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Abstract
In this research article, we focus on the system of linear Volterra fuzzy
integro-differential equations and we propose a numerical scheme using the
variational iteration method (VIM) to get a successive approximation under
uncertainty aspects. We have

Uj(t) = f (t) +
∫ t

a
k(t, x)u(x)dx, (1)

where j refers to the jth order of the integro-differential equation and j = 1, 2, 3, . . . ,n.
k(t, x) are integral kernel and a function of t andx, which arise in mathematical biology,
physics and more. The variational iteration technique gives the more accurate results
at the very small cost of iterations leading to exact solutions quickly. The benefits of
the proposal, an algorithmic form of the VIM, are also designed. To illustrate the
potentiality of the scheme, two test problems are given and the approximate
solutions are compared with the exact solution and also represented graphically.
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1 Introduction
The relationship between physical quantities and their rate of changes is named a sys-
tem of differential equations. Integral and integro-differential equations with fuzzy primal
conditions have led to many practical approaches and are essential tools for various real-
world problems in science and engineering. These arise in mathematical biology models,
chemical engineering, and fluid dynamics. Many others utilized a variety of approach for
the fuzzy system of Volterra integro-differential equations based on a bloodline of differ-
ential inclusions. Fuzzy differential equations have been suggested as a way of modeling
uncertain and incompletely specified systems and were studied by many researchers [7,
11, 13, 15, 17, 19, 20]. Nowadays, the examination of linear and nonlinear dynamical sys-

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1829-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1829-y&domain=pdf
mailto:snm_phd@yahoo.co.in


Narayanamoorthy and Mathankumar Advances in Difference Equations        (2018) 2018:394 Page 2 of 15

tems with uncertainty aspects is a rapid development and is concerned with world wide
studied phenomena.

Now, we consider the system of linear Volterra integro-differential equation of such a
form that Eq. (1) can be rewritten as

Uj
i (t) = fi(t) +

j∑
h=1

Fi,h
(
t, u1(t), . . . , uj

n(t)
)

+
j∑

h=1

∫ t

0
ki,h(t, x)Gi,h

(
u1(t), . . . , uj

n(t)
)

dx, 0 ≤ t ≤ 1, (2)

where ki,h(t, x) is an arbitrary kernel function over {(t, x) : 0 ≤ t ≤ x ≤ 1}, j ∈ Z+, fi(t) and
ui(t) are known functions of {t : 0 ≤ t ≤ 1}, Fi,h and Gi,h are linear or nonlinear functions
and i = 1, 2, . . . , n. If fi(t) is a crisp function then the solutions of Eq. (2) are crisp as well. If
f (t, r) is a fuzzy function then the above equation may only possess a fuzzy solution, and
this solution is a fuzzy function on the interval r ∈ [0, 1].

In general, many real-world experiments rarely can be expected to be close to an analyt-
ical solution, so an efficient approximate method has to be developed. An iterative tech-
nique can explore the output of the dynamical systems that were closer to the exact result.
Recently, many researchers have utilized approximate techniques like He’s variational iter-
ation, Adomian’s decomposition, Laplace transforms, homotopy perturbation techniques
and others [1, 3, 5, 6, 8, 10, 14, 21]. Here we mainly concentrate on the variational iterative
technique by which we study the solution of a linear Volterra fuzzy integro-differential
system. The variational iteration technique has been extensively applied in recent years
by numerous researchers [9]. Starting from the pioneer ideas of the Inokuti Sekine Mura
method [14], Ji Huan He [12] developed the variational iteration technique. In this tech-
nique the output comes out more accurately and closer to the exact results of the Volterra
fuzzy integro-differential system.

Furthermore, we explained and successfully applied the variational iteration technique
to evaluate a class of linear Volterra fuzzy integro-differential equations; this technique
gives a better accuracy of the solution. This research article is organized as follows: in
Sect. 2, we provide some basic concepts, definition, and background on fuzzy numbers and
fuzzy differential equations. In Sect. 3, we explain the variational iterative technique and
successfully demonstrate the linear Volterra fuzzy integro-differential system. In Sect. 4,
we prepare two examples of the linear Volterra fuzzy integro-differential system, and for
the technique we show the high accuracy of the results. Finally, we draw conclusions using
the approximate results and exact solutions.

