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Abstract
The purpose of this paper is to investigate the existence and uniqueness of
nonnegative solutions for Langevin equations with two fractional orders:

⎧
⎪⎨

⎪⎩

c
0D

β
t (

c
0D

α
t – γ )x(t) = f (t, x(t)), 0 < t < 1,

x(k)(0) =μk , 0 ≤ k < l,

x(α+k)(0) = νk , 0 ≤ k < n,

where c
0D

α
t and c

0D
β
t denote the Caputo fractional derivatives, f : [0, 1]× R → R is a

continuous function, andm – 1 < α ≤ m, n – 1 < β ≤ n, l =max{m,n}, n,m ∈ N, γ > 0,
μj ≥ 0, ∀j ∈ {0, . . . ,m – 1}, νi – γμi ≥ 0, ∀i ∈ {0, . . . ,n – 1}. By using a single
upper-solution or lower-solution method and monotone iterative approach, several
existence and uniqueness results of nonnegative solutions are obtained. Moreover, an
example is given to illustrate the main results.
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1 Introduction
In 1908, Paul Langevin gave an elaborate description of Brownian motion, and thus
Langevin equations were proposed, see [9, 12]. Langevin equations can also describe
many stochastic problems in fluctuating environments. In 1966, Kube gave a general-
ized Langevin equation for modeling anomalous diffusive processes in a complex and vis-
coelastic environment [10, 11]. An important extension of the topic is fractional Langevin
equation, which was introduced by Mainardi and collaborators [16, 17] in the early 1990s.
A lot of fractional Langevin equations have been established, e.g., fractional Langevin
equations for modeling of single-file diffusion [6] and for a free particle driven by power
law type of noise [18]. So fractional Langevin equations have been studied widely, see [1–9,
13, 15, 16, 19–26] for example. Recently, there have been many papers considering frac-
tional Langevin equations involving two fractional orders, see [1–6, 8, 13, 21, 24–26]. Most
of these articles studied the existence and uniqueness of solutions for Langevin equations,
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and some good results have been given by using the Banach contraction principle, Kras-
noselskii’s fixed point theorem, Schauder’s fixed point theorem, Leray–Schauder nonlin-
ear alternative, Leray–Schauder degree, and so on.

In [26], by using the Leray–Schauder nonlinear alternative, the authors studied the fol-
lowing initial value problem of Langevin equations with two fractional orders:

⎧
⎪⎪⎨

⎪⎪⎩

c
0Dβ

t (c
0Dα

t + γ )x(t) = f (t, x(t)), 0 < t < 1,

x(k)(0) = μk , 0 ≤ k < l,

x(α+k)(0) = νk , 0 ≤ k < n,

where c
0Dα

t and c
0Dβ

t denote the Caputo fractional derivatives, f : [0, 1]×R → R is a contin-
uous function, γ ∈ R, n, m ∈ N+, m – 1 < α ≤ m, n – 1 < β ≤ n, l = max{m, n}. The existence
of solutions was given. Further, the uniqueness of solutions was also obtained by means
of the Banach contraction principle. Recently, the author [4] studied this problem by in-
troducing a new norm

‖f ‖p,α = sup
t∈[0,1]

(∫ t

0

|f (s)|p
(t – s)α

ds
) 1

p
, α ∈ (0, 1), p ≥ 1

for a measurable function f : [0, 1] → R and got the existence, uniqueness of solutions for
this problem via the Banach contraction principle.

We can find that there are few papers devoted to the study of nonnegative solutions for
Langevin equations involving two fractional orders. In this paper we use a single upper-
solution or lower-solution method and a monotone iterative approach to consider the
following initial value problem of Langevin equations involving two fractional orders:

