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Abstract
This paper considers a portfolio selection problem with a quadratic utility of
consumption, which is symmetric with respect to a bliss point. At bliss point, the
utility function has its maximum value and further consumption lowers the utility. In
the presence of inflation risk, we introduce an inflation-linked index bond to manage
the inflation risk and derive explicit expressions for the optimal consumption and
portfolios by applying duality method. Based on quantitative results, we see that
inflation-linked index bond plays an important role in choosing consumption and
portfolio rules.
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1 Introduction
A quadratic utility function is widely applied in economic and finance theory. The main
advantage of a quadratic utility function is its tractability, and this is the main reason why
the quadratic function is applied as an objective function for various optimization prob-
lems in economics and finance. In particular, modern investment theory and practice are
mainly based on the mean–variance portfolio theory developed by Markowitz [7], where
the analysis is based on the quadratic function of portfolio return. The analysts in prac-
tice apply the mean–variance-efficient portfolios for asset allocation. Recently, Sharpe [9]
showed that the mean–variance portfolio allocation has similar results to that of the ex-
pected utility asset allocation if we consider the quadratic utility whose risk aversion is
measured by the variance of portfolio return.

In this paper we consider a quadratic utility as an agent’s preference. Similar to the tradi-
tional utility functions of constant relative risk aversion (CRRA) or constant absolute risk
aversion (CARA), the law of diminishing marginal utility still holds for the quadratic util-
ity. The marginal utility, however, can be negative when the consumption level is higher
than a bliss point. In other words, above a bliss point, if the agent consumes more he/she
reduces utility. Thus, the optimal level of consumption and value function should be con-
stant if the wealth level is greater than the critical level at which the optimal consumption
rate is the bliss point. With a quadratic utility function, investment pattern is quite dif-
ferent from that when using other utility functions for a sufficiently high wealth level. For
example, for an agent with a quadratic utility investment in the risky asset is zero when
the wealth level is larger than the bliss level (see, e.g., Koo et al. [5] or Rho et al. [8]).
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Due to the negative marginal utility for higher consumption levels, the quadratic utility
seems to be unrealistic. It is worth to note, however, that the quadratic utility is sufficient to
explain the agent’s economic behavior for the realistic level of wealth. Koo et al. [5] studied
the quadratic utility in the presence of subsistence consumption constraint, and Rho et al.
[8] investigated the effect of borrowing limits on the consumption and investment of the
agent with a quadratic utility.

If the time horizon is long enough, it is persuasive to incorporate the inflation risk into
consumption and portfolio selection problem. In our continuous-time model, the time
horizon is infinite, and thus we expect that the inflation rate would significantly affect
the long-term financial planning. To hedge the inflation risk, we introduce the inflation-
linked index bond. In fact, many developed countries already have inflation-linked secu-
rities which are traded in the financial market. Especially, Treasury Inflation-Protected
Securities (TIPS) which were introduced in 1997 have become the most traded bonds in
the US bond market.

In this paper, we provide explicit expressions for consumption and portfolio rules by
applying the duality approach. Due to the optimal consumption process, we have to sepa-
rate the wealth into three regions as in Koo et al. [5] and Rho et al. [8]. In the third region,
where the wealth level is above the bliss level, the optimal consumption stays constant
as its maximum so the value function is also fixed. To make the value function constant,
there should be no risky asset investment. This fact is well-described in Koo et al. [5] and
Rho et al. [8]. In the presence of inflation risk, however, even though the value function in
the third region is still constant, the optimal investment in an inflation-linked index bond
is not fixed. To hedge the inflation risk, all the financial wealth is invested in an inflation-
linked index bond and investment in other assets becomes zero in the third region. When
the wealth level is below the bliss level, the role of inflation-linked index bond can be dif-
ferent according to market parameters. In particular, for sufficiently large growth rate of
the price process, the demand for speculative motive is reflected only on the inflation-
linked index bond. For a small growth rate of the price process, however, the demand for
speculative motive is distributed into both portfolios of inflation-linked index bond and
the risky asset.

There are large strands of literature on the portfolio selection problem with inflation
risk, and most studies consider the inflation-linked index bond to manage inflation risk.
Fischer [3] investigated the demand for index bond and claimed its introduction. Later,
Campbell and Viceira [2] and Brennan and Xia [1] studied the dynamic asset allocation in
the presence of inflation and interest risks. Gong and Li [4] incorporated the subsistence
consumption constraint into the model with inflation risk. Recently, Kwak and Lim [6] in-
vestigated the effect of inflation risk on life-insurance purchase and provided quantitative
analysis of the role of an index bond.

This paper is organized as follows. In Sect. 2, we provide the financial market in the
presence of inflation risk. We introduce an inflation-linked index bond to hedge the in-
flation risk. In Sect. 3, we state the optimization problem with a quadratic utility function
and seek to derive explicit solutions to the optimization problem by applying the duality
approach. In Sect. 4, explicit forms of the optimal consumption and portfolios are given,
and we provide some implications of the results in Sect. 5. Finally, Sect. 6 concludes.
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2 Model
In our continuous-time model, we assume that the financial market consists of a riskless
asset (money market account), a risky asset (stock), and an inflation-linked index bond.
Let us denote by Bt the price of the riskless asset at time t and assume that the riskless
asset earns a constant rate of return R > 0 as follows:

dBt

Bt
= R dt.