2 Basic concepts and definitions
In this section, we present the most basic ideas, definitions and useful results, which are
used throughout this article [2, 4, 16, 22–24].

Definition 1 Let U , V ∈ F(R). If there exists W ∈ F(R), such that U = V + W , then W is
called the Hukuhara difference of U and V and it is denoted by U � V .

Definition 2 Let X be a non-empty set, a fuzzy set A ∈ X is characterized by its mem-
bership μA : X → [0, 1] and μA(x) is interpreted as the degree of membership of element
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x in fuzzy set A for each x ∈ X. It is clear that A is determined by the set of tuples
A = (x,μA(x))|x ∈ X.

Definition 3 Let g : R → F be a fuzzy-valued function. If for arbitrary fixed u0 ∈ R and
ε > 0, δ > 0 such that

|u – u0| < δ ≥ D
(
g(u), g(u0)

)
< ε,

g is said to be continuous.

Definition 4 Given a fuzzy set A defined on X and a number α ∈ [0, 1], the α-cut, Aα and
the strong α-cut, Aα+, are the crisp sets

Aα =
{

x | A(x) ≥ α
}

,

Aα+ =
{

x | A(x) > α
}

.

Unlike in the conventional set theory, the convexity of fuzzy sets refers to properties of
the membership function rather than to the support of a fuzzy set.

Definition 5 An arbitrary fuzzy number in parametric form is represented by an ordered
pair of functions (ul(r), uu(r)), r ∈ [0, 1], which satisfy the following requirements:

1. ul(r) is a bounded left continuous non-decreasing function over [0, 1],
2. uu(r) is a bounded left continuous non-increasing function over [0, 1],
3. ul(r) ≤ uu(r), r ∈ [0, 1].

Definition 6 A function f : R → F is said to be fuzzy function. Suppose that f : R → F
and let u0 ∈ R, the derivative f ′(u0) of f at the point u0 is defined by

f ′(u0) = lim
h→0

f (u0 + h) – f (u0)
h

.

Definition 7 A fuzzy set A is the triangular fuzzy number with peak a, left width α > 0
and right β > 0, if its membership function has the following form:

μ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 – a–x
α

if a – α < x < α,

1 – x–a
β

if a < x < α + β ,

0 otherwise.

3 System of Volterra fuzzy integro-differential equations
In this section, the Volterra fuzzy integro-differential equations are discussed and we use
uncertain primal conditions (Definitions 3, 4 and 5). We have

Uj(x) = f (x) +
∫ x

a
k(x, t)U(t) dt, (3)

V j(x) = g(x) +
∫ x

a
k(x, t)V (t) dt, (4)
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where j refers to the jth order of the fuzzy integro-differential equations j = 1, 2, 3, . . . , a
refers to a constant and x is a variable. If f (x), g(x) both are a crisp function, then we have
the solutions of Eqs. (3) and (4)

∫ x

a
f (x; r) dt =

∫ x

a
f (x; r) dt,

∫ x

a
f (x; r) dt =

∫ x

a
f (x; r) dt,

∫ x

a
g(x; r) dt =

∫ x

a
g(x; r) dt,

∫ x

a
g(x; r) dt =

∫ x

a
g(x; r) dt,

where (f (x; r), f (x; r)), (g(x; r), g(x; r)) is the parametric form of f (x), g(x). If f (x), g(x) is a
fuzzy function the above equations are processes leading to fuzzy solutions.