⎧
⎪⎪⎨

⎪⎪⎩

c
0Dβ

t (c
0Dα

t – γ )x(t) = f (t, x(t)), 0 < t < 1,

x(k)(0) = μk , 0 ≤ k < l,

x(α+k)(0) = νk , 0 ≤ k < n,

(1.1)

where c
0Dα

t and c
0Dβ

t denote the Caputo fractional derivatives, f : [0, 1] × R → R is a con-
tinuous function, and some initial conditions are given: m – 1 < α ≤ m, n – 1 < β ≤ n,
l = max{m, n}, n, m ∈ N+, γ > 0, μj ≥ 0, ∀j ∈ {0, . . . , m – 1}, νi – γμi ≥ 0, ∀i ∈ {0, . . . , n – 1}.
In [14], by using e-positive operators and Altman fixed point theory, we gave some exis-
tence and uniqueness results of solutions for (1.1). Different from the above-mentioned
results, in this paper we establish the existence and uniqueness of nonnegative solutions
for problem (1.1), which are new results on initial value problems for Langevin equations.
It should be pointed out that we only use single lower-solution or single upper-solution to
get the existence and uniqueness of nonnegative solutions for problem (1.1). This method
is novel and our results are new.

In this paper, we always assume that the function f satisfies the following two conditions:
(H1) f : [0, 1] × [0,∞) → [0,∞) is continuous;
(H2) f (t, x) is increasing in x ∈ [0,∞) for each t ∈ [0, 1].
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2 Preliminaries
In order to obtain our results, we first list necessary definitions, lemmas, and basic results.

Definition 2.1 ([4, 26]) For a function x(t), the Riemann–Liouville fractional integral of
order α > 0 is

aIα
t x(t) =

∫ t

a

(t – u)α–1

�(α)
x(u) du. (2.1)

Definition 2.2 ([4, 26]) For a continuous function x(t), the Caputo fractional derivative
of order α > 0 is

c
aDα

t x(t) =
∫ t

a

(t – u)n–α–1

�(n – α)
x(n)(u) du, n = [α] + 1, (2.2)

where [α] denotes the integer part of the real number α.

Lemma 2.1 ([26]) x(t) is a solution of problem (1.1) if and only if x(t) is a solution of the
integral equation

x(t) =
∫ t

0

(t – u)α+β–1

�(α + β)
f
(
u, x(u)

)
du + γ

∫ t

0

(t – u)α–1

�(α)
x(u) du + φ(t), (2.3)

where

φ(t) =
n–1∑

i=0

νi – γμi

�(α + i + 1)
tα+i +

m–1∑

j=0

μj

�(j + 1)
tj. (2.4)

Define an operator T : C[0, 1] → C[0, 1] by

Tx(t) =
∫ t

0

(t – u)α+β–1

�(α + β)
f
(
u, x(u)

)
du + γ

∫ t

0

(t – u)α–1

�(α)
x(u) du + φ(t). (2.5)

From Lemma 2.1, we can see that x(t) is a solution of problem (1.1) if and only if x is a
fixed point of T .

3 Main results
In this section, we apply a single upper-solution or lower-solution method and a monotone
iterative approach to study problem (1.1), and we obtain some new results on the existence
results of unique nonnegative solutions.

Let E = C[0, 1] be the Banach space with the norm ‖x‖ = maxt∈[0,1] |x(t)|, and θ denotes
the zero element in E. Given the usual normal cone P = {x ∈ E : x(t) ≥ 0,∀t ∈ [0, 1]}. Then
x ≤ y if and only if x(t) ≤ y(t), ∀t ∈ [0, 1]. For x, y ∈ P with x ≤ y, we have ‖x‖ ≤ ‖y‖. Define

D1 =
{

x ∈ E : x(t) ≥ φ(t), t ∈ [0, 1]
}

.

Theorem 3.1 Assume (H1), (H2), and
(H3) there exists a constant σ > 0 such that, for x, y ∈ [0,∞) with y ≥ x,

f (t, y) – f (t, x) ≤ σ (y – x), ∀t ∈ [0, 1].
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If

τ :=
σ

�(α + β + 1)
+

γ

�(α + 1)
< 1,

then problem (1.1) has a unique nonnegative solution in D1.

