), we can obtain

dQt = –
∂Qt

∂a
dt + (1 – θ )

[
–μ(a, t)Z1(t) + f

(
t, Z1(t)

)]
dt

+ θ
[
–μ(a, t)Z2(t) + f

(
t, Z2(t)

)]
dt

+ g
(
t, Z2(t)

)
dBH (t) + h

(
t, Z2(t)

)
dN(t). (12)

Applying Itô’s formula to |Qt∧υn |2 yields

|Qt∧υn |2 = |Q0|2 + 2
∫ t∧υn

0

〈

–
∂Qs

∂a
, Qs

〉

ds – 2
∫ t∧υn

0

(
(1 – θ )μ(a, s)Z1(s)

+ θμ(a, s)Z2(s), Qs
)

ds + 2
∫ t∧υn

0

(
(1 – θ )f

(
s, Z1(s)

)
+ θ f

(
s, Z2(s)

)
, Qs

)
ds

+ 2
∫ t∧υn

0

(
g
(
s, Z2(s)

)
, Qs

)
dBH (s) + 2

∫ t∧υn

0

(
h
(
s, Z2(s)

)
, Qs

)
dN(s)

+ 2H
∫ t∧υn

0
s2H–1∥∥g

(
s, Z2(s)

)∥
∥2

2 ds +
∫ t∧υn

0

∣
∣h

(
s, Z2(s)

)∣
∣2 dN(s)

≤ |Q0|2 + 2
∫ t∧υn

0

〈

–
∂Qs

∂a
, Qs

〉

ds – 2
∫ t∧υn

0

(
(1 – θ )μ(a, s)Z1(s)

+ θμ(a, s)Z2(s), Qs
)

ds + 2
∫ t∧υn

0

(
(1 – θ )f

(
s, Z1(s)

)
+ θ f

(
s, Z2(s)

)
, Qs

)
ds

+ 2
∫ t∧υn

0

(
g
(
s, Z2(s)

)
, Qs

)
dBH (s) + 2

∫ t∧υn

0

(
h
(
s, Z2(s)

)
, Qs

)
dN̄(s)
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+ 2λ

∫ t∧υn

0

(
h
(
s, Z2(s)

)
, Qs

)
ds + 2H

∫ t∧υn

0
s2H–1∥∥g

(
s, Z2(s)

)∥
∥2

2 ds

+
∫ t∧υn

0

∣
∣h

(
s, Z2(s)

)∣
∣2 dN̄(s) + λ

∫ t∧υn

0

∣
∣h

(
s, Z2(s)

)∣
∣2 ds, (13)

where N̄(s) = N(s) – λs is a compensated Poisson process. By assumptions (A1)–(A3), we
have

|Qt∧υn |2 ≤ |Q0|2 + 2
∫ t∧υn

0

〈

–
∂Qs

∂a
, Qs

〉

ds + 2μ0

∫ t∧υn

0

∣
∣(1 – θ )Z1(s) + θZ2(s)

∣
∣|Qs|ds

+ 2
∫ t∧υn

0

∣
∣(1 – θ )f

(
s, Z1(s)

)
+ θ f

(
s, Z2(s)

)∣
∣|Qs|ds

+ 2
∫ t∧υn

0

(
g
(
s, Z2(s)

)
, Qs

)
dBH (s) + 2

∫ t∧υn

0

(
h
(
s, Z2(s)

)
, Qs

)
dN̄(s)

+ 2λ

∫ t∧υn

0

∣
∣h

(
s, Z2(s)

)∣
∣|Qs|ds + 2H

∫ t∧υn

0
s2H–1∥∥g

(
s, Z2(s)

)∥
∥2

2 ds

+
∫ t∧υn

0

∣
∣h

(
s, Z2(s)

)∣
∣2 dN̄(s) + λ

∫ t∧υn

0

∣
∣h

(
s, Z2(s)

)∣
∣2 ds. (14)

Since

〈

–
∂Qs

∂a
, Qs

〉

= –
∫ A

0

∂Qs

∂a
· Qs da

=
1
2
γ 2(s)A2(s)

[

F
(

L(s),
∫ A

0
Qs da

)

– F
(
L(s), 0

)
]2

≤ 1
2
η2

(
∂F(L, N)

∂N
|y
)2(∫ A

0
Qs da

)2

≤ 1
2

Aη2δ2|Qs|2, (15)

where y ∈ (0,
∫ A

0 Qs da).

2μ0

∫ t∧υn

0

∣
∣(1 – θ )Z1(s) + θZ2(s)

∣
∣|Qs|ds

≤ 2μ0

∫ t∧υn

0

(∣
∣Z1(s)

