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Abstract
In this work, the classical (1 + 1)-dimensional Klein–Gordon–Schrödinger (KGS) system
is studied. The ansatz and the homogeneous balance principle are employed in
searching for particular soliton solutions, such as bright and dark solitons. Regrettably,
dark solitons cannot be captured. However, this procedure leads to a series of new
singular solitons and explicit periodic wave solutions.
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1 Introduction
For an atomic nucleus in nonlinear media, its internal wave evolution is of considerable
interest for many applications in science and modern industry technology (see, e.g., [1, 2]).
Mathematical theory of propagation of a nonlinear wave for a nucleon field interacting
with a neutral meson field is often based on the study of the so-called Klein–Gordon–
Schrödinger (KGS) system which has the form

iut +
1
2

uxx = –nu, (1.1)

ntt – nxx + M2n = |u|2, (1.2)

where u(x, t) denotes the conserved complex nucleon field, and n(x, t) represents the real
scalar meson field. This system describes the dynamics of a nucleon field interacting with
a neutral meson field through the Yukawa coupling [1]. Up to now, there is a series of work
on global existence and asymptotic behavior for this system (1.1)–(1.2) in different topol-
ogy spaces [3–9]. However, in recent years, modern physics has shown increased interest
from different experimental and theoretical groups in the study of the exact solutions. The
construction of exact and analytical traveling wave solutions of a nonlinear system is one
of the most important and essential tasks in quantum mechanics and chaos theory [10],
as these solutions describe very well the various physical phenomena, such as vibrations,
solitons, and propagation with a finite speed. To this end, many reliable methods have
been developed [11–17], and many interesting research results were reported.

For KGS system, Li–Yang–Wang [14] and Wang–Zhou [12] investigated the periodic
wave solutions by using F-expansion method, and Wang–Xia [18] applied Exp-function
method to get some generalized solitary wave solutions. Based on a series hypothesis,
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Darwish [13] has recently obtained multiple exact explicit solutions of the KGS system
(1.1)–(1.2). However, to the best of our knowledge, there are few report on the existence
of some particular physical waves, such as bright and dark solitons [19]. The main reason
is that these methods always omit the original properties of this system.

Our original purpose in this paper is to find a particular type solitary wave solution.
For this, we assume that the solution (u, n) for the system (1.1)–(1.2) has the form u =
f (τ )p1 exp{iφ} and n = g(τ )p2 , respectively, where both f (τ ) and g(τ ) are the basis wave
functions, p1 and p2 will be determined later by balancing the coefficients. In this paper we
explicitly obtain the bright 1-solitons and the bell-shaped regular solitons with the appro-
priate choice of f and g . Moreover, taking into account the superposition of wave compo-
nents, we also get the interacting wave (u, n) having the form u = [f1(τ )p1 + f2(τ )p1 ] exp{iφ}
and n = g1(τ )p2 + g2(τ )p2 , respectively. It is regretful that the usual dark soliton cannot
be derived, because it strongly depends on the coefficients for Yukawa interaction terms.
But fortunately, it may induce a large class of periodic wave solutions that would not be
provided by the exposed standard methods.

2 Mathematical analysis
In order to solve (1.1)–(1.2) using the traveling wave hypothesis, it is assumed that

u(x, t) = f (τ )p1 exp{iφ}, n(x, t) = g(τ )p2 , (2.1)

where f (τ ) and g(τ ) represent the solitary wave profiles, τ = Bη = B(x – vt) and φ = –κx +
ωt + θ . Here v is the velocity of soliton and B is the inverse width of the soliton. Also κ

is the frequency of the soliton, while ω is the wave number of the soliton and θ is the
phase constant. The exponents p1 and p2 are unknown real constants at this point and
their values will appear in the process of deriving the solution of this model. Substituting
the derivatives of u, n into equation (1.1) and decomposing into real and imaginary parts,
respectively, we have