The price of the risky asset at time t, denoted by St , evolves according to the following
geometric Brownian motion:

dSt

St
= μS dt + σS dW1,t ,

where μS > R > 0 and σS > 0 are constants; W1,t is a standard Brownian motion on a prob-
ability space (�,F ,P). Let us denote by It the price of the inflation-linked index bond at
time t, which evolves according to the following equation:

dIt

It
= r dt +

dPt

Pt
,

where r > 0 is the real interest rate and Pt is the price level at time t. We assume that Pt

proceeds according to the following geometric Brownian motion:

dPt

Pt
= μP dt + σP

(
ρ dW1,t +

√
1 – ρ2 dW2,t

)
,

where W2,t is another standard Brownian motion on the probability space (�,F ,P), which
is independent of W1,t . Hence, Wt = (W1,t , W2,t) is a 2-dimensional Brownian motion on
(�,F ,P). Note that if we define Ŵt ≡ ρ dW1,t +

√
1 – ρ2 dW2,t then W1,t is correlated with

Ŵt and their correlation coefficient is ρ ∈ (–1, 1) , i.e., 〈dW1,t , dŴt〉 = ρ dt. Let (Ft)t≥0 be
the P-augmentation of the natural filtration generated by Wt = (W1,t , W2,t).

Now let us denote by

π0,t—proportion of wealth invested in the riskless asset,

π1,t—proportion of wealth invested in the risky asset,

π2,t—proportion of wealth invested in inflation-linked index bond,

cN
t —nominal consumption rate,

yN
t —nominal income rate.

Denote by XN
t the nominal value of the wealth. Then we have

dXN
t = π0,tXN

t
dBt

Bt
+ π1,tXN

t
dSt

St
+ π2,tXN

t
dIt

It
– cN

t dt + yN dt.
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The inflation-adjusted real wealth level Xt is given by Xt = XN
t /Pt . We assume that the

nominal income rate yN
t is proportional to the price level Pt , i.e.,

yN
t = yPt ,

for some constant y > 0. If we apply Itô’s product rule to XN
t /Pt , we obtain the inflation-

adjusted real wealth process as in the following lemma.

Lemma 1

dXt = (rXt – ct + y) dt + π0,tXt
{(

R – r – μP + σ 2
P
)

dt – ρσP dW1,t –
√

1 – ρ2σP dW2,t
}

+ π1,tXt
{(

μS – r – μP + σ 2
P – ρσPσS

)
dt

+ (–ρσP + σS) dW1,t –
√

1 – ρ2σP dW2,t
}

, (2.1)

where ct ≡ cN
t /Pt is the inflation-adjusted real consumption rate, and y is the inflation-

adjusted real income rate.

Proof

d
(

1
Pt

)
= –

1
Pt

{(
μP – σ 2

P
)

dt + ρσP dW1,t +
√

1 – ρ2σP dW2,t
}

.

We apply Itô’s product rule to get

d
(
XN

t /Pt
)

= Pt dXN
t + XN

t dPt + dXN
t d

(
1
Pt

)

=
[
–
(
μP – σ 2

P
)
Xt – ct + y + Rπ0,tXt + (μS – ρσPσS)π1,tXt

+
(
r + μP – σ 2

P
)
π2,tXt

]
dt

+ (–ρσPXt + σSπ1,tXt + ρσPπ2,tXt) dW1,t

+
√

1 – ρ2σP(–Xt + π2,tXt) dW2,t . (2.2)

Rearranging (2.2) with π0,t + π1,t + π2,t = 1 yields the inflation-adjusted real wealth process
(2.1). �

Let us define

θ1 ≡ μS – R – ρσPσS

σS
, θ2 ≡ r – R + μP – σ 2

P

σP
√

1 – ρ2
–

ρ
√

1 – ρ2
θ1,

an exponential martingale

ξt ≡ e– 1
2 (θ2

1 +θ2
2 )t–θ1 dW1,t–θ2 dW2,t ,

and the pricing kernel

Ht ≡ e–rtξt .
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Then by the Girsanov’s theorem, for any fixed T , there exists an equivalent martingale
probability measure P̃ defined by P̃(A) = E[ξT 1A], A ∈FT , and under the new probability
measure P̃,

W̃1,t ≡ θ1t + W1,t , W̃2,t ≡ θ2t + W2,t ,

are independent standard Brownian motions. Applying Itô’s lemma to the product of e–rt

and Xt yields

d
(
e–rtXt

)
= e–rt(–ct + y) dt + e–rt(π0,tXt)

{
–ρσP dW̃1,t –

√
1 – ρ2σP dW̃2,t

}

+ e–rt(π1,tXt)
{

(–ρσP + σS) dW̃1,t –
√

1 – ρ2σP dW̃2,t
}

. (2.3)