∣
∣2 +

∣
∣Z2(s)

∣
∣2)ds + μ0

∫ t∧υn

0
|Qs|2 ds, (16)

2
∫ t∧υn

0

∣
∣(1 – θ )f

(
s, Z1(s)

)
+ θ f

(
s, Z2(s)

)∣
∣|Qs|ds

≤
∫ t∧υn

0

∣
∣(1 – θ )f

(
s, Z1(s)

)
+ θ f

(
s, Z2(s)

)∣
∣2 ds +

∫ t∧υn

0
|Qs|2 ds

≤ 2l2
∫ t∧υn

0

(∣
∣Z1(s)

∣
∣2 +

∣
∣Z2(s)

∣
∣2)ds +

∫ t∧υn

0
|Qs|2 ds, (17)

2λ

∫ t∧υn

0

∣
∣h

(
s, Z2(s)

)∣
∣|Qs|ds ≤ λ

∫ t∧υn

0

∣
∣h

(
s, Z2(s)

)∣
∣2 ds + λ

∫ t∧υn

0
|Qs|2 ds

≤ λl2
∫ t∧υn

0

∣
∣Z2(s)

∣
∣2 ds + λ

∫ t∧υn

0
|Qs|2 ds. (18)
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Taking (15)–(18) into (14), we get that

|Qt∧υn |2 ≤ |Q0|2 +
(
Aη2δ2 + μ0 + 1 + λ

)
∫ t∧υn

0
|Qs|2 ds

+
(
2μ0 + 2l2)

∫ t∧υn

0

∣
∣Z1(s)

∣
∣2 ds

+ 2
[
μ0 + l2(1 + λ + HT2H–1)]

∫ t∧υn

0

∣
∣Z2(s)

∣
∣2 ds

+ 2
∫ t∧υn

0

(
g
(
s, Z2(s)

)
, Qs

)
dBH (s)

+ 2
∫ t∧υn

0

(
h
(
s, Z2(s)

)
, Qs

)
dN̄(s) +

∫ t∧υn

0

∣
∣h

(
s, Z2(s)

)∣
∣2 dN̄(s), (19)

let l1 = Aη2δ2 + μ0 + 1 + λ, l2 = 2μ0 + 2l2, l3 = 2[μ0 + l2(1 + λ + HT2H–1)], and Z1(s) = Qs,
Z2(s) = Q∗

s , and taking mathematical expectation for both sides of (19), we obtain

E

[
sup

0≤s≤t
|Qs∧υn |2

]
≤ E|Q0|2 + (l1 + l2)

∫ t∧υn

0
E

[
sup

0≤s≤t
|Qs|2

]
ds

+ l3

∫ t∧υn

0
E

[
sup

0≤s≤t

∣
∣Q∗

s
∣
∣2

]
ds

+ 2E
[

sup
0≤s≤t

∫ t∧υn

0

(
g
(
s, Z2(s)

)
, Qs

)
dBH (s)

]

+ 2E
[

sup
0≤s≤t

∫ t∧υn

0

(
h
(
s, Z2(s)

)
, Qs

)
dN̄(s)

]

+ E

[

sup
0≤s≤t

∫ t∧υn

0

∣
∣h

(
s, Z2(s)

)∣
∣2 dN̄(s)

]

. (20)

Furthermore, by Lemma 3.3, we can get

E

[
sup

0≤s≤t
|Qs∧υn |2

]
≤ E|Q0|2 + (l1 + l2 + l3C4)

∫ t∧υn

0
E

[
sup

0≤s≤t
|Qs|2

]
ds + l3C3T

+ 2E
[

sup
0≤s≤t

∫ t∧υn

0

(
g
(
s, Z2(s)

)
, Qs

)
dBH (s)

]

+ 2E
[

sup
0≤s≤t

∫ t∧υn

0

(
h
(
s, Z2(s)

)
, Qs

)
dN̄(s)

]

+ E

[

sup
0≤s≤t

∫ t∧υn

0

∣
∣h

(
s, Z2(s)

)∣
∣2 dN̄(s)

]

. (21)

By the Burkholder–Davis–Gundy inequality, we have

2E
[

sup
0≤s≤t

∫ t∧υn

0

(
g
(
s, Z2(s)

)
, Qs

)
dBH (s)

]

≤ CE

[

sup
0≤s≤t

|Qs∧υn |
(∫ t∧υn

0

∥
∥g

(
s, Z2(s)