Proof Since μj ≥ 0 for j ∈ {0, . . . , m – 1} and νi – γμi ≥ 0 for i ∈ {0, . . . , n – 1}, we obtain
φ(t) ≥ 0, t ∈ [0, 1]. From (H1), Tφ(t) ≥ φ(t), ∀t ∈ [0, 1]. For x, y ∈ D1 with x ≤ y, we have
y(t) ≥ x(t) ≥ 0, t ∈ [0, 1], from (H2),

Ty(t) =
∫ t

0

(t – u)α+β–1

�(α + β)
f
(
u, y(u)

)
du + γ

∫ t

0

(t – u)α–1

�(α)
y(u) du + φ(t)

≥
∫ t

0

(t – u)α+β–1

�(α + β)
f
(
u, x(u)

)
du + γ

∫ t

0

(t – u)α–1

�(α)
x(u) du + φ(t)

= Tx(t),

which means that T is increasing in D1. Hence, for t ∈ [0, 1], by (H3),

0 ≤ Ty(t) – Tx(t)

=
∫ t

0

(t – u)α+β–1

�(α + β)
(
f
(
u, y(u)

)
– f

(
u, x(u)

))
du

+ γ

∫ t

0

(t – u)α–1

�(α)
(
y(u) – x(u)

)
du

≤
∫ t

0
σ

(t – u)α+β–1

�(α + β)
(
y(u) – x(u)

)
du

+ γ

∫ t

0

(t – u)α–1

�(α)
(
y(u) – x(u)

)
du

=
∫ t

0

(

σ
(t – u)α+β–1

�(α + β)
+ γ

(t – u)α–1

�(α)

)
(
y(u) – x(u)

)
du

= L
(
y(t) – x(t)

)
,

where

Lx(t) :=
∫ t

0

(

σ
(t – u)α+β–1

�(α + β)
+ γ

(t – u)α–1

�(α)

)

x(u) du, ∀t ∈ [0, 1]. (3.1)

We know that L is a positive linear bounded operator, and its norm

‖L‖ ≤ max
t∈[0,1]

∫ t

0

(

σ
(t – u)α+β–1

�(α + β)
+ γ

(t – u)α–1

�(α)

)

du

= max
t∈[0,1]

(

σ
tα+β

�(α + β + 1)
+ γ

tα

�(α + 1)

)

=
σ

�(α + β + 1)
+

γ

�(α + 1)
= τ < 1.
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Therefore,

Ty – Tx ≤ L(y – x) for x, y ∈ D1 with x ≤ y. (3.2)

Let

x0 = φ, xn = Txn–1 (n = 1, 2, . . .).

Because T is increasing in D1, we get

φ = x0 ≤ x1 ≤ · · · ≤ xn ≤ · · · . (3.3)

Further, by (3.2),

θ ≤ xn+p – xn = Txn+p–1 – Txn–1

≤ L(xn+p–1 – xn–1)

≤ L2(xn+p–2 – xn–2)

≤ · · · ≤ Ln(xp – x0),

and thus,

‖xn+p – xn‖ ≤ ∥
∥Ln(xp – x0)

∥
∥

≤ ∥
∥Ln∥∥ · ‖xp – x0‖

≤ τ n‖xp – x0‖ (n, p = 1, 2, . . .).

Since τ ∈ (0, 1), {xn} is a Cauchy sequence in D1. Because D1 is a close set in E, so it is
complete. Hence, there exists x∗ ∈ D1 such that xn → x∗ as n → ∞. By (3.3), xn ≤ x∗ and
then Txn ≤ Tx∗, that is, xn+1 ≤ Tx∗, which implies

θ ≤ Tx∗ – Txn ≤ L
(
x∗ – xn

)
.

Also,

∥
∥Tx∗ – xn+1

∥
∥ =

∥
∥Tx∗ – Txn

∥
∥ ≤ ∥

∥L
(
x∗ – xn

)∥
∥ ≤ ‖L‖ · ∥∥x∗ – xn

∥
∥ ≤ τ

∥
∥x∗ – xn

∥
∥.

