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Abstract
In this paper, we investigate the dynamics of a nonlinear differential system, a
mathematical model of the coupled hematopoiesis network. The asymptotic stability
of a unique positive periodic solution of the system under certain conditions is
proved theoretically. Furthermore, we propose a linear feedback control scheme to
guarantee the asymptotic stability of the system when the above conditions do not
hold. Finally, an example and some numerical simulations are displayed to support
the obtained results.
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1 Introduction
Hematopoiesis (blood cell production) is an extremely complex process. As we know, all
blood cells come from the hematopoietic stem cells (HSCs) which can differentiate mature
blood cells into the blood circulatory system so as to maintain the normal blood environ-
ment. The process of differentiation is called hematopoiesis. Over the past few decades,
many researchers have studied hematopoiesis dynamics from the perspective of anatomy,
physiology, and mathematics. In 1977, Mackey and Glass studied the density of mature
blood cell in a hematopoietic system and proposed a nonlinear delay differential equation
model (Hematopoiesis Model, HM) describing the dynamics of hematopoiesis [1, 2]. In
1991, by using a variable replacement method, Gyori and Ladas obtained sufficient con-
ditions for the global attractivity of the unique positive equilibrium point of HM [3]. In
Ref. [4], authors extended the HM to a general nonlinear delayed differential equation and
proved the sufficient conditions for the existence of a periodic positive solution based on
cone fixed point theorem. In Ref. [5], authors proved the existence of a unique positive
almost periodic solution of a generalized model hematopoiesis with delays and impulses.
In Ref. [6], Ding et al. presented several existence and uniqueness results about positive
almost periodic solutions for a class of hematopoiesis model. Hereafter, some extended
hematopoiesis models were also proposed, the existence and stability of a positive peri-
odic solution of the models were discussed [7–12]. Some stability condition and control
methods were put forward. In Ref. [13], authors presented a feedback control method for
the global attractivity of a positive almost-periodic solution of the model of hematopoiesis.
In Refs. [14–17], the authors pointed out that the hematopoiesis can be controlled by the
gene regulation or drugs.
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All of the above models and studies of hematopoiesis are based on a single hematopoi-
etic organ. However, there are multiple organs or tissues with hematopoietic function,
including bone marrow, lymph node, liver, spleen, etc. Moreover, bone marrow is also
located in different parts of the body, and there do exist connections and effects among
them. For example, the damage of a hematopoietic organ can cause other organs to in-
crease the production of blood cells. Therefore, a normal blood circulatory system should
be the synergy result of these hematopoietic organs or tissues. In this work, we consider
the mathematical model of hematopoiesis with the coexistence of multiple hematopoietic
organs or tissues.

The progress of complex networks theory and modeling, along with access to new data,
enables humans to achieve true predictive power in areas never before imagined. In recent
years, complex networks theory is widely used in biology research [18, 19]. In Ref. [20],
Zemanova et al. studied relationship between the cluster structure and the function in
complex brain networks based on the cluster synchronization method. In Ref. [21], Chen
et al. suggested that there is an extensive network of TET2-Targeting MicroRNAs regulat-
ing malignant hematopoiesis. In Ref. [22], Swiersa et al. proposed an approach to program
the HSCs and erythroid lineage specification by using genetic regulatory networks.

Motivated by the above discussions, we propose a nonlinear time-delay differential sys-
tem as a model of a coupled hematopoiesis network which reflects the interactions of
multiple hematopoiesis organs. The existence of a unique positive periodic solution of
the model is proved rigorously, and the sufficient conditions of asymptotic stability of the
periodic solution are presented and verified through theoretical analysis and numerical
simulations, respectively. Furthermore, in the case of non-asymptotic stability of the pe-
riodic solution, a feedback controller is designed to ensure the stability of the system.

The rest of the paper is organized as follows. In Sect. 2, the model and mathematical
preliminaries are introduced. The existence and asymptotic stability of the positive peri-
odic solutions are proved in Sect. 3. A feedback control scheme is proposed in Sect. 4. An
example and some numerical simulations are provided to verify the theoretical results in
Sect. 5. Finally, a brief conclusion is given in Sect. 6.