)∥
∥2

2BH (s)
) 1

2
]
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≤ 1
6
E

[
sup

0≤s≤t
|Qs∧υn |2

]
+ l′1

∫ t∧υn

0
s2H–1

E
∥
∥g

(
s, Z2(s)

)∥
∥2

2 ds

≤ 1
6
E

[
sup

0≤s≤t
|Qs∧υn |2

]
+ l′1l2C4T2H–1

∫ t∧υn

0
E|Qs|2 ds + l′1l2C3T2H . (22)

In the same way, we can get

2E
[

sup
0≤s≤t

∫ t∧υn

0

(
h
(
s, Z2(s)

)
, Qs

)
dN̄(s)

]

≤ 1
6
E

[
sup

0≤s≤t
|Qs∧υn |2

]
+ l′2l2C4

∫ t∧υn

0
E|Qs|2 ds + l′2l2C3T , (23)

and

E

[

sup
0≤s≤t

∫ t∧υn

0

∣
∣h

(
s, Z2(s)

)∣
∣2 dN̄(s)

]

≤ 1
6
E

[
sup

0≤s≤t
|Qs∧υn |2

]
+ l′3l2C4

∫ t∧υn

0
E

∣
∣Q(s)

∣
∣2 ds + l′3l2C3T + C3, (24)

where l′1, l′2, l′3 > 0. Substituting (22)–(24) into (21) and denoting l′ = max{l′1, l′2, l′3}, we have

E

[
sup

0≤s≤t
|Qs∧υn |2

]
≤ 2E|Q0|2 + 2l′l2C3T

(
2 + T2H–1) + 2C3 + 2l3C3T

+ 2
[
l1 + l2 + l3C4 + l′l2C4

(
2 + T2H–1)]

∫ t∧υn

0
E

[
sup

0≤s≤t
|Qs|2

]
ds

:= l4 + l5

∫ t∧υn

0
E

[
sup

0≤s≤t
|Qs|2

]
ds, (25)

where

l4 = 2E|Q0|2 + 2l′l2C3T
(
2 + T2H–1) + 2C3 + 2l3C3T ,

l5 = 2
[
l1 + l2 + l3C4 + l′l2C4

(
2 + T2H–1)].

Now, using the Gronwall lemma, we can easily obtain the following result:

E

[
sup

0≤s≤t
|Qs∧υn |2

]
≤ C5,

where C5 = l4el5T . For ∀t ∈ [0, T], we easily get

E

[
sup

0≤t≤T
|Qt∧υn |2

]
≤ C5.

This completes the proof. �

Lemma 3.5 Under assumptions (A1)–(A4), let 0 <  < min{1, 1
θ (l+μ̄) , 1

3
√

2(μ̄2+l2)
} for any

t ∈ [n, (n+1)) ⊆ [0, T], and for some positive integer n (n = 0, 1, . . .), there exist constants
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C6 > 0, C7 > 0, which are independent of , such that

E
∣
∣Qt – Z1(t)

∣
∣2 ≤ C6, (26)

E
∣
∣Qt – Z2(t)

∣
∣2 ≤ C7. (27)

Proof Considering t ∈ [n, (n + 1)) ⊆ [0, T] and according to (7), we have

Qt – Z1(t) = Qt – Qn
t

=
∫ t

n

∂Qs

∂a
ds +

∫ t

n

[
(1 – θ )f

(
s, Z1(s)

)
+ θ f

(
s, Z2(s)

)]
ds

–
∫ t

n

μ(a, s)
[
(1 – θ )Z1(s) + θZ2(s)

]
ds +

∫ t

n

g
(
s, Z2(s)

)
dBH (s)

+
∫ t

n

h
(
s, Z2(s)

)
dN(s). (28)

Squaring both sides of Eq. (28), using the elementary inequality (
∑n

i=1 xi)2 ≤ n
∑n

i=1 x2
i , the

Cauchy–Schwarz inequality, and (A3), we have

∣
∣Qt – Z1(t)

∣
∣2 ≤ 5

∣
∣
∣
∣

∫ t

n

∂Qs

∂a
ds

∣
∣
∣
∣

2

+ 5
∣
∣
∣
∣

∫ t

n

[
(1 – θ )f

(
s, Z1(s)

)
+ θ f

(
s, Z2(s)

)]
ds

∣
∣
∣
∣

2

+ 5
∣
∣
∣
∣

∫ t

n

μ(a, s)
[
(1 – θ )Z1(s) + θZ2(s)

]
ds

∣
∣
∣
∣

2

+ 5
∣
∣
∣
∣

∫ t

n

g
(
s, Z2(s)

)
dBH (s)