Let U : I → E1 be a fuzzy-valued function. Then the
∫

I U(t) dt,
∫ b

a U(t) dt is defined
by [

∫
I U(t) dt]r =

∫
I Ur dt = {∫I U(t) dt|u :→ R| is measurable function for Ur} for every r =

[0, 1] (Definition 6).
Then the parametric form of the Volterra fuzzy integro-differential equations is as fol-

lows (Definitions 1 and 2).
Let (f (x; r), f (x; r)), (g(x; r), g(x; r)) and (U(t; r), U(t; r)), (V (t; r), V (t; r)) is the parametric

form of f (x), g(x) and U(t), V (t), respectively, and 0 ≤ r ≤ 1. Then the parametric form of
the Volterra fuzzy integro-differential equations is denoted by

Uj(x; r) = f (x; r) +
∫ x

a
k(x, t)U(t; r) dt, (5)

Uj(x; r) = f (x; r) +
∫ x

a
k(x, t)U(t; r) dt, (6)

V j(x; r) = g(x; r) +
∫ x

a
k(x, t)V (t; r) dt, (7)

V j(x; r) = g(x; r) +
∫ x

a
k(x, t)V (t; r) dt, (8)

where

k(x, t)U(t; r) =

⎧⎨
⎩

k(x, t)U(t; r), k(x, t) ≥ 0,

k(x, t)U(t; r), k(x, t) < 0,

k(x, t)U(t; r) =

⎧⎨
⎩

k(x, t)U(t; r), k(x, t) ≥ 0,

k(x, t)U(t; r), k(x, t) < 0,

and

k(x, t)V (t; r) =

⎧⎨
⎩

k(x, t)V (t; r), k(x, t) ≥ 0,

k(x, t)V (t; r), k(x, t) < 0,
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k(x, t)V (t; r) =

⎧⎨
⎩

k(x, t)V (t; r), k(x, t) ≥ 0,

k(x, t)V (t; r), k(x, t) < 0,

for 0 ≤ r ≤ 1. Suppose k(x, t) is persisting in a ≤ t ≤ b and for fixed x, and we take f (x; r) =
[f (x; r), f (x; r)], U(t; r) = [G[u(t; r), u(t; r)], H[u(t; r), u(t; r)]], V (t; r) = [I[v(t; r), v(t; r)],
J[v(t; r), v(t; r)]], where r = [0, 1] then we have the form

Uj(x; r) = f (x; r) +
∫ x

a
k(x, t)G

[
u(t; r), u(t; r)

]
dt, (9)

Uj(x; r) = f (x; r) +
∫ x

a
k(x, t)H

[
u(t; r), u(t; r)

]
dt, (10)

V j(x; r) = g(x; r) +
∫ x

a
k(x, t)I

[
v(t; r), v(t; r)

]
dt, (11)

V j(x; r) = g(x; r) +
∫ x

a
k(x, t)J

[
v(t; r), v(t; r)

]
dt, (12)

where u(t; r), v(t; r) are fuzzy functions.

4 Proposed scheme for solving system of linear Volterra fuzzy
integro-differential equations—variational iterative technique

In this section, we demonstrate the basic concept of the technique for evaluating a class
of linear Volterra fuzzy integro-differential equations, we consider the following general
differential equation:

Lu(t) + Nu(t) = q(t),

where L, N are linear and nonlinear operators, respectively, and q(t) is the source’s inho-
mogeneous term. Assuming u0(t) is an appropriate solution of the linear, homogeneous
equation

Lu0(t) = 0

which depends on the conditions. According to the variational iteration technique [3, 18],
we can construct a correct functional as follows:

un+1(t) = un(t) +
∫ t

0
λ
(
Lun(ζ ) + Nũn(ζ ) – g(ζ )

)
dζ , n = 0, 1, 2, . . . . (13)

Here u0 is an initial approximation that satisfies the primal conditions, from the varia-
tional theory of λ can be identified optimally and it is a general Lagrange multiplier [14].
The subscript n refers to the nth approximation, ũn is considered as a restricted variation
i.e., δun = 0. One is required first to determine the Lagrange multiplier λ optimally. The
successive approximation un+1, n ≥ 0, of the solution u will be readily obtained upon us-
ing the determined Lagrange multiplier and any selective function u0, consequently, the
solution is given by

u = lim
n→∞ un.