2 Model and preliminaries
The general hematopoiesis model with a single hematopoietic system is described by [1, 4]

ẋ(t) = –a(t)x(t) +
b(t)

1 + xm(t – δ)
, (1)

where x(t) denotes the density of mature cells in blood circulation at time t, the delay δ > 0
is the time delay between the production of immature cells in the hematopoietic organs
and their maturation for release in the circulating bloodstreams, m > 0 is the disturbing
parameter, and the disturbing functions a(t) and b(t) are continuous and � -periodic.

Here, considering the synergy of the multiple hematopoietic organs or tissues, we
extend the model (1) to a complex dynamical network model with multiple coupled
hematopoiesis, which is described in nonlinear differential equations as follows:

ẋi(t) = –ai(t)xi(t) +
n∑

j=1

bij
βij(t)

1 + xm
j (t)

+
n∑

j=1

cij
wij(t)

1 + xm
j (t – δ)

, i = 1, 2, . . . , n, (2)
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where xi(t) ∈ (0,∞) represents the density of mature cells in the ith organ, the parameters
bij, cij are the connection weight and the delay connection weight between organ i and
organ j, respectively. Model (2) can be rewritten in a vector form as follows:

Ẋ(t) = –A(t)X(t) + Bβ(t)G
(
X(t)

)
+ CW (t)G

(
X(t – δ)

)
, (3)

where X(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ (R+)n, xi(t) ∈ (0,∞) is the ith state variable of equa-
tions (2) (i = 1, 2, . . . , n). G(X(t)) = [ 1

1+xm
1 (t) , 1

1+xm
2 (t) , . . . , 1

1+xm
n (t) ]T , and G(·) is a real continu-

ous vector function in the Euclidean space. The matrices A(t) = diag{a1(t), a2(t), . . . , an(t)},
β(t) = (βij(t))n×n, and W (t) = (wij(t))n×n are continuous positive � -periodic function ma-
trices. The matrices B = (bij)n×n and C = (cij)n×n are non-negative constant matrices which
represent the coupling and delay coupling strength among n organs, respectively.

The main purpose of this paper is to prove the existence and asymptotic stability of a
unique periodic positive solution of system (2) under certain conditions. Then we propose
a feedback control method to ensure the stability of system (2) when the above conditions
do not hold.

In order to derive our results, the definition of normal cone and a lemma are given below.

Definition 1 ([23]) Let κ be a real Banach space. A nonempty convex closed set P ⊂ κ

is called a cone if it satisfies the following two conditions: (i) x ∈ P, λ ≥ 0 implies λx ∈ P;
(ii) x ∈ P, –x ∈ P implies x = θ (where θ denotes the zero element of κ). P is said to be
normal if there exists a positive constant M such that, for all x, y ∈ P, θ � x � y implies
‖x‖ ≤ M‖y‖.

Lemma 1 ([24]) Let κ be a real Banach space and � is a cone in κ . Suppose that
(i) cone � is normal, ℘ : � → � is a completely continuous operator;

(ii) for ∀X0 ∈ �, there exists ε0 > 0 such that ‖℘(X0)‖ > ‖X0‖, ‖℘2(X0)‖ ≥ ε0‖℘(X0)‖;
(iii) for any 0 < μ < 1 and X ∈ � satisfying ‖X0‖ < ‖X‖ < ‖℘(X0)‖, there exists η(X,μ) > 0

such that ‖℘(μX)‖ ≤ [μ(1 + η)]–1‖℘(X)‖.
Then the operator ℘ has a unique fixed point X̃. Furthermore, for any initial X0 ∈ � and

an iterated sequence Xk = ℘(Xk–1) (k = 1, 2, 3, . . .), we have limk→∞ ‖Xk – X̃‖ = 0.

3 Existence and asymptotic stability of the positive periodic solution
In this section, we address the existence and asymptotic stability of the positive periodic
solution of model (3).

Theorem 1 For the differential equation (3), there exists a unique positive periodic solution
X̃(t) if ‖�(s)‖ < 1 for s ∈ (0,∞), where �(s) = diag{ μ+μxm

1 (s)
1+μmxm

1 (s) , μ+μxm
2 (s)

1+μmxm
2 (s) , . . . , μ+μxm

n (s)
1+μmxm

n (s) }, 0 <
μ < 1.