∣
∣
∣
∣

2

+ 5
∣
∣
∣
∣

∫ t

n

h
(
s, Z2(s)

)
dN(s)

∣
∣
∣
∣

2

≤ 5

∫ t

n

∣
∣
∣
∣
∂Qs

∂a

∣
∣
∣
∣

2

ds + 5

∫ t

n

∣
∣(1 – θ )f

(
s, Z1(s)

)
+ θ f

(
s, Z2(s)

)∣
∣2 ds

+ 5μ̄2

∫ t

n

∣
∣(1 – θ )Z1(s) + θZ2(s)

∣
∣2 ds + 5

∣
∣
∣
∣

∫ t

n

g
(
s, Z2(s)

)
dBH (s)

∣
∣
∣
∣

2

+ 10
∣
∣
∣
∣

∫ t

n

h
(
s, Z2(s)

)
dN̄(s)

∣
∣
∣
∣

2

+ 10λ2
∣
∣
∣
∣

∫ t

n

h
(
s, Z2(s)

)
ds

∣
∣
∣
∣

2

, (29)

where N̄(s) = N(s) – λs is a compensated Poisson process. Taking mathematical expecta-
tion and by assumptions (A1)–(A4), we have

E
∣
∣Qt – Z1(t)

∣
∣2 ≤ 5

∫ t

n

∣
∣
∣
∣
∂Qs

∂a

∣
∣
∣
∣

2

ds + 10

∫ t

n

[
E

∣
∣f

(
s, Z1(s)

)∣
∣2 + E

∣
∣f

(
s, Z2(s)

)∣
∣2]ds

+ 10μ̄2

∫ t

n

[
E

∣
∣Z1(s)

∣
∣2 + E

∣
∣Z2(s)

∣
∣2]ds

+ 10H
∫ t

n

s2H–1
E

∥
∥g

(
s, Z2(s)

)∥
∥2 ds

+ 10λ

∫ t

n

E
∣
∣h

(
s, Z2(s)

)∣
∣2 ds + 10λ2

∫ t

n

E
∣
∣h

(
s, Z2(s)

)∣
∣2 ds
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≤ 5

∫ t

n

∣
∣
∣
∣
∂Qs

∂a

∣
∣
∣
∣

2

ds + 10
(
l2 + μ̄2)

∫ t

n

E
∣
∣Z1(s)

∣
∣2 ds

+ 10
[


(
l2 + μ̄2) + l2(HT2H–1 + λ + λ2

)]
∫ t

n

E
∣
∣Z2(s)

∣
∣2 ds.

Since, for all t ∈ [n, (n + 1)), we have Z1(t) = Qn
t , Z2(t) = Qn∗

t , by Lemmas 3.3 and 3.4,
we get

E
∣
∣Qt – Z1(t)

∣
∣2 ≤ 5

∫ t

n

∣
∣
∣
∣
∂Qs

∂a

∣
∣
∣
∣

2

ds + 10
[


(
l2 + μ̄2) + l2(HT2H–1 + λ + λ2

)]
C3

+ 10
[


(
l2 + μ̄2) + C4

(


(
l2 + μ̄2) + l2(HT2H–1 + λ + λ2

))]
C2

:= C6, (30)

where C6 = 5
∫ t

n
| ∂Qs

∂a |2 ds + 10C3[(l2 + μ̄2) + l2(HT2H–1 + λ + λ2)] + 10C2[(l2 + μ̄2) +
C4((l2 + μ̄2) + l2(HT2H–1 + λ + λ2))]. Thus, we have proved (26), similarly, we can prove
(27). �

Remark 3.6 Lemma 3.5 indicates that the continuous-time approximation Qt in (7) can ar-
bitrarily close to the step functions Z1(t) and Z2(t) in the mean square sense when  → 0.

4 The main results and proofs
In this section, we give the main results of this paper and provide the detailed proofs by
using the lemmas in the previous section.

Theorem 4.1 Under assumptions (A1)–(A4), let 0 <  < min{1, 1
θ (l+μ̄) , 1

3
√

2(μ̄2+l2)
} for all

t ∈ [n, (n + 1)) ⊆ [0, T], there exists a constant C8 > 0 such that

E

[
sup

0≤t≤T
|Kt∧υn – Qt∧υn |2

]
≤ C8.