–Bp1(v + κ)f (τ )p1–1f ′(τ ) = 0 (2.2)

and

(
–ω –

κ2

2

)
f (τ )p1 +

1
2

B2p1(p1 – 1)f (τ )p1–2f ′(τ )2

+
1
2

B2p1f (τ )p1–1f ′′(τ ) + f (τ )p1 g(τ )p2 = 0, (2.3)

while equation (1.2) reduces to

p2(p2 – 1)B2(v2 – 1
)
g(τ )p2–2g ′(τ )2

+ p2B2(v2 – 1
)
g(τ )p2–2g ′′(τ ) + M2g(τ )p2 – f (τ )2p1 = 0. (2.4)

In (2.2), as a necessary condition, v = –κ is restricted to avoid the trivial solution. In the
next section, we mainly treat the rest equations (2.3) and (2.4) in different cases.
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3 Solitary wave
In this section we consider the regular solitary wave for the KGS system (1.1)–(1.2) and
present some particular solutions which play important roles in the physical traveling wave
theory.

The first investigation is concerned with the bright soliton which has the following form:

u(x, t) =
A1

coshp1 τ
exp{iφ}, n(x, t) =

A2

coshp2 τ
, (3.1)

where A1 and A2 are real and represent the amplitudes of the u- and n-soliton, respectively.
Substituting (3.1) into (2.3) and (2.4), respectively, we have

–ωA1 + 1
2 A1(p2

1B2 – κ2)
coshp1 τ

–
1
2

p1(p1 + 1)A1B2

coshp1+2 τ
+

A1A2

coshp1+p2 τ
= 0 (3.2)

and

A2p2
2B2(v2 – 1) + M2A2

coshp2 τ
–

A2B2p2(p2 + 1)(v2 – 1)
coshp2+2 τ

–
A2

1

cosh2p1 τ
= 0. (3.3)

From (3.2), equating the exponents p1 + 2 and p1 + p2 gives p2 = 2 to get a nontrivial solu-
tion. In what follows, we proceed by investigating the cases p1 = 1 and p1 = 2.

Case 1 By virtue of (3.3), the first possibility is for the exponents to satisfy 2p1 = p2, that
is, p1 = 1. Setting the coefficient of the linearly independent 1

coshp1+j τ
(j = 0, 2) to zero in

(3.2), we have

–ωA1 +
1
2

A1
(
B2 – κ2) = 0,

–A1B2 + A1A2 = 0.

Solving the above equations, we obtain

B2 = 2ω + κ2 = A2, (3.4)

which implies A2 > 0 and ω = A2–κ2

2 . In addition, from (3.3), setting the coefficients of the
linearly independent function 1

coshp1+j τ
(j = 0, 2) to 0, we obtain

4A2B2(v2 – 1
)

+ A2M2 – A2
1 = 0,

–6A2B2(v2 – 1
)

= 0.

Note that A2B �= 0, thus from the above algebraic equations we get

v2 = 1, A2M2 = A2
1. (3.5)

Therefore, inserting equations (3.4) and (3.5) into (3.1) leads to

u1(x, t) =
±BM

cosh(Bη)
exp{iφ}, (3.6)
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Figure 1 Bright soliton with B =
√
3, M = 1 and v = 1: (a) the real part of u; (b) the modulus of n

n1(x, t) =
B2

cosh2(Bη)
, (3.7)

where

φ = vx + ωt + θ , ω =
B2 – 1

2
, v2 = 1, (3.8)

and B is an arbitrary real nonzero constant. The above expression, as in the case of the
particular physical wave, clearly shows the existence of the bright soliton for KGS system
(1.1) and (1.2). The propagation profile of the bright soliton is depicted in Fig. 1.

Remark 3.1 From the solution (3.6)–(3.7), one has M2n = |u|2, which suggests ntt –nxx = 0.
Setting u = p + iq, this system becomes

pt +
1
2

qxx + nq = 0,

–qt +
1
2

pxx + np = 0,

ntt – nxx = 0.

In fact, the KGS system reduces to a system of conservation laws ∂tT + ∂xS = 0 with T =
1
2 (p2 + q2 + 2nt) and S = – 1

2 pxq + 1
2 pqx – nx.