Because xn → x∗ as n → ∞, we get ‖Tx∗ – x∗‖ = 0, and thus Tx∗ = x∗. That is, x∗ is a fixed
point of T . Therefore, x∗ is a nonnegative solution of problem (1.1).

In the following, we show that the solution x∗ of problem (1.1) is a unique solution in D1.
Suppose that x ∈ D1 is the other solution of problem (1.1). Then x is a fixed point of T

in D1. Since x ≥ x0, we get Tx ≥ Tx0, that is, x ≥ x1. In general, x ≥ xn (n = 0, 1, 2, . . .). Let
n → ∞, we have x ≥ x∗, and by (3.2),

θ ≤ x – xn+1 = Tx – Txn ≤ L(x – xn) ≤ · · · ≤ Ln(x – x0).
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Also,

‖x – xn+1‖ ≤ ∥
∥Ln(x – x0)

∥
∥ ≤ τ n‖x – x0‖ → 0 as n → ∞.

So ‖x – x∗‖ = 0, and thus x = x∗. �

Let L1 = max{f (t, 0) : t ∈ [0, 1]} and

C1 =
L1

�(α + β + 1)
, C =

n–1∑

i=0

νi – γμi

�(α + i + 1)
+

m–1∑

j=0

μj

�(j + 1)
.

Then L1, C1, C ≥ 0. Take

R ≥ C + C1

1 – τ
. (3.4)

Define

D2 =
{

x ∈ E : x(t) ≤ R, t ∈ [0, 1]
}

.

Theorem 3.2 Assume that (H1)–(H3) hold. If

τ :=
σ

�(α + β + 1)
+

γ

�(α + 1)
< 1,

then problem (1.1) has a unique nonnegative solution in D2.

Proof Like the proof of Theorem 3.1, T is increasing in D2 and (3.2) holds. By (H3), we
obtain

f (t, x) ≤ σx + f (t, 0) for x ≥ 0, t ∈ [0, 1]. (3.5)

Let

v0(t) = R, vn(t) = Tvn–1(t), n = 1, 2, . . . .

From (3.4), (3.5), we have

Tv0(t) =
∫ t

0

(t – u)α+β–1

�(α + β)
f
(
u, v0(u)

)
du + γ

∫ t

0

(t – u)α–1

�(α)
v0(u) du + φ(t)

≤
∫ t

0

(t – u)α+β–1

�(α + β)
σR du +

∫ t

0

(t – u)α+β–1

�(α + β)
f (u, 0) du + γ

∫ t

0

(t – u)α–1

�(α)
R du + C

≤
∫ t

0

(t – u)α+β–1

�(α + β)
σR du +

∫ t

0

(t – u)α+β–1

�(α + β)
L1 du + γ

∫ t

0

(t – u)α–1

�(α)
R du + C

= R
(

σ
tα+β

�(α + β + 1)
+ γ

tα

�(α + 1)

)

+ L1
tα+β

�(α + β + 1)
+ C

≤ R
(

σ
1

�(α + β + 1)
+ γ

1
�(α + 1)

)

+ C1 + C

= Rτ + C1 + C ≤ R = v0(t),
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so from the fact that T is increasing on D2, we can easily get

· · · ≤ vn ≤ · · · ≤ v1 ≤ v0 = R. (3.6)

Further, by (3.2),

θ ≤ vn – vn+p = Tvn–1 – Tvn+p–1

≤ L(vn–1 – vn+p–1)

≤ L2(vn–2 – vn+p–2)

≤ · · · ≤ Ln(v0 – vp),

and thus

‖vn – vn+p‖ ≤ ∥
∥Ln(v0 – vp)

∥
∥

≤ ∥
∥Ln∥∥ · ∥∥v0 – vp

∥
∥

≤ τ n‖v0 – vp‖, n, p = 1, 2, . . . .