Proof The integral version of the first equation in system (1) is given as follows:

Kt = K0 –
∫ t

0

∂Ks–

∂a
ds –

∫ t

0
μ(a, s)Ks– ds +

∫ t

0
f (s, Ks– ) ds

+
∫ t

0
g(s, Ks– ) dBH (s) +

∫ t

0
h(s, Ks– ) dN(s). (31)

Combining (31) and (7), we can get

Kt – Qt = –
∫ t

0

∂(Ks – Qs)
∂a

ds –
∫ t

0
μ(a, s)

[
(1 – θ )

(
Ks – Z1(s)

)
+ θ (Ks – Z2(s)

]
ds

+
∫ t

0

[
(1 – θ )

(
f (s, Ks) – f

(
s, Z1(s)

))
+ θ

(
f (s, Ks) – f

(
s, Z2(s)

))]
ds

+
∫ t

0

[
g(s, Ks) – g

(
s, Z2(s)

)]
dBH (s) +

∫ t

0

[
h(s, Ks) – h

(
s, Z2(s)

)]
dN(s). (32)
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Applying Itô’s formula to |Kt – Qt|2, for ∀t ∈ [0, T], yields

|Kt – Qt|2 = 2
∫ t

0

〈

–
∂(Ks – Qs)

∂a
, Ks – Qs

〉

ds

– 2
∫ t

0

(
μ(a, s)

[
(1 – θ )

(
Ks – Z1(s)

)
+ θ

(
Ks – Z2(s)

)]
, Ks – Qs

)
ds

+ 2
∫ t

0

(
(1 – θ )

(
f (s, Ks) – f

(
s, Z1(s)

))
+ θ

(
f (s, Ks) – f

(
s, Z2(s)

))
, Ks – Qs

)
ds

+ 2
∫ t

0

(
g(s, Ks) – g

(
s, Z2(s)

)
, Ks – Qs

)
dBH (s)

+ 2H
∫ t

0
s2H–1∥∥g(s, Ks) – g

(
s, Z2(s)

)∥
∥2

2 ds

+ 2
∫ t

0

(
h(s, Ks) – h

(
s, Z2(s)

)
, Ks – Qs

)
dN̄(s)

+
∫ t

0

∣
∣h(s, Ks) – h

(
s, Z2(s)

)∣
∣2 dN̄(s)

+ 2λ

∫ t

0

(
h(s, Ks) – h

(
s, Z2(s)

)
, Ks – Qs

)
ds + λ

∫ t

0

∣
∣h(s, Ks) – h(s, Z2(s)

∣
∣2 ds.

Using the Cauchy–Schwarz inequality and (A2)–(A4), we have

|Kt – Qt|2 ≤ Aη2δ2
∫ t

0
|Ks – Qs|2 ds

+ 2μ0

∫ t

0
|Ks – Qs|

∣
∣(1 – θ )

(
Ks – Z1(s)

)
+ θ (Ks – Z2(s)

∣
∣ds

+ 2
∫ t

0
|Ks – Qs|

∣
∣(1 – θ )

(
f (s, Ks) – f

(
s, Z1(s)

))
+ θ

(
f (s, Ks) – f

(
s, Z2(s)

))∣
∣ds

+ 2
∫ t

0

(
g(s, Ks) – g

(
s, Z2(s)

)
, Ks – Qs

)
dBH (s)

+ 2H
∫ t

0
s2H–1∥∥g(s, Ks) – g

(
s, Z2(s)

)∥
∥2

2 ds

+ 2
∫ t

0

(
h(s, Ks) – h

(
s, Z2(s)

)
, Ks – Qs

)
dN̄(s)

+
∫ t

0

∣
∣h(s, Ks) – h

(
s, Z2(s)

)∣
∣2 dN̄(s)

+ 2λ

∫ t

0
|Ks – Qs|

∣
∣h(s, Ks) – h

(
s, Z2(s)

)∣
∣ds

+ λ

∫ t

0

∣
∣h(s, Ks) – h

(
s, Z2(s)

)∣
∣2 ds

≤ (
Aη2δ2 + μ0 + 1 + λ

)
∫ t

0
|Ks – Qs|2 ds + 2

(
μ0 + l2)

∫ t

0

∣
∣Ks – Z1(s)

∣
∣2 ds

+ 2
[
μ0 + l2(1 + λ + HT2H–1)]

∫ t

0

∣
∣Ks – Z2(s)

∣
∣2 ds
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+ 2
∫ t

0

(
g(s, Ks) – g

(
s, Z2(s)

)
, Ks – Qs

)
dBH (s)

+ 2
∫ t

0

(
h(s, Ks) – h

(
s, Z2(s)

)
, Ks – Qs

)
dN̄(s)

+
∫ t

0

∣
∣h(s, Ks) – h

(
s, Z2(s)

)∣
∣2 dN̄(s)

= l1

∫ t

0
|Ks – Qs|2 ds + l2

∫ t

0

∣
∣Ks – Z1(s)

∣
∣2 ds + l3

∫ t

0

∣
∣Ks – Z2(s)

∣
∣2 ds

+ 2
∫ t

0

(
g(s, Ks) – g

(
s, Z2(s)

)
, Ks – Qs

)
dBH (s)

+
∫ t

0

∣
∣h(s, Ks) – h

(
s, Z2(s)

)∣
∣2 dN̄(s)

+ 2
∫ t

0

(
h(s, Ks) – h

(
s, Z2(s)

)
, Ks – Qs

)
dN̄(s).