Then we have the existence of a unique solution to Eqs. (3) and (4).
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Theorem 1 Let U(x), Un(x) ∈ [0, 1], n = 0, 1, 2, . . . . The sequence defined by Eq. (13) with
U(0)(x) = U0 converges to U(x), the exact solution of Eqs. (3) and (4).

Proof Obviously from Eqs. (3) and (4) we have

Un+1(x) = Un(x) +
∫ x

0
λ
(
U ′

n(ζ ) – BU(ζ )
)

dζ ,

where λ = (–1)m

(m–1)! (ζ – t)m–1 = (–1)e–(ζ–t), n = 0, 1, 2, . . . , by using the fact that Un(0), n =
0, 1, 2, . . . ,

Un+1(x) = Un(x) –
∫ x

0
e–(ζ–t)(U ′

n(ζ ) – BU(ζ )
)

dζ , (14)

and using integration by parts and we conclude that

= Un(x) –
∫ x

0
e(ζB)+t d

dζ
e–(ζB)Un(ζ ) dζ

= A
∫ x

0
e–(ζ–t)Un(ζ ) dζ .

Therefore

∥∥Un+1(x)
∥∥ ≤ ‖A‖

∫ x

0

∥∥e–(ζ–t)∥∥∥∥Un(ζ )
∥∥dζ .

Let us consider C = ‖A‖‖e–(ζ–t)‖; then we have

∥∥Un+1(x)
∥∥ ≤ C

∫ x

0

∥∥Un(ζ )
∥∥dζ .

Now we proceed as follows:

∥∥U1(x)
∥∥ ≤ C

∫ x

0

∥∥U0(ζ )
∥∥dζ = C Max

∥∥U0(ζ )
∥∥

∫ x

0
dζ = C Max

∥∥U0(ζ )
∥∥x,

∥∥U2(x)
∥∥ ≤ C

∫ x

0

∥∥U1(ζ )
∥∥dζ = C

∫ x

0
Max

∥∥U0(ζ )
∥∥ζ dζ = C2 Max

∥∥U0(ζ )
∥∥x2

2!
,

∥∥U3(x)
∥∥ ≤ C

∫ x

0

∥∥U2(ζ )
∥∥dζ = C

∫ x

0
Max

∥∥U0(ζ )
∥∥ζ dζ = C3 Max

∥∥U0(ζ )
∥∥x3

3!
,

...

∥∥Un(x)
∥∥ ≤ C

∫ x

0

∥∥Un–1(ζ )
∥∥dζ = Cn

∫ x

0
Max

∥∥U0(ζ )
∥∥ (ζ )m–1

(m – 1)!
dζ

= Max
∥∥U0(ζ )

∥∥ (Cx)n

n!
→ 0,

and hence as n → ∞ we have Max‖U0(ζ )‖ (Cx)n

n! → 0, then U0(x) = U0 converges. �
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To determine Eqs. (3) and (4) by utilizing the variational iteration method, we build the
correction function as follows:

un+1(x, r) = un(x, r) +
∫ x

0
λ

[
Uj

n(τ ; r) – f (τ ; r) –
∫ τ

a
k(τ , t)G

[
ũn(t; r), ũn(t; r)

]
dt

]
dτ ,

un+1(x, r) = un(x, r) +
∫ x

0
λ

[
Uj

n(τ ; r) – f (τ ; r) –
∫ τ

a
k(τ , t)H

[
ũn(t; r), ũn(t; r)

]
dt

]
dτ ,

and

vn+1(x, r) = vn(x, r) +
∫ x

0
λ

[
V j

n(τ ; r) – g(τ ; r) –
∫ τ

a
k(τ , t)I

[
ṽn(t; r), ṽn(t; r)