Note that τ ∈ (0, 1), {vn} is a Cauchy sequence in D2. Because D2 is a close set in E, so it
is complete. Hence, there exists v∗ ∈ D2 such that vn → v∗ as n → ∞. From (3.6), vn ≥ v∗

and then Tvn ≥ Tv∗, that is, vn+1 ≥ Tv∗. So we have

θ ≤ Tvn – Tv∗ ≤ L
(
x∗ – xn

)
,

then we can obtain

∥
∥Tvn – Tv∗∥∥ =

∥
∥vn+1 – Tv∗∥∥ ≤ ∥

∥L
(
vn – v∗)∥∥ ≤ ‖L‖ · ∥∥vn – v∗∥∥ ≤ τ

∥
∥vn – v∗∥∥.

Hence, from vn → v∗ as n → ∞, we have ‖Tv∗ – v∗‖ = 0, and thus Tv∗ = v∗. That is, v∗ is a
fixed point of T . Therefore, v∗ is a nonnegative solution of problem (1.1).

In the following, we show that v∗ is a unique solution of problem (1.1) in D2.
Suppose that v is the other solution of problem (1.1) in D2. Then v is a fixed point of T

in D2. Since v ≥ v0, we get Tv ≥ Tv0, that is, v ≥ v1. In general, v ≥ vn (n = 0, 1, 2, . . .). Let
n → ∞, we have v ≥ v∗, and by (3.2),

θ ≤ v – vn+1 = Tv – Tvn ≤ L(v – vn) ≤ · · · ≤ Ln(v – v0).

Therefore,

‖v – vn+1‖ ≤ ∥
∥Ln(v – v0)

∥
∥ ≤ τ n‖v – v0‖ → 0 as n → ∞.

So ‖v – v∗‖ = 0, and thus v = v∗. �

Define

D =
{

x ∈ E : φ(t) ≤ x(t) ≤ R, t ∈ [0, 1]
}

,
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where φ, R are given as in (2.4) and (3.4), respectively. From Theorems 3.1 and 3.2, we can
obtain the following.

Theorem 3.3 Assume that (H1)–(H3) hold. If

τ :=
σ

�(α + β + 1)
+

γ

�(α + 1)
< 1,

then problem (1.1) has a unique nonnegative solution in D.

Remark 3.1 In Theorem 3.1, Tφ ≥ φ, we call φ a lower solution of operator T . In The-
orem 3.2, TR ≤ R, we call R an upper solution of T . From these results, we see that we
get the existence and uniqueness of nonnegative solutions for Langevin equations with
boundary conditions only via using single lower solution or single upper solution. So we
can call the method to be a single lower-solution or single upper-solution method.

Corollary 3.4 Assume (H1)–(H3) and there exists j0 ∈ {0, . . . , m – 1} such that μj0 
= 0. If
τ < 1, then problem (1.1) has a unique positive solution in Di (i = 1, 2).

Proof By Theorems 3.1 and 3.2, problem (1.1) has a unique nonnegative solution x∗ in Di

(i = 1, 2). Further,

x∗(t) =
∫ t

0

(t – u)α+β–1

�(α + β)
f
(
u, x∗(u)

)
du + γ

∫ t

0

(t – u)α–1

�(α)
x∗(u) du + φ(t).

Since μj0 
= 0, we can know that μj0 > 0 and thus φ(t) > 0, ∀t ∈ (0, 1]. Further, the solution
x∗(t) ≥ φ(t) > 0 for t ∈ (0, 1]. So problem (1.1) has a unique positive solution in Di (i =
1, 2). �

Corollary 3.5 Assume (H1)–(H3) and there exists i0 ∈ {0, . . . , n–1} such that νi0 –γμi0 
= 0.
If τ < 1, then problem (1.1) has a unique positive solution in Di (i = 1, 2).

Proof The proof of this theorem is similar to the proof of Corollary 3.4. �

Corollary 3.6 Assume (H1)–(H3) and there exists t0 ∈ [0, 1] such that f (t0, 0) 
= 0. If τ < 1,
then problem (1.1) has a unique positive solution in Di (i = 1, 2).

Proof By Theorem 3.1, problem (1.1) has a nonnegative solution

x∗(t) =
∫ t

0

(t – u)α+β–1

�(α + β)
f
(
u, x∗(u)

)
du + γ

∫ t

0

(t – u)α–1

�(α)
x∗(u) du + φ(t).