Hence, for any t ∈ [0, T], we have

E

[
sup

0≤s≤t
|Ks∧νn – Qs∧νn |2

]

≤ l1

∫ s∧νn

0
E sup

0≤r≤s
|Kr∧νn – Qr∧νn |2 dr

+ l2

∫ s∧νn

0
E sup

0≤r≤s

∣
∣Kr – Z1(r)

∣
∣2 dr + l3

∫ s∧νn

0
E sup

0≤r≤s

∣
∣Kr – Z2(r)

∣
∣2 dr

+ 2E sup
0≤s≤t

∫ s∧νn

0

(
g(r, Kr) – g

(
r, Z2(r)

)
, Kr – Qr

)
dBH (r)

+ 2E sup
0≤s≤t

∫ s∧νn

0

(
h(r, Kr) – h

(
r, Z2(r)

)
, Kr – Qr

)
dN̄(r)

+ E sup
0≤s≤t

∫ s∧νn

0

∣
∣h(r, Kr) – h

(
r, Z2(r)

)∣
∣2 dN̄(r). (33)

By the Burkholder–Davis–Gundy inequality and Lemma 3.5, we get

2E sup
0≤s≤t

∫ s∧νn

0

(
g(r, Kr) – g

(
r, Z2(r)

)
, Kr – Qr

)
dBH (r)

≤ CE

[

sup
0≤s≤t

|Ks∧νn – Qs∧νn |
(∫ s∧νn

0

∥
∥g(r, Kr) – g

(
r, Z2(r)

)∥
∥2

2 dBH(r)
) 1

2
]

≤ 1
6
E

[
sup

0≤s≤t
|Ks∧νn – Qs∧νn |2

]
+ l6

∫ s∧νn

0
r2H–1

E
∣
∣Kr – Z2(r)

∣
∣2 dr

≤ 1
6
E

[
sup

0≤s≤t
|Ks∧νn – Qs∧νn |2

]

+ 2l6T2H–1
∫ s∧νn

0
E|Kr – Qr|2 dr + 2l6C7T2H–1. (34)
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In the same way, we have

2E sup
0≤s≤t

∫ s∧νn

0

(
h(r, Kr) – h

(
r, Z2(r)

)
, Kr – Qr

)
dN̄(r)

≤ 1
6
E

[
sup

0≤s≤t
|Ks∧νn – Qs∧νn |2

]
+ 2l7

∫ s∧νn

0
E|Kr – Qr|2 dr + 2l7C7, (35)

E sup
0≤s≤t

∫ s∧νn

0

∣
∣h(r, Kr) – h

(
r, Z2(r)

)∣
∣2 dN̄(r)

≤ CE

[

sup
0≤s≤t

∫ s∧νn

0

∣
∣h(r, Kr) – h

(
r, Z2(r)

)∣
∣4 dr

] 1
2

≤ 1
6
E

[
sup

0≤s≤t

∣
∣Ks∧νn – Z2(s)

∣
∣2

]
+ l8

∫ s∧νn

0
E

∣
∣Kr – Z2(r)

∣
∣2 dr

≤ 1
3
E

[
sup

0≤s≤t
|Ks∧νn – Qs∧νn |2

]
+

1
3
E

[
sup

0≤s≤t

∣
∣Qs∧νn – Z2(s)

∣
∣2

]

+ 2l8

∫ s∧νn

0
E|Kr – Qr|2 dr + 2l8C7, (36)

where l6, l7, l8 > 0. Let l′′ = max{l6, l7, l8}, inserting (34)–(36) into (33), we obtain

E

[
sup

0≤s≤t
|Ks∧νn – Qs∧νn |2

]

≤ l1

∫ s∧νn

0
E sup

0≤r≤s
|Kr∧νn – Qr∧νn |2 dr

+ 2
[
l2 + l3 + l′′

(
T2H–1 + 2

)]
∫ s∧νn

0
E|Kr – Qr|2 dr

+
2
3
E

[
sup

0≤s≤t
|Ks∧νn – Qs∧νn |2

]
+ 2

[

l2C6 +
(

l3 + 3l′′ +
1
6

C7

)]