]
dt

]
dτ ,

vn+1(x, r) = vn(x, r) +
∫ x

0
λ

[
V j

n(τ ; r) – g(τ ; r) –
∫ τ

a
k(τ , t)J

[
ṽn(t; r), ṽn(t; r)

]
dt

]
dτ ,

where λ is for a Lagrange multiplier, which can be optimally defined via variational theory,

∫ τ

a
k(τ , t)G

[
ũn(t; r), ũn(t; r)

]
dt,

∫ τ

a
k(τ , t)H

[
ũn(t; r), ũn(t; r)

]
dt,

∫ τ

a
k(τ , t)I

[
ṽn(t; r), ṽn(t; r)

]
dt,

∫ τ

a
k(τ , t)J

[
ṽn(t; r), ṽn(t; r)

]
dt

are restricted variations, i.e., δũ = 0, δṽ = 0;

δun+1(x, r) = δun(x, r) + δ

∫ x

0
λ

[
Uj

n(τ ; r) – f (τ ; r)

–
∫ τ

a
k(τ , t)G

[
ũn(t; r), ũn(t; r)

]
dt

]
dτ ,

= δun(x, r) + δ

∫ x

0
λ
[
Uj

n(τ ; r)
]

dτ , (15)

δvn+1(x, r) = δvn(x, r) + δ

∫ x

0
λ

[
V j

n(τ ; r) – g(τ ; r)

–
∫ τ

a
k(τ , t)I

[
ṽn(t; r), ṽn(t; r)

]
dt

]
dτ ,

= δvn(x, r) + δ

∫ x

0
λ
[
V j

n(τ ; r)
]

dτ . (16)

This implies that the stationary conditions of the correction function can be determined
as

λ = (–1)j (τ – x)(k–1)

(k – 1)!
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and from the result, we obtain the following iteration formula:

un+1(x, r) = un(x, r)

+
∫ x

0
(–1)j (τ – x)(k–1)

(k – 1)!

[
Un(τ ; r) – f (τ ; r)

–
∫ τ

a
k(τ , t)G

[
ũ(t; r), ũ(t; r)

]
dt

]
dτ , (17)

un+1(x, r) = un(x, r)

+
∫ x

0
(–1)j (τ – x)(k–1)

(k – 1)!

[
Un(τ ; r) – f (τ ; r)

–
∫ τ

a
k(τ , t)H

[
ũ(t; r), ũ(t; r)

]
dt

]
dτ , (18)

and

vn+1(x, r) = vn(x, r)

+
∫ x

0
(–1)j (τ – x)(k–1)

(k – 1)!

[
V n(τ ; r) – g(τ ; r)

–
∫ τ

a
k(τ , t)I

[
ṽ(t; r), ṽ(t; r)

]
dt

]
dτ , (19)

vn+1(x, r) = vn(x, r)

+
∫ x

0
(–1)j (τ – x)(k–1)

(k – 1)!

[
V n(τ ; r) – g(τ ; r)

–
∫ τ

a
k(τ , t)J

[
ṽ(t; r), ṽ(t; r)

]
dt

]
dτ , (20)

and we assume that the iteration formula starts with an initial approximation, [u0(x; r),
u0(x; r)], [v0(x; r), v0(x; r)].

5 Illustrative examples
Now, we apply the proposed approximation technique by evaluating the system of lin-
ear Volterra fuzzy integro-differential equations, our solutions of the variational iteration
method and the demonstration are given in Sect. 4, convert to the numerical variational
iteration algorithm is drawn in this section. Its application of the linear Volterra fuzzy
integro-differential system is demonstrated.

Algorithm
Step 1: Choose and initiate the initial conditions u(x; r), v(x; r), i.e., u0 = u(x = 0).
Step 2: Compute Eqs. (17) to (20) by using the calculated values of u0.
Step 3: If (un+1(t; r) – un(t; r)) (vn+1(t; r) – vn(t; r)) is an approximate solution, and go to

Step 4, else go to Step 2.
Step 4: Print the successive solutions of u, v.