Case 2 In (3.3), one can have 2p1 = p2 + 2, that is, p1 = 2. In a similar way to Case 1, one
has the following equations:

–ωA1 +
1
2

A1
(
4B2 – κ2) = 0,

–3A1B2 + A1A2 = 0,

4A2B2(v2 – 1
)

+ A2M2 = 0,

–6A2B2(v2 – 1
)

– A2
1 = 0,
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Figure 2 Bell-profile soliton with B =M = 1: (a) the real part of u; (b) the modulus of n

which yields

B2 =
2ω + κ2

4
=

A2

3
=

–M2

4(v2 – 1)
= –

A2
1

6A2(v2 – 1)
(3.9)

with A2 > 0 and v2 < 1. Moreover, we obtain 3M2A2 = 2A2
1. In this case, the soliton solution

of (1.1)–(1.2) can be written as

u2(x, t) = ± 3BM√
2 cosh2(Bη)

exp{iφ}, (3.10)

n2(x, t) =
3B2

cosh2(Bη)
, (3.11)

where

φ = vx + ωt + θ , ω = 2B2 +
M2

8B2 –
1
2

, v2 = 1 –
M2

4B2 . (3.12)

Figure 2 presents the propagation process of the soliton solution. This solution is the so-
called bell-profile solitary wave, which is also reported in the existing literature [17, 18].

Remark 3.2 This solution has a strong space location requirement. Indeed, any tiny upper
and lower translation is ineffective, that is, if one sets u(x, t) = (A1 sechp1 τ + C1) exp{iφ}
and n(x, t) = A2 sechp2 τ + C2 with real constants C1 and C2, then one can deduce that
C1 = C2 = 0 with p1 = 1 or 2 and p2 = 2.

As sech2(α – iπ/2) = – csch2(α), shifting x by iπ/2 in u2, n2, we obtain

u3(x, t) = ±3BM√
2

csch2(Bη) exp{iφ}, (3.13)

n3(x, t) = –3B2 csch2(Bη), (3.14)

with φ, ω and v as in (3.12). Similar to the bell-shaped soliton, any tiny change of the ampli-
tude for this solution is not allowed, although the shock wave brings about the singularity
along some characteristic direction (e.g., x – vt = 0). The evolution of the real part for u
and |n| is displayed in Fig. 3.
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Figure 3 Singular soliton with B =M = 1: (a) the real part of u; (b) the singularity of n

Using the formula csch2(α) – sech2(α) = 4 csch2(2α), we can get

u4(x, t) = ±3BM
4
√

2
(
csch2(Bη/2) – sech2(Bη/2)

)
exp{iφ}, (3.15)

n4(x, t) = –
3B2

4
(
csch2(Bη/2) – sech2(Bη/2)

)
, (3.16)

with φ, ω and v as in (3.12) as well.

Remark 3.3 We will also attempt to find a dark soliton of the form u = A1 tanh(τ ) exp{iφ}
and n = A2 tanh2(τ ). It is regretful that the homogeneous balancing technique cannot pro-
duce a nontrivial solution because it strongly depends on the sign of the coefficients for
Yukawa interaction terms. However, we can deduce a solution with tanh(B̃(x – vt)) + C̃
where B̃ is a pure imaginary number. Noting that tanh(ix) = i tan x, we will then have the
solution in Sect. 4.

4 Periodic wave
The search for the dark solitons shows the existence of a solution with the form tanh(iB̃(x–
vt)) + C̃ (see Remark 3.3), which inspires us to exert fresh efforts.

It is well known that tanh(ix) = i tan x and that tanh(iB̃(x – vt)) type solution implies the
existence of a tangent wave of KGS system (1.1)–(1.2). As a generalization, here we con-
sider the following translation wave:

u(x, t) =
(
A1 tanp1 τ + C1

)
exp{iφ}, n(x, t) = A2 tanp2 τ + C2, (4.1)

where A1, A2, C1, C2, p1, p2 are real and C1, C2 are free nonzero parameters. Substituting
the derivatives of u, n into (1.1) and (1.2) yields

(
–ωA1 –

1
2
κ2A1

)
tanp1 τ – ωC1 –

1
2
κ2C1 +

1
2

A1p1(p1 – 1)B2 tanp1–2 τ

+ A1p2
1B2 tanp1 τ +

1
2

A1p1(p1 + 1)B2 tanp1+2 τ + A1A2 tanp1+p2 τ

+ A1C2 tanp1 τ + A2C1 tanp2 τ + C1C2 = 0 (4.2)
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and