Integrating (2.3) from 0 to T > 0 we obtain

e–rT Xt +
∫ T

0
e–rt(ct – y) dt = x +

∫ T

0
e–rtXt

{
–ρσPπ0,t + (–ρσP + σS)π1,t

}
dW̃1,t

–
∫ T

0
e–rtXt

√
1 – ρ2(π0,t + π1,t) dW̃2,t . (2.4)

If Xt , t > 0, is lower bounded, the right-hand side of (2.4) is a lower-bounded local martin-
gale under P̃, hence a supermartingale under P̃. We then obtain

Ẽ

[
e–rT XT +

∫ T

0
e–rT (ct – y) dt

]
≤ x, (2.5)

and if we take the limit T → ∞ and recover the physical measure by applying Bayes’ rule,
the static budget constraint given in (2.5) is transformed into the following inequality:

E

[∫ ∞

0
Htct dt

]
≤ x + E

[∫ ∞

0
Hty dt

]
. (2.6)

3 Optimization problem
We consider the agent’s expected utility maximization problem where the utility function
is quadratic as follows:

u(c) = c – Qc2, Q > 0.

Notice that the quadratic utility function has its global maximum at c̄ ≡ 1/2Q which is
called a bliss point. Obviously, the utility function is symmetric with respect to that point,
which means the utility is increasing for c < c̄ and decreasing for c > c̄ and the values of the
utility at ĉ = c < c̄ and 1/Q – ĉ are equivalent. Moreover, the constant Q reflects the agent’s
risk aversion. In particular, a larger (or smaller) Q implies a smaller (or larger) marginal
utility if the consumption rate is smaller than the bliss point. In the mean–variance anal-
ysis, Q can be regraded as a risk aversion parameter measured by the variance of wealth.

Definition 1 We call c ≡ (ct)t≥0 and π ≡ (π0,t ,π1,t ,π2,t)t≥0 the consumption and portfolio
process, respectively. We call (c,π ) an admissible policy at x if
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(a) Xt evolves according to (2.1), X0 = x, and Xt > – y
r , t ≥ 0,

(b) c is a measurable, adapted nonnegative process, and
∫ t

0 cs ds < ∞, for all t ≥ 0 a.s.,
(c) π is a measurable, adapted process and

∫ t
0 (π2

0,s + π2
1,s) ds < ∞ for all t ≥ 0 a.s.

Denote by A(x) the set of all admissible policies at x. Then our optimization problem is
stated as follows.

Problem 1 The agent wants to maximize the expected utility by optimally choosing the
consumption and portfolio processes. In other words,

V (x) ≡ max
(c,π )∈A(x)

J(c,π )(x),

where

J(c,π )(x) ≡ E

[∫ ∞

0
e–βtu(ct) dt

]
,

subject to the budget constraint (2.6); β(> 0) is the time preference of the agent.

Let us define a convex dual function ũ(λ) as follows:

ũ(λ) ≡ max
c>0

[
u(c) – λc

]
= max

c>0

[
(1 – λ)c – Qc2] =

(1 – λ)2

4Q
1{0<λ≤1}. (3.1)

Then the first order condition implies that the maximizer c of (3.1) is given by

c =
1 – λ

2Q
1{0<λ≤1}. (3.2)

Thus, for any (c,π ) and λ > 0, we have

J(c,π )(x) ≤ E

[∫ ∞

0
e–βt{ũ(λt) + ctλt

}
dt

]

= E

[∫ ∞

0
e–βtũ(λt) dt

]
+ λE

[∫ ∞

0
Htct dt

]

≤ E

[∫ ∞

0
e–βt{ũ(λt) + yλt

}
dt

]
+ λx

= E

[∫ ∞

0
e–βt

{
(1 – λt)2

4Q
1{0<λt≤1} + yλt

}
dt

]
+ λx, (3.3)

where λt = λeβtHt . Note that λt has its dynamics as

dλt

λt
= (β – r) dt – θ1 dW1,t – θ2 dW2,t .

If we define the dual value function J̃ as

J̃(λ) ≡ E

[∫ ∞

0
e–βt

{
(1 – λt)2

4Q
1{0<λt≤1} + yλt

}
dt

]
, (3.4)
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then by Feynman–Kac’s formula, J̃(λ) solves the following ordinary differential equation
(ODE):

⎧
⎨

⎩

1
2 (θ2

1 + θ2
2 )λ2̃J ′′(λ) + (β – r)λ̃J ′(λ) – β̃J(λ) + (1–λ)2

4Q + yλ = 0, 0 < λ ≤ 1,
1
2 (θ2

1 + θ2
2 )λ2̃J ′′(λ) + (β – r)λ̃J ′(λ) – β̃J(λ) + yλ = 0, λ > 1.

(3.5)

Let us denote by n+ and n–, respectively, the positive and negative roots of the equation

1
2
(
θ2

1 + θ2
2
)
n2 +

{
β – r –

1
2
(
θ2

1 + θ2
2
)}

n – β = 0.