Proof Let us set H(t, s) = (e
∫ �

0 A(u) du – I)–1e
∫ s

t A(u) du, s ∈ [t, t + � ]. Let � = {X(t) : X(t + � ) =
X(t),‖X(t)‖ = Max[1≤k≤n]{Maxs∈[t,t+� ]{|xk(s)|}}} denotes a continuous function set. Ob-
viously � is a cone of Banach space. For X(t) : ‖X(t)‖ = Max[1≤k≤n]{Maxs∈[t,t+� ]{|xk(s)|}}
and Y (t) : ‖Y (t)‖ = Max[1≤k≤l]{Maxs∈[t,t+� ]{|xk(s)|}}, where n < l, we have θ � X(t) � Y (t),
which implies ‖X(t)‖ ≤ ‖Y (t)‖. So � is a normal cone.
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Construct the following operator ℘ :

℘
(
X(t)

)
=

∫ t+�

t
H(t, s)

[
Bβ(s)G

(
X(s)

)
+ CW (s)G

(
X(s – δ)

)]
ds.

Obviously, ℘(X(t + � )) = ℘(X(t)), that is, ℘ : � → �.
Then we obtain

℘̇
(
X(t)

)
= –A(t)℘

(
X(t)

)
+ Bβ(t)G

(
X(t)

)
+ CW (t)G

(
X(t – δ)

)
,

∥∥℘̇
(
X(t)

)∥∥ ≤ ∥∥A(t)℘
(
X(t)

)∥∥ +
∥∥Bβ(t)G

(
X(t)

)∥∥ +
∥∥CW (t)G

(
X(t – δ)

)∥∥.

Because A(t),β(t), and W (t) are � -periodic function matrices, we have

∥∥A(t)
∥∥ ≤ M1,

∥∥β(t)
∥∥ ≤ M2,

∥∥W (t)
∥∥ ≤ M3,

∥∥G
(
X(t)

)∥∥ ≤ 1,
∥∥G

(
X(t – δ)

)∥∥ ≤ 1.

Thus

∥∥℘
(
X(t)

)∥∥ ≤ �
∥∥H(t, s)

∥∥(‖B‖M2 + ‖C‖M3
)
. (4)

Therefore, ‖℘̇(X(t))‖ and ‖℘(X(t))‖ are bounded. Based on the Arzela–Ascoli theorem
[25], the operator ℘ : � → � is a completely continuous operator. Furthermore, for X0(t) ∈
�, we readily obtain ‖℘(X0(t))‖ ≥ ‖X0(t)‖. Since matrices B and C are non-negative ma-
trices, from (4), we have

∥∥G
(
℘

(
X(s)

))∥∥ ≥ [
1 +

(
�

∥∥H(t, s)
∥∥(‖B‖M2 + ‖C‖M3

))m]–1

and

∥∥G
(
℘

(
X(s – δ)

))∥∥ ≥ [
1 +

(
�

∥∥H(t, s)
∥∥(‖B‖M2 + ‖C‖M3

))m]–1.

Because

∥∥℘2(X0(t)
)∥∥ =

∥∥∥∥
∫ t+�

t
H(t, s)

[
Bβ(s)G

(
℘

(
X0(s)

))
+ CW (s)G

(
℘

(
X0(s – δ)

))]
ds

∥∥∥∥

≥ [
1 +

(
�

∥∥H(t, s)
∥∥(‖B‖M2 + ‖C‖M3

))m]–1

×
∥∥∥∥
∫ t+�

t
H(t, s)

[
Bβ(s)G

(
X0(s)

)
+ CW (s)G

(
X0(s – δ)

)]
ds

∥∥∥∥

=
[
1 +

(
�

∥∥H(t, s)
∥∥(‖B‖M2 + ‖C‖M3

))m]–1∥∥℘
(
X0(t)

)∥∥,

there exists ε0 = [1 + (�‖H(t, s)‖(‖B‖M2 + ‖C‖M3))m]–1 > 0 such that ‖℘2(X0(t))‖ ≥
ε0‖℘(X0(t))‖.

If, for any X(t) ∈ �, there is ‖X0(t)‖ < ‖X(t)‖, then for 0 < μ < 1, we can obtain

℘
(
μX(t)

)
=

∫ t+�

t
H(t, s)

[
Bβ(s)G

(
μX(s)

)
+ CW (s)G

(
μX(s – δ)

)]
ds

=
1
μ

∫ t+�

t
H(t, s)

[
Bβ(s)�(s)G

(
X(s)

)
+ CW (s)�(s – δ)G

(
X(s – δ)

)]
ds, (5)
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where

�(s) = diag

{
μ + μxm

1 (s)
1 + μmxm

1 (s)
,

μ + μxm
2 (s)

1 + μmxm
2 (s)

, . . . ,
μ + μxm

n (s)
1 + μmxm

n (s)

}
.