A2p2(p2 – 1)B2(v2 – 1
)

tanp2–2 τ + 2A2p2
2B2(v2 – 1

)
tanp2 τ

+ A2p2(p2 + 1)B2(v2 – 1
)

tanp2+2 τ + M2(A2 tanp2 τ + C2
)

–
(
A2

1 tan2p1 τ + 2A1C1 tanp1 τ + C2
1
)

= 0. (4.3)

An effective matching and the independent 0-coefficients for tanp1+j τ (j = –2, 0, 2) show
p1 = p2 = 2 and the equations

–ωA1 –
1
2
κ2A1 + 4A1B2 + A1C2 + A2C1 = 0, (4.4)

–ωC1 –
1
2
κ2C1 + A1B2 + C1C2 = 0, (4.5)

3A1B2 + A1A2 = 0, (4.6)

which produce B2 = – A2
3 . And from (4.4)/A1–(4.5)/C1, we can obtain – 4

3 + C1
A1

= – A1
3C1

which
yields C1

A1
= 1 or C1

A1
= 1

3 . Moreover, in (4.3), setting the coefficients of the function 1
tanp2+j τ

(j = –2, 0, 2) to 0, we have

2A2B2(v2 – 1
)

+ M2C2 – C2
1 = 0, (4.7)

8A2B2(v2 – 1
)

+ M2A2 – 2A1C1 = 0, (4.8)

6A2B2(v2 – 1
)

– A2
1 = 0. (4.9)

From (4.9), we have A2
1 = –2A2

2(v2 – 1) for v2 – 1 < 0. Equations (4.7)–(4.8) reduce to

A2
1 + 3M2C2 – 3C2

1 = 0, (4.10)

4A2
1 + 3M2A2 – 6A1C1 = 0. (4.11)

If C1
A1

= 1, form (4.11), we get A2 = 2A2
1

3M2 > 0, which contradicts B2 = – A2
3 . Otherwise, if

C1
A1

= 1
3 , we have C2 = 1

3 A2 = – 2A2
1

9M2 . Hence, the solution of KGS system (1.1)–(1.2) is given
by

u5(x, t) = ±3KM√
2

(
tan2(Kη) +

1
3

)
exp{iφ}, (4.12)

n5(x, t) = –3K2
(

tan2(Kη) +
1
3

)
, (4.13)

where

φ = vx + ωt + θ , ω = 2K2 +
M2

8K2 –
1
2

, v2 = 1 –
M2

4K2 , (4.14)

and K is an arbitrary real nonzero constant. For the propagation of the solution, one can
refer to Fig. 4.
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Figure 4 Tangent type wave with M = K = 1: (a) the real part of u; (b) the periodical singularity of n

As tan2(α – π/2) = cot2(α), shifting x by iπ/2 in u5, n6, we have

u6(x, t) = ±3KM√
2

(
cot2(Kη) +

1
3

)
exp{iφ}, (4.15)

n6(x, t) = –3K2
(

cot2(Kη) +
1
3

)
, (4.16)

with φ, ω and v as in (4.14). This solution admits a similar periodical change process as
for the tangent type wave.

Using the formula cot2(α) + tan2(α) = 4 cot2(2α) + 2, we also have

u7(x, t) = ±3KM
4
√

2

(
cot2(Kη/2) + tan2(Kη/2) –

2
3

)
exp{iφ}, (4.17)

n7(x, t) = –
3K2

4

(
cot2(Kη/2) + tan2(Kη/2) –

2
3

)
, (4.18)

with φ, ω and v as in (4.14) as well.

5 Conclusion
In this paper, the ansatz method is applied to the (1 + 1)-dimensional KGS system for
some particular solitary waves, and a series of explicit exact solutions are constructed.
Most of them cannot be derived by the existing standard procedures, particularly, the
bright solitons and singular wave that play essential role in plasma and fluid physics. More
importantly, their amplitudes are not only strongly dependent on the wave speed, but also
related to the mass of the meson. As for the existence of dark solitons of another form, we
will make further discussion in the forthcoming work.
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