Then by the growth condition, we can obtain the general closed-form solution to the ODE
(3.5). The next proposition summarizes the result.

Proposition 1 The dual value function is given by

J̃(λ) =

⎧
⎨

⎩

D1λ
n+ – 1

4Q(θ2
1 +θ2

2 +β–2r)λ
2 + ( y

r – 1
2Qr )λ + 1

4Qβ
, 0 < λ ≤ 1,

D2λ
n– + y

r λ, λ > 1,
(3.6)

where D1 and D2 are given by

D1 =
2–n–

4Q(θ2
1 +θ2

2 +β–2r) + 1–n–
2Qr + n–

4Qβ

n+ – n–
, D2 = D1 –

1
4Q(θ2

1 + θ2
2 + β – 2r)

–
1

2Qr
+

1
4Qβ

.

We assume that the following inequality holds.

Assumption 1

β – 2r + θ2
1 + θ2

2 > 0.

Under this assumption, we can show that the constants D1 and D2 are positive.

Lemma 2 The following inequalities hold:

D1 > 0, D2 > 0.

Proof We borrow the idea from Koo et al. [5]. Note that the constant D1 can be rewritten
as

D1 =
1

(n+ – n–)2R

(
2 – n–

2(β – 2r + θ2
1 + θ2

2 )
+

1 – n–

r
+

n–

2β

)
,

so it is enough to show that the value in the parenthesis is positive. Let us define functions
f (n) and g(x) by

f (n) ≡ 1
2
(
θ2

1 + θ2
2
)
(n – n+)(n – n–),
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and

g(x) ≡ –
f (x)

x – n–
= –

1
2
(
θ2

1 + θ2
2
)
(x – n+),

respectively. Then, for x ∈ (n–, n+), g(x) is positive and strictly decreasing. Thus, we have
g(0) > g(1) > 0, which implies

–
–β

–n–
>

r
1 – n–

> 0,

or equivalently,

1 – n–

r
+

n–

β
> 0.

By Assumption 1, we also have

2 – n–

β – 2r + θ2
1 + θ2

2
+

1 – n–

r
> 0.

Therefore, by combining these two inequalities, we obtain

2 – n–

2(β – 2r + θ2
1 + θ2

2 )
+

1 – n–

r
+

n–

2β
> 0,

from which we have D1 > 0.
To show the positivity of D2, first note that D2 can be rewritten as

D2 =
1

(n+ – n–)2R

(
2 – n+

2(β – 2r + θ2
1 + θ2

2 )
+

1 – n+

r
+

n+

2β

)
.

Similarly to the proof of the positivity of D1, let us define function k(x) by

k(x) ≡ x – n–

f (x)
=

2
(θ2

1 + θ2
2 )

1
x – n–

.

Then for x > n–, k(x) is positive, strictly decreasing and convex. Further, convexity implies

k(1) = k
(

0 · 1
2

+ 2 · 1
2

)
<

1
2
(
k(0) + k(2)

)
,

or equivalently,

1 – n+

f (1)
≤ –n+

2f (0)
+

2 – n–

2f (2)
.

Therefore, we can show that

–
1 – n+

r
≤ n+

2β
+

2 – n+

2(β – 2r + θ2
1 + θ2

2 )
,

and consequently D2 > 0. �
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4 Solution
In this section we provide the closed-form solution to Problem 1. From the duality relation,
we can recover the primal value function V (x) through

V (x) = inf
λ>0

[
J̃(λ) + λx

]
, (4.1)

where J̃(λ) is given in Proposition 1. Notice that from the optimal consumption rate in
(3.2), λ = 0 corresponds to the bliss level of consumption c̄. Let us denote by x̄ the wealth
level at λ = 0, which is then defined by

x̄ ≡ –
y
r

+
1

2Qr
.

Moreover, if we denote the wealth level corresponding to λ = 1 by x̃, it is also given by

x̃ = –n–D2 –
y
r

= –n+D1 +
1

2Q(θ2
1 + θ2

2 + β – 2r)
–

y
r

+
1

2Qr
.

Thus, we have to separate the wealth level into three regions, which are (–y/r, x̃), [x̃, x̄), and
[x̄,∞). The next theorem provides the value function on each region. Before we proceed,
let us define

h1(z) ≡ –n+D1zn+ +
1

2Q(θ2
1 + θ2

2 + β – 2r)
z –

y
r

+
1

2Qr
,

and

h2(z) ≡ –n–D2zn––1 –
y
r

.

Theorem 1 The value function of Problem 1 is given by

V (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D2(λ∗∗)n– + y
r λ

∗∗ + xλ∗∗, – y
r < x < x̃,

D1(λ∗)n+ – 1
4Q(θ2

1 +θ2
2 +β–2r) (λ∗)2 + ( y

r – 1
2Qr )λ∗ + 1

4Qβ
+ xλ∗, x̃ ≤ x < x̄,

1
4Qβ

, x ≥ x̄,

(4.2)

where λ∗∗ and λ∗ solve x = h2(λ∗∗) for y
r < x < x̃ and x = h1(λ∗) for x̃ ≤ x < x̄.