, (37)

i.e.,

E

[
sup

0≤s≤t
|Ks∧νn – Qs∧νn |2

]

≤ 3
[
l1 + 2

(
l2 + l3 + l′′

(
T2H–1 + 2

))]
∫ s∧νn

0
E sup

0≤r≤s
|Kr∧νn – Qr∧νn |2 dr

+ 6
[

l2C6 +
(

l3 + l′′T2H–1 + 2l′′ +
1
6

)

C7

]



:= D1 + D2

∫ s∧νn

0
E sup

0≤r≤s
|Kr∧νn – Qr∧νn |2 dr, (38)

where D1 = 6[l2C6 + (l3 + l′′T2H–1 + 2l′′ + 1
6 )C7], D2 = 3[l1 + 2(l2 + l3 + l′′(T2H–1 + 2))]. Using

the Gronwall inequality, we have

E

[
sup

0≤s≤t
|Ks∧νn – Qs∧νn |2

]
≤ D1 exp{D2T}, (39)
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where C8 = D1 exp{D2T}. Hence, for ∀t ∈ [0, T], we have

E

[
sup

0≤s≤t
|Ks∧νn – Qs∧νn |2

]
≤ C8. (40)

This completes the proof. �

Theorem 4.2 Under assumptions (A1)–(A4), let 0 <  < min{1, 1
θ (l+μ̄) , 1

3
√

2(μ̄2+l2)
}, then

there exists a constant C9 > 0 such that

E

[
sup

0≤t≤T
|Kt – Qt|2

]
≤ C9.

Proof Let et = Kt – Qt , we can directly obtain

E

[
sup

0≤t≤T
|et|2

]
= E

[
sup

0≤t≤T
|et|21{τn>T and σn>T}

]
+ E

[
sup

0≤t≤T
|et|21{τn≤T or σn≤T}

]

= E

[
sup

0≤t≤T
|et|21{νn>T}

]
+ E

[
sup

0≤t≤T
|et|21{τn≤T or σn≤T}

]

≤ E

[
sup

0≤t≤T
|et∧νn |2

]
+ E

[
sup

0≤t≤T
|et|21{τn≤T or σn≤T}

]
. (41)

Applying the Young inequality xy ≤ 1
p xp + 1

q yq ( 1
p + 1

q = 1, p, q > 0), we have

E

[
sup

0≤t≤T
|et|21{τn≤T or σn≤T}

]
≤ 

2
E

[
sup

0≤t≤T
|et|4

]
+

1
2

P{τn ≤ T or σn ≤ T}. (42)

Obviously,

E

[
sup

0≤t≤T
|et|4

]
≤ 8

(
E

[
sup

0≤t≤T
|Kt|4

]
+ E

[
sup

0≤t≤T
|Qt|4

])
≤ 8(C1 + C2). (43)

On the other hand,

P{τn ≤ T} = E

[

1{τn≤T}
|Kτn |4

n4

]

=
1
n4 E

[
sup

0≤t≤T
|Kt|4

]
≤ C1

n4

and

P{σn ≤ T} = E

[

1{σn≤T}
|Qτn |4

n4

]

=
1
n4 E

[
sup

0≤t≤T
|Qt|4

]
≤ C2

n4 .

So,

P{τn ≤ T or σn ≤ T} ≤ P{τn ≤ T} + P{σn ≤ T} ≤ C1 + C2

n4 . (44)

Substituting (43) and (44) into (42), we get

E

[
sup

0≤t≤T
|et|21{τn≤T or σn≤T}

]
≤ 4(C1 + C2) +

1
2n4 (C1 + C2). (45)
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By Theorem 4.1, (41) can be written

E

[
sup

0≤t≤T
|et|2

]
≤ C8 + 4(C1 + C2) +

1
2n4 (C1 + C2) + ◦(). (46)

Let n ≥ (242)– 1
4 , we get that

E

[
sup

0≤t≤T
|et|2

]
≤ C8 + 4(C1 + C2) + 2(C1 + C2)

= 
[
C8 + 6(C1 + C2)

]
:= C9, (47)

where C9 = C8 + 6(C1 + C2). �

Letting  → 0, yields

0 ≤ E

[
sup

0≤t≤T
|Kt – Qt|2

]
≤ 0,

which means

E

[
sup

0≤t≤T
|Kt – Qt|2

]
= 0.

Thus, we can obtain the following theorem.