In the forthcoming two illustrations, we utilize our variational iteration algorithm to get
more efficiency and accuracy of the linear Volterra fuzzy integro-differential system.
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Example 1 Now, we consider the linear Volterra fuzzy integro-differential system, with
the functions k(x; t) = x – t, a = 0, f (x; r) = 2x2, g(x; r) = –3x2 – 1

10 x5,

G
[
u(t; r), u(t; r)

]
= u(t; r) – v(t; r), H

[
u(t; r), u(t; r)

]
= u(t; r) – v(t; r),

I
[
v(t; r), v(t; r)

]
= u(t; r) + v(t; r), and J

[
v(t; r), v(t; r)

]
= u(t; r) + v(t; r).

Then Eqs. (9) to (12) can be written in the form
⎧⎨
⎩

u′(x; r) = 2x2 +
∫ x

0 (x – t)(u(t; r) – v(t; r)) dt,

u′(x; r) = 2x2 +
∫ x

0 (x – t)(u(t; r) – v(t; r)) dt,
⎧⎨
⎩

v′(x; r) = –3x2 – 1
10 x5 +

∫ x
0 (x – t)(u(t; r) + v(t; r)) dt,

v′(x; r) = –3x2 – 1
10 x5 +

∫ x
0 (x – t)(u(t; r) + v(t; r)) dt,

then the system is subject to the triangular fuzzy initial conditions (Definition 7),
ul,u(x; r) = [0, 1, 2], vl,u(x; r) = [0, 1, 2], 0 ≤ r ≤ 1. The exact solutions of this illustration
are given by

U(x; r) = 1 + x3, V (x; r) = 1 – x3.

Now, we begin with the primal approximation

u0 = r +
2x3

3
+ · · · , u0 = 2 – r +

2x3

3
+ · · · and

v0 = r – x3 + · · · , v0 = 2 – r – x3 + · · · ,

and using the above iteration formula, we obtain the successive iterations by using Math-
ematica Package 10.0.

Error analysis The absolute errors are computed as

E(x; r) =
∣∣U(x; r) – u(x; r)

∣∣,
E(x; r) =

∣∣U(x; r) – u(x; r)
∣∣ and

E(x; r) =
∣∣V (x; r) – v(x; r)

∣∣,
E(x; r) =

∣∣V (x; r) – v(x; r)
∣∣.

The numerical results of the obtained approximate solutions are compared with the
exact solutions for different r-values and errors are presented in Table 1. Moreover, exact
and approximate solutions are shown graphically in Figs. 1 and 2, the x-variation is also
displayed in Figs. 3 and 4.

Example 2 Now, we concentrate on another linear Volterra fuzzy integro-differential sys-
tem, with the functions k(x; t) = 1, a = 0, f (x; r) = 1 + x2 + ex, g(x; r) = 3 – 3ex,

G
[
u(t; r), u(t; r)

]
= u(t; r) + v(t; r), H

[
u(t; r), u(t; r)

]
= u(t; r) + v(t; r),

I
[
v(t; r), v(t; r)

]
= u(t; r) – v(t; r), and J

[
v(t; r), v(t; r)

]
= u(t; r) – v(t; r)
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Table 1 The error analysis of U, V at x = 0.5

r U(x; r) at t = 0.5 V(x; r) at t = 0.5

E(x; r) E(x; r) E(x; r) E(x; r)

0 0.0000 0.0147 0.0000 0.0153
0.1 0.0007 0.0140 0.0008 0.0145
0.2 0.0015 0.0132 0.0015 0.0138
0.3 0.0022 0.0125 0.0023 0.0130
0.4 0.0029 0.0118 0.0031 0.0122
0.5 0.0037 0.0110 0.0038 0.0115
0.6 0.0044 0.0103 0.0046 0.0107
0.7 0.0051 0.0096 0.0054 0.0099
0.8 0.0059 0.0088 0.0061 0.0092
0.9 0.0066 0.0081 0.0069 0.0084
1 0.0073 0.0073 0.0077 0.0077