And because

μ1–m <
∥∥�(s)

∥∥ < μ (0 < m < 1); μ ≤ ∥∥�(s)
∥∥ < μ1–m (m ≥ 1). (6)

Combining (5) and (6), we obtain

∥∥℘
(
μX(t)

)∥∥ ≤ 1
μ

∥∥�(s)
∥∥ ·

∥∥∥∥
∫ t+�

t
H(t, s)

[
Bβ(s)G

(
X(s)

)
+ CW (s)G

(
X(s – δ)

)]
ds

∥∥∥∥.

Then

∥∥℘
(
μX(t)

)∥∥ ≤ 1
μ

[
1 +

(∥∥�(s)
∥∥–1 – 1

)]–1∥∥℘
(
X(t)

)∥∥.

By Lemma 1, when ‖�(s)‖ < 1, s ∈ (0,∞), the operator ℘ : � → � has a unique positive
fixed point X̃(t) ∈ �. Furthermore, for the iteration Xk+1(t) = ℘(Xk(t)), k ∈ N+, we have
limk→∞ ‖Xk(t) – X̃(t)‖ = 0 for any initial value X0(t) ∈ �. So X̃(t) = ℘(X̃(t)), and

˙̃X(t) = ℘̇
(
X̃(t)

)
= –A(t)℘

(
X̃(t)

)
+ Bβ(t)G

(
X̃(t)

)
+ CW (t)G

(
X̃(t – δ)

)

= –A(t)X̃(t) + Bβ(t)G
(
X̃(t)

)
+ CW (t)G

(
X̃(t – δ)

)
. (7)

That is, X̃(t) is a unique positive periodic solution of equation (3). Thus the proof is com-
pleted. �

Theorem 2 Assume that there exist positive constants α,β ,γ > 0, and a positive definite
matrix P satisfying

HT (t)P + PH(t) ≥ αI (8)

and

(
(α – β)I PE(t – δ)

ET (t – δ)P βI

)
> γ , (9)

where H(t) = A(t) + Bβ(t)J0(X̃(t)), E(t – δ) = CW (t)J0(X̃(t – δ)), and X̃(t) is the periodic
solution of equation (3). Then X̃(t) is asymptotically stable.

Proof From (3) and (7), we have

⎧
⎨

⎩
Ẋ(t) = –A(t)X(t) + Bβ(t)G(X(t)) + CW (t)G(X(t – δ)),
˙̃X(t) = –A(t)X̃(t) + Bβ(t)G(X̃(t)) + CW (t)G(X̃(t – δ)).
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Let y(t) = X(t) – X̃(t), we obtain

ẏ(t) = –A(t)y(t) + F1
(
t, y(t)

)
+ F2

(
t, y(t – δ)

)
, (10)

where

F1
(
t, y(t)

)
= Bβ(t)

[
G

(
X̃(t) + y(t)

)
– G

(
X̃(t)

)]
,

F2
(
t, y(t – δ)

)
= CW (t)

[
G

(
X̃(t – δ) + y(t – δ)

)
– G

(
X̃(t – δ)

)]
.

Obviously, y(t) = 0 is the equilibrium point of (10). Linearizing F1 and F2 at the equilib-
rium, we have

F1
(
t, y(t)

) .= –Bβ(t)J0
(
X̃(t)

)
y(t),

F2
(
t, y(t – δ)

) .= –CW (t)J0
(
X̃(t – δ)

)
y(t – δ)),

where

J0
(
X̃(t)

)
= diag

{
m̃xm–1

1 (t)
(1 + x̃m

1 (t))2 ,
m̃xm–1

2 (t)
(1 + x̃m

2 (t))2 , . . . ,
m̃xm–1

n (t)
(1 + x̃m

n (t))2

}
,

J0
(
X̃(t – δ)

)
= diag

{
m̃xm–1

1 (t – δ)
(1 + x̃m

1 (t – δ))2 ,
m̃xm–1

2 (t – δ)
(1 + x̃m

2 (t – δ))2 , . . . ,
m̃xm–1

n (t – δ)
(1 + x̃m

n (t – δ))2

}
.