Proof If we substitute the dual value function J̃(λ) given in Proposition 1 into the duality
relation in (4.1), the relations between the inflation-adjusted real wealth level x and its
dual variables λ∗ and λ∗∗ can be obtained from the first order conditions. It is obvious that
with the inflation-adjusted real wealth level x above x̄, which corresponds to the bliss level
of consumption c̄, it is optimal to consume at a rate c̄, and consequently the value function
constantly equals to

V (x) =
∫ ∞

0
e–βt(c̄ – Qc̄2)dt =

1
4Qβ

. �

It is worth to note that the first region, –y/r < x < x̃, corresponds to λ > 1 and in that
region the optimal consumption rate is zero. Thus, the agent endures zero consumption
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until when the wealth level is greater than x̃. The optimal consumption rate is asymmetric
with respect to the bliss point even though the utility function is symmetric. We summa-
rize the optimal consumption and portfolios in the next theorem.

Theorem 2 The optimal wealth, consumption, and portfolios are given as follows:
(1) For – y

r < Xt < x̃,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt = –n–D2(λ∗∗
t )n––1 – y

r ,

c∗
t = 0,

π∗
0,tXt = {– θ1

σS
+ ( ρ

σS
– 1

σP
) θ2√

1–ρ(2
}n–(n– – 1)D2(λ∗∗

t )n––1,

π∗
1,tXt = ( θ1

σS
– ρθ2

σS
√

1–ρ2
)n–(n– – 1)D2(λ∗∗

t )n––1,

π∗
2,tXt = Xt – π∗

0,tXt – π∗
1,tXt ,

where λ∗∗
t solves Xt = h2(λ∗∗

t ).
(2) For x̃ ≤ Xt < x̄,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt = –n+D1(λ∗
t )n+–1 + 1

2Q(θ2
1 +θ2

2 +β–2r)λ
∗
t – y

r + 1
2Qr ,

c∗
t = 1–λ∗

t
2Q ,

π∗
0,tXt = {– θ1

σS
+ ( ρ

σS
– 1

σP
) θ2√

1–ρ2
}{n+(n+ – 1)D1(λ∗

t )n+–1 – 1
2Q(θ2

1 +θ2
2 +β–2r)λ

∗
t },

π∗
1,tXt = ( θ1

σS
– ρθ2

σS
√

1–ρ2
){n+(n+ – 1)D1(λ∗

t )n+–1 – 1
2Q(θ2

1 +θ2
2 +β–2r)λ

∗
t },

π∗
2,tXt = Xt – π∗

0,tXt – π∗
1,tXt ,

where λ∗
t solves Xt = h1(λ∗

t ).
(3) For Xt ≥ x̄,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c∗
t = 1

2Q ,

π∗
0,tXt = 0,

π∗
1,tXt = 0,

π∗
2,tXt = Xt .

Proof From Theorem 1, Xt = h2(λ∗∗
t ) = –n–D2(λ∗∗

t )n––1 – y
r for – y

r < Xt < x̃. We use Itô’s
lemma for Xt along with dλ∗∗

t /λ∗∗
t = (β – r) dt – θ1 dW1,t – θ2 dW2,t to obtain

dXt = –n–D2

[
(n– – 1)

(
λ∗∗

t
)n––1{(β – r) dt – θ1 dW1,t – θ2 dW2,t

}

+
1
2

(n– – 1)(n– – 2)
(
θ2

1 + θ2
2
)(

λ∗∗
t

)n––1 dt
]

= –n–(n– – 1)D2

{
(β – r) +

1
2

(n– – 2)
(
θ2

1 + θ2
2
)}(

λ∗∗
t

)n––1 dt

+ n–(n– – 1)D2θ1
(
λ∗∗

t
)n––1 dW1,t + n–(n– – 1)D2θ2

(
λ∗∗

t
)n––1 dW2,t (4.3)

= (· · · ) +
{

–ρσPπ0,tXt + (–ρσP + σS)π1,tXt
}

dW1,t

–
√

1 – ρ2σP{π0,tXt + π1,tXt}dW2,t , (4.4)
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where the last equality comes from rearranging (2.1). Comparing diffusion terms in (4.3)
and (4.4), we obtain the optimal portfolios π∗

0,tXt and π∗
1,tXt . Moreover, π∗

2,tXt can be found
from the relation π∗

0,t +π∗
1,t +π∗

2,t = 1. The optimal inflation-adjusted real consumption rate
c∗ is such that makes the first equality in (3.3) hold as an equality, i.e., (3.2) is satisfied. For
– y

r < Xt ≤ x̃, λ∗∗
t ≥ 1, hence c∗ = 0.