Figure 1 Comparing the exact and approximate solutions of U and u at x = 0.5

Figure 2 Comparing the exact and approximate solutions of V and v at x = 0.5
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Figure 3 x variations of U and u at r = 0.5

Figure 4 x variations of V and v at r = 0.5

then Eqs. (9) to (12) can be written in the form

⎧⎨
⎩

u′(x; r) = 1 + x2 + ex +
∫ x

0 (x – t)(u(t; r) + v(t; r)) dt,

u′(x; r) = 1 + x2 + ex +
∫ x

0 (x – t)(u(t; r) + v(t; r)) dt,
⎧⎨
⎩

v′(x; r) = 3 – 3ex +
∫ x

0 (x – t)(u(t; r) – v(t; r)) dt,

v′(x; r) = 3 – 3ex +
∫ x

0 (x – t)(u(t; r) – v(t; r)) dt,

then the system is subject to the triangular fuzzy initial conditions (Definition 7),
ul,u(x; r) = [0, 1, 2], vl,u(x; r) = [0, 1, 2], 0 ≤ r ≤ 1. The exact solutions of this illustration
is given by

U(x; r) = 1 + ex, V (x; r) = 1 – ex.
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Now, we begin with the primal approximation

u0 = –1 + ex + r + · · · , u0 = 1 + ex – r + · · · and

v0 = 3 – 3ex – r + · · · , v0 = 2 – r – x3 + · · · ,

and using the above iteration formula, we obtain the successive iterations by using Math-
ematica Package 10.0.

Error analysis The absolute errors are computed as

E(x; r) =
∣∣U(x; r) – u(x; r)

∣∣,
E(x; r) =

∣∣U(x; r) – u(x; r)
∣∣ and

E(x; r) =
∣∣V (x; r) – v(x; r)

∣∣,
E(x; r) =

∣∣V (x; r) – v(x; r)
∣∣.

Table 2 The error analysis of U, V at x = 0.5

r U(x; r) at t = 0.5 V(x; r) at t = 0.5

E(x; r) E(x; r) E(x; r) E(x; r)

0 0.0000 0.0217 0.0000 0.0053
0.1 0.0011 0.0206 0.0003 0.0050
0.2 0.0022 0.0195 0.0005 0.0048
0.3 0.0033 0.0184 0.0008 0.0045
0.4 0.0043 0.0174 0.0011 0.0042
0.5 0.0054 0.0163 0.0013 0.0040
0.6 0.0065 0.0152 0.0016 0.0037
0.7 0.0076 0.0141 0.0019 0.0034
0.8 0.0087 0.0130 0.0021 0.0032
0.9 0.0098 0.0119 0.0024 0.0029
1 0.0108 0.0108 0.0026 0.0026

Figure 5 Comparing the exact and approximate solutions of U and u at x = 0.5
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Figure 6 Comparing the exact and approximate solutions of V and v at x = 0.5

Figure 7 x variations of U and u at r = 0.5

Figure 8 x variations of V and v at r = 0.5
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The numerical results of the obtained approximate solutions are compared with the
exact solutions for different r-values and errors are presented in Table 2. Moreover, exact
and approximate solutions are shown graphically in Figs. 5 and 6, the x-variation is also
displayed in Figs. 7 and 8. It is clear that we obtain the minimum rate of computation and
also get the high accuracy of the result.

6 Conclusion
Recently, many computer programs and techniques have been highly developed for these
types of problems, but their scientific discipline basis is for a great deal insufficiently ap-
preciated, and the proposed technique is well known as regards the accurate effect of the
tomography results. In this research, He’s variational iteration technique is successfully ap-
plied on demonstrating results of the Volterra fuzzy integro-differential systems. Utilizing
this technique is to quickly lead to the exact result within the minimum rate of iterations
and is a very effective tool for evaluating the solutions. The illustrative approaches are
tested by the variational iteration technique (by using Mathematica Package 10.0).
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