The linearization of (10) is

ẏ(t) = –A(t)y(t) – Bβ(t)J0
(
X̃(t)

)
y(t) – CW (t)J0

(
X̃(t – δ)

)
y(t – δ))

= –
[
A(t) + Bβ(t)J0

(
X̃(t)

)]
y(t) – CW (t)J0

(
X̃(t – δ)

)
y(t – δ)).

Then we obtain

ẏ(t) = –H(t)y(t) – E(t – δ))y(t – δ)). (11)

Taking the Lyapunov function

V (t) = yT (t)Py(t) + β

∫ t

t–δ

yT (s)y(s) ds,

we have

V̇ (t) = –
[
H(t)y(t) + E(t – δ))y(t – δ)

]T Py(t) – yT (t)P
[
H(t)y(t) + E(t – δ))y(t – δ)

]

+ βyT (t)y(t) – βyT (t – δ)y(t – δ)

= –yT (t)
[
HT (t)P + PH(t)

]
y(t) + βyT (t)y(t) – yT (t – δ)ET (t – δ)Py(t)

– yT (t)PE(t – δ))y(t – δ) – βyT (t – δ)y(t – δ).
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According to (8) and (9), we obtain

V̇ (t) ≤ –αyT (t)y(t) + βyT (t)y(t) – yT (t – δ)ET (t – δ)Py(t)

– yT (t)PE(t – δ))y(t – δ) – βyT (t – δ)y(t – δ)

= –
(
yT (t), yT (t – δ)

)
(

(α – β)I PE(t – δ)
ET (t – δ)P βI

)(
y(t)

y(t – δ)

)

≤ –γ
(
yT (t), yT (t – δ)

)
(

y(t)
y(t – δ)

)
.

It is obvious that V̇ (t) = 0 if and only if y(t) = 0. Let S be the set of all points where
V̇ (t) = 0, that is, S = {V̇ (t) = 0} = {y(t) = 0}. From (10), the largest invariant set of S is
M = {y(t) = 0}. According to LaSalles invariance principle [26], starting with any initial
values, the trajectories of system (10) will converge to M asymptotically, which implies
that y(t) → 0 (t → ∞). That is, the periodic solution X̃(t) of (3) is asymptotically stable.
Now the proof is completed. �

Remark 1 It is worth noting that, conditions (8) and (9) in Theorem 2 are quite conserva-
tive and would be difficult to achieve. Fortunately, a human organ system has the ability to
adjust and maintain balance. In the following section, we will discuss the feedback control
law to ensure the stability of system (3).

4 Feedback control
According to Theorem 2, the asymptotic stability of X̃(t) is not guaranteed when condition
(8) or (9) is not met. In this section, a feedback control method is proposed to guarantee
the asymptotic stability of the periodic solution X̃(t). By employing a controller U , the
controlled system (3) can be rewritten as

Ẋ(t) = –A(t)X(t) + Bβ(t)G
(
X(t)

)
+ CW (t)G

(
X(t – δ)

)
+ U . (12)

Theorem 3 Consider system (12) with a linear feedback controller U = –ky(t), where k is
a sufficiently large positive constant. Assume that there exist constants α,β ,γ > 0, and a
positive definite matrix P satisfying

HT (t)P + PH(t) ≥ αI (13)

and
(

(k + α – β)I PE(t – δ)
ET (t – δ)P βI

)
> γ . (14)

Then system (12) can be stabilized to the periodic solution X̃(t) of equation (3).

Proof Let y(t) = X(t) – X̃(t).
Combining (12) and (7), we have

ẏ(t) = –A(t)y(t) + F1
(
t, y(t)

)
+ F2

(
t, y(t – δ)

)
– ky(t).
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By linearizing the above equation, we obtain

ẏ(t) = –A(t)y(t) – Bβ(t)J0
(
X̃(t)

)
y(t) – CW (t)J0

(
X̃(t – δ)

)
y(t – δ)) – ky(t),

that is,

ẏ(t) = –
(
H(t) + kI

)
y(t) – E(t – δ))y(t – δ)). (15)

The rest of the proof is similar to that of Theorem 2. Therefore, the equilibrium point
y(t) = 0 of (15) is asymptotically stable, that is, limt→0 y(t) = 0. Thus, an arbitrary solution
X(t) of (12) is stabilized to the periodic solution X̃(t) of equation (3). The proof is thus
completed. �

Remark 2 Comparing (14) with (9), one can see that the application scope of theory con-
dition is broadened by adding a feedback controller U . It implies that a living organism is
more likely to reach a steady state via appropriate feedback adjustment.