Similarly, for x̃ ≤ Xt < x̄, Xt = h1(λ∗
t ) = –n+D1(λ∗

t )n+–1 + 1
2Q(θ2

1 +θ2
2 +β–2r)λ

∗
t – y

r + 1
2Qr , and we

obtain

dXt = –n+D1

[
(n+ – 1)

(
λ∗

t
)n+–1{(β – r) dt – θ1 dW1,t – θ2 dW2,t

}

+
1
2

(n+ – 1)(n+ – 2)
(
θ2

1 + θ2
2
)(

λ∗
t
)n+–1 dt

]

+
λ∗

t
2Q(θ2

1 + θ2
2 + β – 2r)

{
(β – r) dt – θ1 dW1,t – θ2 dW2,t

}

= (· · · ) dt +
{

n+(n+ – 1)θ1D1
(
λ∗

t
)n+–1 –

θ1

2Q(θ2
1 + θ2

2 + β – 2r)
λ∗

t

}
dW1,t

+
{

n+(n+ – 1)θ2D1
(
λ∗

t
)n+–1 –

θ2

2Q(θ2
1 + θ2

2 + β – 2r)
λ∗

t

}
dW2,t (4.5)

= (· · · ) +
{

–ρσPπ0,tXt + (–ρσP + σS)π1,tXt
}

dW1,t

–
√

1 – ρ2σP{π0,tXt + π1,tXt}dW2,t , (4.6)

from which we obtain optimal portfolios, and c∗
t can be obtained from (3.2).

Lastly, the case for Xt ≥ x̄ can be derived by letting λ∗
t → 0 in the case where x̃ ≤

Xt < x̄. �

For –y/r < Xt < x̃, the optimal investments in the risky asset and the inflation-linked
index bond is monotone in wealth but, for x̃ ≤ Xt < x̄, the optimal investments in the risky
asset and the inflation-linked index bond have their extreme values at λ̂, which is given by

λ̂ =
(

1
2Qn+(n+ – 1)2(β – 2r + θ2

1 + θ2
2 )D1

) 1
n+–2

.

If 1
σs

(θ1 – ρθ2√
1–ρ2

) > 0, we can check that π∗
1,tX∗

t is maximized at Xt = x̂, where

x̂ = –n+D1(λ̂)n+–1 +
1

2Q(β – 2r + θ2
1 + θ2

2 )
λ̂ +

1
2rQ

–
y
r

. (4.7)

Furthermore, from a similar analysis in Koo et al. [5], we see that, for x̃ ≤ Xt ≤ x̂, π∗
1,tXt is

increasing in Xt and, for x̂ < Xt < x̄, π∗
1,tXt is decreasing in Xt and approaches zero as Xt

gets close to x̄. Note that we have the opposite results for π∗
0,tXt . Specifically, for x̃ ≤ Xt ≤ x̂,

π∗
0,tXt is decreasing in Xt and, for x̂ < Xt ≤ x̄, π∗

0,tXt is increasing in Xt and approaches zero
as Xt gets close to x̄.
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5 Discussion
In this section, we discuss the quantitative results obtained from the optimization problem
and exhibit implications through some numerical illustrations. Let us rewrite the optimal
policies as follows.

Remark 1 The optimal consumption rate in Theorem 2 can be rewritten as

c∗
t =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, –y/r < Xt < x̃,
1

2Q – (β – 2r + θ2
1 + θ2

2 )(x̄ – Xt)

+ (β – 2r + θ2
1 + θ2

2 )n+D1(λ∗
t )n+–1, x̃ ≤ Xt < x̄,

1
2Q , Xt ≥ x̄.

(5.1)

Similarly, the optimal portfolios can also be rewritten as

π∗
0,tXt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

– θ2(1–n–)
σp

√
1–ρ2

(Xt + y
r ) – π∗

1,tXt , –y/r < xt < x̃,

– θ2
σp

√
1–ρ2

(x̄ – Xt) – π∗
1,tXt , x̃ ≤ Xt < x̄,

0, Xt ≥ x̄,

(5.2)

π∗
1,tXt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
σs

(θ1 – ρθ2√
1–ρ2

)(1 – n–)(Xt + y
r ), –y/r < xt < x̃,

1
σs

(θ1 – ρθ2√
1–ρ2

)(x̄ – Xt)

– n+(n+–2)
σs

(θ1 – ρθ2√
1–ρ2

)D1(λ∗
t )n+–1, x̃ ≤ Xt < x̄,

0, Xt ≥ x̄,

(5.3)

π∗
2,tXt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xt + θ2(1–n–)
σp

√
1–ρ2

(Xt + y
r ), –y/r < xt < x̃,

Xt + θ2
σp

√
1–ρ2

(x̄ – Xt), x̃ ≤ Xt < x̄,

Xt , Xt ≥ x̄,

(5.4)

respectively, where y∗
t solves Xt = h1(λ∗

t ).

Let us call (–y/r, x̃), [x̃, x̄), and [x̄,∞) as regions 1, 2, and 3, respectively. In region 3, as
we expected, the optimal consumption rate is 1/2Q at which the quadratic utility function
has its maximum. Interestingly, we also have a constant consumption in region 1. The
main reason why the agent consumes nothing in region 1 might be that the agent wants
to get out of the lower wealth level as soon as possible. This effort could be compensated
as additional consumption in region 2.