Theorem 4.3 Under assumptions (A1)–(A4), let 0 <  < min{1, 1
θ (l+μ̄) , 1

3
√

2(μ̄2+l2)
}, then the

numerical solution will converge to the analytic solution to system (1) in the mean square
sense

lim
→0

E

[
sup

0≤t≤T
|Kt – Qt|2

]
= 0.

Proof The result of this theorem can be directly got by Theorem 4.2. �

Remark 4.4
(1) Theorem 4.2 shows that the value of θ has an effect on step size , and it further

affects the convergence of solution.
(2) Theorem 4.3 implies that the numerical solution and the analytic solution to system

(1) can arbitrarily close when step size  → 0.

5 Numerical experiments
In this section, we present an example to verify our theoretical results. Let us consider the
following stochastic age-dependent capital system with Poisson jumps and fBm:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂K (a,t)
∂t = [– ∂Kt–

∂a – 1
1–a Kt– ] dt + Kt– dBH (t) – Kt– dN(t), (a, t) ∈ (0, A) × (0, T),

K(0, t) =
∫ 1

0
1

(1–a)2 K(a, t) da, t ∈ [0, T],

K(a, 0) = exp (1/(a – 1)), a ∈ [0, A],

N(t) =
∫ 1

0 K(a, t) da, t ∈ [0, T],

(48)
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where BH(t) is a fBm with Hurst parameter H = 3
4 , and N(t) is a scalar Poisson process with

intensity λ = 1. Take A = 1, T = 1 in (48), and W = L2([0, 1]), V = H1([0, 1]) (a Sobolev space
with elements satisfying the boundary conditions above), the depreciation rate μ(a, t) =

1
1–a , γ (t)A(t) = 1, the production function F(L(t), N(t)) = 2

∫ 1
0 K(a, t) da, the labor force

L(t) = 2, f (t, K) = 0, g(t, K) = K , and h(t, K) = –K .
It is easy to verify that operators f , g , and h satisfy conditions (A1)–(A4). Then the ap-

proximate solution will converge to the true solution of Eq. (48) for any (a, t) ∈ (0, 1)×(0, 1)
according to Theorem 4.3. Figures 1 and 2 are numerical simulations of the stochastic cap-

Figure 1 Expectation simulation by the SSθ method with θ = 0.4, 0.6, 0.8 respectively for a stochastic
age-dependent capital system with Poisson jumps and fBm (H = 3

4 )

Figure 2 Error square simulation by the SSθ method with θ = 0.4, 0.6, 0.8 respectively for a stochastic
age-dependent capital system with Poisson jumps and fBm (H = 3

4 )
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ital system with Poisson jumps and fractional Brownian motion (fBm) when t = 0.001,
a = 0.01, and K(a, t) = EQ(a, t) = 1/1000

∑1000
k=1 Qk(a, t). It is difficult to obtain the true

explicit solution to (48), so the analysis solution K(a, t) to Eq. (48) can be replaced by
(1 + a)(1 + 0.01BH

t + 0.01Nt).
In Fig. 1, we plot the analysis solution and numerical solution of (48) with θ = 0.4, 0.6, 0.8

respectively. The analysis solution of Eq. (48) without perturbation is EK(a, t) = 1 – a, and
we can easily find that the numerical approximation will tend to the analysis solution in
the mean sense.

In Fig. 2, we show the error square of analysis solution and numerical solution obtained
from the SSθ method with θ = 0.4, 0.6, 0.8 respectively. It is easy to verify that the maxi-
mum value of the error square for the SSθ approximation is not greater than 0.01, which
is smaller than the error of the EM method [3] and the SSBE method [4].

6 Conclusion
The uncertainty factors in the financial market are usually fluctuating, discontinuous, and
recurrent, and these important factors contain technological progress, productivity of new
products, natural disasters, changes in laws and government policies, and so on. As we all
known, the aforementioned factors have essential effects on the profitability of risky as-
sets. In order to resolve this problem, we introduce a class of stochastic age-dependent
capital systems with Poisson jumps and fBm in this paper. Nevertheless, most stochastic
age-dependent capital models are nonlinear and cannot be solved explicitly, so appropri-
ate numerical approximation schemes are needed to study the properties of models. In
this paper, we have established some new results on the convergence of the split-step θ -
method for system (1) and proved that the numerical approximation solutions converge to
the analytic solutions of the equations under the given conditions. Meanwhile, the order
of approximation is also provided. Finally, an example has effectively demonstrated our
theoretical results.

There are still many interesting issues to be studied in future. For example, how to se-
lect the value of θ to make the error small? Whether we can apply other new numerical
methods to system (1) and obtain similar results? We leave these problems for future in-
vestigations.
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