5 Example and numerical simulations
In this section, an example and some numerical simulations are provided to verify the
existence and the asymptotic stability of the unique positive periodic solution of equation
(3), as well as the effectiveness of the control method.

First, we provide an example of model (2) (or equation (3)) whose solution is asymptot-
ically stable.

We take n = 3, δ = 20, m = 2, and the matrices are as follows:

A1(t) =

⎡

⎢⎣
sin(0.1t) + 1 0 0

0 cos(0.1t) + 1 0
0 0 cos(0.2t) + 1

⎤

⎥⎦ ,

B1 =

⎡

⎢⎣
0.9542 0.6627 0.7111
0.0319 0.2815 0.6246
0.3569 0.2304 0.5906

⎤

⎥⎦ ,

β1(t) =

⎡

⎢⎣
sin(0.1t) + 1 0 0

0 sin(0.2t) + 1 0
0 0 sin(0.3t) + 1

⎤

⎥⎦ ,

C1 =

⎡

⎢⎣
0.6604 0.4513 0.8562
0.0476 0.2409 0.2815
0.3488 0.7151 0.7311

⎤

⎥⎦ ,

W1(t) =

⎡

⎢⎣
cos(0.1t) + 1 0 0

0 cos(0.2t) + 1 0
0 0 cos(0.3t) + 1

⎤

⎥⎦ .

So the differential equation is

Ẋ(t) = –A1(t)X(t) + B1β1(t)G
(
X(t)

)
+ C1W1(t)G

(
X(t – 20)

)
. (16)
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(a) The evolution of solution X(t)

(b) The phase diagram of solution X(t)

Figure 1 The asymptotic stability of the unique periodic positive solution of equation (16)

Figure 1 displays the stability of the unique positive periodic solution of equation (16).
Figure 1(a) displays the evolution of each component xk(t) (k = 1, 2, 3) of solution X(t) with
different initial values, and Fig. 1(b) is the phase diagram of solution X(t). It is obvious that
the unique positive periodic solution X̃(t) is asymptotically stable.

Next, we give an example to verify the effectiveness of the feedback control method.
Let us take C̄1 = 10C1 in equation (16), then we have

Ẋ(t) = –A1(t)X(t) + B1β1(t)G
(
X(t)

)
+ C̄1W1(t)G

(
X(t – 20)

)
. (17)

Figure 2 shows that the unique positive periodic solution X̃(t) of equation (17) is non-
asymptotically stable.

Then we employ a linear feedback controller U in (17), the equation is rewritten as

Ẋ(t) = –A1(t)X(t) + B1β1(t)G
(
X(t)

)
+ C̄1W1(t)G

(
X(t – 20)

)
+ U . (18)
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(a) The evolution of solution X(t)

(b) The phase diagram of solution X(t)

Figure 2 The non-asymptotic stability of the periodic solution X̃(t) of equation (17)

Here, we take the feedback gain k = 8, that is, U = –8y(t). As is shown in Fig. 3(a), each
component xk(t) (k = 1, 2, 3) of the solution X(t) starting from different initial values tends
to be the same. That is, the unique positive periodic solution X̃(t) of the controlled system
(18) is asymptotically stable. The phase diagram of solution X(t) in Fig. 3(b) displays the
same result. This shows that our feedback control method is effective.

6 Conclusion
In this paper, we have studied the stability and feedback control of the hematopoiesis net-
work model with nonlinear differential equations. On the one hand, we proved the exis-
tence and asymptotic stability of the unique positive periodic solution of the system un-
der certain conditions. On the other hand, we designed appropriate feedback controller to
stabilize an arbitrary solution of the model to the unique positive periodic solution. The
result reveals that, when the hematopoietic system becomes chaotic, a living organism can
return to stable states by means of appropriate physical adjustment.
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(a) The evolution of solution X(t)

(b) The phase diagram of solution X(t)

Figure 3 The asymptotic stability of the periodic solution X̃(t) of equation (18)
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