Similar to the consumption rate, the portfolios can also be described according to the
different regions. We consider for the case where θ1 – ρθ2/

√
1 – ρ2 > 0. Then, the invest-

ment in the risky asset, π1,tXt , is always non-negative, and the investment in the riskless
asset (or bank account), π0,1Xt , is always non-positive. Note that y/r is the present value of
the future income stream, called human capital. We also call the sum of financial wealth
Xt and human capital as the total capital, which is always non-negative.

Now we can describe the optimal portfolios in more details. In region 1, the investment
in the inflation-linked index bond consists of two components, which are the demand for
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hedging inflation risk and an additional investment which is proportion to the total capital.
Since n– < 0, the additional investment is positive if θ2 > 0, which implies the speculative
or myopic demand due to the excess return on the inflation-linked index bond. Moreover,
under the condition that θ1 – ρθ2/

√
1 – ρ2 > 0, the investment in risky asset also repre-

sents myopic demand which is proportion to the total capital. We can verify that the total
myopic demand in the risky asset and inflation-linked index bond is borrowed from the
bank account.

Similar to the portfolios in region 1, in region 2 the total wealth is invested in the
inflation-linked index bond to hedge the inflation risk and there exists an additional invest-
ment in that bond. The myopic demand, however, is not proportional to the total capital
anymore. We see that the second term in (5.4) represents the myopic demand and it is pro-
portional to the difference between x̄ and current wealth. Note that x̄ is the wealth level
at bliss point. Thus, in region 2, x̄ plays a role of target wealth and a proportion (x̄ – Xt)
is invested as myopic demand. We can also confirm that the optimal investment in the
risky asset given in (5.3) consists of two components, and the first one, which is a myopic
demand, is proportional to (x̄ – Xt).

Under Assumption 1, we have n+ < 2. Thus, the second term of (5.3) in region 2 is posi-
tive. Since the coefficient D1 is determined by the boundary condition at x̃, we can describe
the second term as the hedging demand for not falling into region 1. Again, we can verify
that, except for the inflation risk hedging demand, the total investment in the risky asset
and the inflation-linked index bond is borrowed from the bank account as we can see in
the portfolio π0,tXt in (5.2).

In region 3, the investment in the risky asset and bank account becomes zero and all
the financial wealth is invested in the inflation-linked index bond. This is a quite different
result from the case with other types of utility function such as CRRA or CARA. Since the
quadratic utility has a bliss point and the value function is flat for wealth levels that are
larger than bliss level of wealth, there should be no speculative motive, and thus, there is
no myopic demand in asset allocation. In particular, we have the myopic demand in both
the risky asset and the inflation-linked index bond as explained before. They converge to
zero in region 3. Moreover, the hedging demand for not falling into the region 1, which is
the last term of the portfolio (5.3) in region 2, also converges to zero in region 3. This is
because the financial wealth is large enough. Recall that in region 2, except for the inflation
risk hedging demand, all the myopic and hedging demand is borrowed from the bank
account. Thus, the investment in the bank account, π0,tXt , should be also zero and, as a
result, an inflation-risk hedging demand exists only in region 3. To sum up, in the presence
of inflation risk and the inflation-linked index bond, there exists no demand in the risky
asset or in the bank account. Instead, only inflation risk hedging demand remains. Neither
myopic demand nor other hedging demand is necessary.

We consider the following market parameter set to for numerical illustrations:

μS = 0.08, σS = 0.2, μP = 0.023, σP = 0.05, ρ = –0.07,

r = 0.02, R = 0.04, y = 0.5, β = 0.07, Q = 0.3.

This parameter set is consistent with Brennan and Xia [1], Koo et al. [5], and Kwak and Lim
[6], and we have θ1 – ρθ2/

√
1 – ρ2 = 0.2052 > 0. Figure 1 shows the optimal consumption

and portfolios in the presence of inflation risk. For the given parameter set, –y/r = –25,
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Figure 1 Optimal consumption rate and portfolios when θ1 – ρθ2/
√
1 – ρ2 > 0

x̃ = –23.8 and x̄ = 58.3. So regions 1, 2, and 3 are given by (–25, –23.8), [–23.8, 58.3), and
[58.3,∞), respectively. As we can see, the consumption rate is zero in region 1, and is
strictly increasing and concave in wealth in region 2. In region 3, however, it stays con-
stant. The investment in the risk asset is always non-negative and has the global maxi-
mum value at x = x̂(= –6.526), which is defined in (4.7). Specifically, the investment in the
risky asset increases with wealth for x ∈ (–y/r, x̂) and decreases with wealth for x ∈ (x̂, x̄].
It approaches zero as wealth gets close to x̄. Investment in the bank account has exactly
the opposite pattern compared to the investment in the risky asset. The investment in the
inflation-linked index bond, however, increases with wealth in all the regions and it has
the same value as the wealth when x ≥ x̄.