If φ(t) 
≡ 0 for t ∈ [0, 1], then x∗ is a positive solution. If φ(t) ≡ 0 for t ∈ [0, 1], then

x∗(t) =
∫ t

0

(t – u)α+β–1

�(α + β)
f
(
u, x∗(u)

)
du + γ

∫ t

0

(t – u)α–1

�(α)
x∗(u) du.

Suppose x∗(t) ≡ 0 for t ∈ [0, 1], then

∫ t

0

(t – u)α+β–1

�(α + β)
f (u, 0) du = 0,
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and thus

(t – u)α+β–1f (u, 0) = 0, a.e. (u).

Since (t – u)α+β–1 
≡ 0, a.e. (u), we obtain f (u, 0) = 0, a.e. (u). On the other hand, as f (t0, 0) 
=
0, for certain t0 ∈ [0, 1] and f (t0, x) ≥ 0, we have f (t0, 0) > 0. The continuity of f implies that
there is a set B ⊂ [0, 1] with t0 ∈ B and μ(B) > 0, where μ is the Lebesgue measure such
that f (t, 0) > 0, ∀t ∈ B. This leads to a contradiction. Therefore, x∗(t) > 0 for t ∈ (0, 1). That
is, problem (1.1) has a unique positive solution. �

4 An example
We present an example to better illustrate our main results.

Example 4.1 Consider the following initial value problem:

⎧
⎪⎪⎨

⎪⎪⎩

c
0D

1
2
t (c

0D
3
2
t – �( 3

2 ))x(t) = arctan x(t)+t3

(t+2)2 , 0 < t < 1,

x(0)(0) = x(1)(0) = 1
2 ,

x( 3
2 )(0) = �( 3

2 ).

(4.1)

In this example, α = 3
2 , β = 1

2 , μ0 = μ1 = 1
2 , ν0 = �( 3

2 ), γ = �( 3
2 ), m = 2, n = 1, l = 2, and

f (t, x) = arctan x+t3

(t+2)2 . It is not difficult to see that f (t, x) satisfies the conditions (H1), (H2) and
for x, y ∈ [0,∞), with y ≥ x, then, by the mean value theorem for function arctan z in [x, y],
there exists ε ∈ (x, y) such that

f (t, y) – f (t, x) =
arctan y – arctan x

(t + 2)2 =
1

1 + ε2 · 1
(t + 2)2 (y – x) ≤ 1

4
(y – x), ∀t ∈ [0, 1].

Choosing σ = 1
4 . Further,

τ =
1
4

�( 3
2 + 1

2 + 1)
+

�( 3
2 )

�( 3
2 + 1)

=
1
8

+
2
3

=
19
24

< 1.

Since f (t, 0) = t3

(t+2)2 , we get L1 = max{f (t, 0) : t ∈ [0, 1]} = 1
9 , and thus

C1 =
1
9

�( 3
2 + 1

2 + 1)
=

1
18

, C =
�( 3

2 ) – 1
2�( 3

2 )
�( 3

2 + 1)
+

1
2

+
1
2

=
4
3

.

We also know φ(t) = 1
3 t 3

2 + 1
2 t 1

2 + 1
2 . Therefore, R ≥ 4

3 + 1
18

1– 1
18

= 20
3 > φ(t). In addition, μ0 = μ1 =

1
2 > 0, ν0 – γμ0 = �( 3

2 ) – 1
2�( 3

2 ) = 1
2�( 3

2 ) =
√

π

4 > 0, and f (t, 0) 
= 0, ∀t ∈ (0, 1].
Thus, from Corollaries 3.4, 3.5, and 3.6, we know that problem (4.1) has a unique positive

solution x∗ in D1, D2, and D. Moreover,

x∗(t) =
∫ t

0

(t – u)α+β–1

�(α + β)
· arctan x∗(u) + u3

(u + 2)2 du

+ γ

∫ t

0

(t – u)α–1

�(α)
x∗(u) du + φ(t), t ∈ [0, 1].
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