Now we consider another set of market parameters such that θ1 –ρθ2/
√

1 – ρ2 < 0. With
other parameters fixed, let us consider the case of μS = 0.5,μP = 0.035 and ρ = 0.3. Then
we have θ1 – ρθ2/

√
1 – ρ2 = –0.044 < 0, x̃ = –23.36, and x̄ = 58.3. Therefore, regions 1, 2,

and 3 are given by (–25, –23.36), [–26.36, 58.3) and [53.8,∞), respectively. Note that x̃
and x̄ have similar values as in the case with market parameters of Fig. 1. Figure 2 illus-
trates the optimal consumption and portfolios with these parameters. As we can see, the
optimal consumption rate is similar to that of Fig. 1. The portfolios, however, have quite
different results. In particular, the investment in the risky asset is not positive anymore,
and it shows a similar shape to the investment in the bank account. Instead, compared to
the case of Fig. 1, the investment in the inflation-linked index bond has much larger values
in region 2. In fact, the negative sign of θ1 – ρθ2/

√
1 – ρ2 implies a high mean return of

the inflation-linked index bond, so more speculative demand would be required. Thus, in
regions 1 and 2, the agent borrows money from the bank account or takes a short position
in the risky asset to finance, and all the borrowed money is invested in the inflation-linked
index bond. In other words, the investment in the inflation-linked index bond consists of
two different demands, which are inflation risk hedging demand and myopic demand. We
observe that the myopic demand does not appear in other portfolios. Note that in region
3, the investment in the inflation-linked index bond has the same value as the wealth level.



Lim and Lee Advances in Difference Equations  (2018) 2018:366 Page 15 of 16

Figure 2 Optimal consumption rate and portfolios when θ1 – ρθ2/
√
1 – ρ2 < 0

6 Conclusions
In this paper, we study the optimal consumption and portfolio decision with a quadratic
utility in the presence of inflation risk. For a hedging instrument for inflation risk, we
introduce an inflation-linked index bond which is directly linked to the price process. De-
pending on market parameters, the investment in the risk asset and in the inflation-linked
index bond exhibit quite different patterns. For the life-time financial planning, the in-
flation risk is easily ignored but it may frustrate an agent which consumes and invests
optimally. Therefore, it is worthwhile to look into how an agent manages the inflation risk
in the presence of an inflation-linked index bond through lifetime utility maximization
with a quadratic utility function.

Acknowledgements
We are grateful to Yong Hyun Shin for helpful comments and suggestions.

Funding
Lim was supported by the National Research Foundation of Korea Grant funded by the Korean Government
(NRF-2014S1A5A8018920, NRF-2017R1E1A1A03071107). Lee was supported by the National Research Foundation of
Korea Grant funded by the Korean Government (NRF-2016R1D1A1B03933406) and by the Research Grant of Kwangwoon
University in 2018.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Economics and Finance, The University of Suwon, Hwaseong, Republic of Korea. 2Department of
Mathematics, Kwangwoon University, Seoul, Republic of Korea.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 10 July 2018 Accepted: 2 October 2018



Lim and Lee Advances in Difference Equations  (2018) 2018:366 Page 16 of 16

References
1. Brennan, M.J., Xia, Y.: Dynamic asset allocation under inflation. J. Finance 57, 1201–1238 (2002)
2. Campbell, J.Y., Viceira, L.M.: Who should buy long-term bonds? Am. Econ. Rev. 91, 99–127 (2001).

https://doi.org/10.1257/aer.91.1.99
3. Fischer, S.: The demand for index bonds. J. Polit. Econ. 83, 509–534 (1975)
4. Gong, N., Li, T.: Role of index bonds in an optimal dynamic asset allocation model with real subsistence consumption.

Appl. Math. Comput. 174, 710–731 (2006)
5. Koo, J.L., Ahn, S.R., Koo, B.L., Koo, H.K., Shin, Y.H.: Optimal consumption and portfolio selection with quadratic utility and

a subsistence consumption constraint. Stoch. Anal. Appl. 34, 165–177 (2016).
https://doi.org/10.1080/07362994.2015.1112748

6. Kwak, M., Lim, B.H.: Optimal portfolio selection with life insurance under inflation risk. J. Bank. Finance 46, 59–71 (2014)
7. Markowitz, H.M.: Portfolio selection. J. Finance 7, 77–91 (1952). https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
8. Rho, K., Kim, J.Y., Shin, Y.H.: An optimal consumption and investment problem with quadratic utility and negative

wealth constraints. J. Inequal. Appl. 2017(1), Article ID 188 (2017). https://doi.org/10.1186/s13660-017-1469-x
9. Sharpe, W.F.: Expected utility asset allocation. Financ. Anal. J. 63, 18–30 (2007)

https://doi.org/10.1257/aer.91.1.99
https://doi.org/10.1080/07362994.2015.1112748
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1186/s13660-017-1469-x

	Portfolio decision with a quadratic utility and inﬂation risk
	Abstract
	Keywords

	Introduction
	Model
	Optimization problem
	Solution
	Discussion
	Conclusions
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


