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subpopulation, the antiviral treatment on the symptomatic infectious subpopulation,
and the impulsive removal on the infective lying bodies. The incorporation of the
asymptomatic infectious and infective dead bodies to SEIR-type models allows a
better modeling of diseases where the death bodies are infective as, for instance, the
Ebola disease. The proposed supervised multicontroller scheme consists of a parallel
disposal of several alternative controller parameterizations together with a switching
scheme that chooses the active controller through consecutive time intervals via a
supervisory decision scheme. The supervisory scheme decides to switch or not at
testing time instants. Switching is performed to a distinct active scheme to the
current active if the tentative controller minimizes the value of a loss function
compared to the values of the other control schemes available in the parallel
controller disposal. The supervisory loss (or cost) function incorporates several
additive weighted terms including the infection loss function evolution and the
vaccination, antiviral treatment, and bodies removal efforts.

Keywords: Epidemics; Vaccination; Treatment; Impulsive controls; Removal;
Supervision; Switching

1 Introduction

Relevant attention is being paid in the last two decades to the study of mathematical epi-
demic models that are modeled by integro-differential equations and/or difference equa-
tions. Those models describe the evolution of various considered subpopulations as the
disease under study progresses. Typically, the models have three essential subpopulations
(namely, susceptible, infectious, and recovered by immunity) whose dynamics are mu-
tually coupled. There are different degrees of complexity in the statement of the mod-
els. The simplest ones have only “susceptible” (S) and “infectious” (I) subpopulations and
are referred to as SI-models. A second degree of complexity adds a third one said to be

the “recovered by immunity” subpopulation, and those models are said to be SIR-models.
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A further complexity degree splits the infectious into two subpopulations (or compart-
ments), namely, the so-called “infected” or “exposed” (E) (those having the disease but
do not present yet external symptoms) and the “infectious” or “infective” (those having
external symptoms). The generic acronym used for this last category of models is SEIR,
referred to as SEIR epidemic models. General description of epidemic models and some
mathematical analysis on them is given in some classical books. See, for instance, [1-3].
Specific models for Ebola, which is the infection of major interest for the formulation of
this paper, are recently discussed in [4—6]. For alternative epidemic models, see, for in-
stance, [7-9]. In particular, a homotopy analysis is developed in [8], and a pulse vacci-
nation rule is suggested and discussed in [9] and some references therein. The positivity
of the solution is investigated in a number of works. See, for instance, [10-13] and [14]
and some references therein. In particular, the properties of boundedness, oscillatory be-
haviors, positivity, and stability together with the injection of some constant, feedback
regular, and impulsive control laws are investigated in [10, 11] in proposed true-mass epi-
demic SEIR models with uncertainties and eventual delays. Very general vaccination rules
are studied more in detail in [12], whereas distributed delays in the epidemic model are
introduced in [13]. Also, certain robustness studies of stability and positivity under devi-
ations of the equilibrium points due to Wiener noise are performed in [13]. In particular,
the regular feedback laws can involve control gains to consider proportionality to one of
more subpopulations, whereas the impulsive ones can also have feedback information.
The use of nonlinear incidence rates in the models is also investigated in a number of
papers. See, for instance, [15—17]. The rules for discretization and the presence of pertur-
bations are also investigated in many epidemic models. See, for instance, [17-21], some of
them being formulated in a stochastic framework. In particular, in [17] the incidence rate
is assumed to be saturated, whereas the random perturbations fluctuate. Also, a nonstan-
dard discretization of epidemic models is proposed in [18], whereas the global asymptotic
stability to the equilibrium under incidence rate of saturated mass action and feedback
controls is investigated in [19]. In [20], sufficient conditions for the stability in probability
of the equilibrium states are derived for a Nowak—May-type model. On the other hand,
exponential nonlinearities are introduced in the stochastic epidemic model of [21].

The stability properties and the convergence of the solutions to the equilibrium states
are major analysis tools in most of the works. In particular, the asymptotic solution be-
haviors including associated diffusion effects have been provided in [22, 23] and some
references therein. More work on the use of vaccination rules to improve the infection
behavior through time has been proposed in the background literature. See, for instance,
[24-27] and some references therein. In particular, two control actions are proposed in
[24], namely, a vaccination action on the susceptible subpopulation and a therapeutic
treatment on the infectious subpopulation with constant and nonconstant controls and
impulsive controls are proposed in [26—28]. The stability and optimal control under a
subpopulation of infective individuals in treatment with vaccination is investigated in [29],
and a model with delay, latent period, and saturation incidence rate and impulsive vacci-
nation is proposed and discussed in [30].

On the other hand, it turns out that, as it is known due to medical experience, there are
individuals who are infective but do not have significant external symptoms, that is, the
so-called the “asymptomatic” (A) subpopulation [7] can be present in the illness evolution.
This feature occurs even in the common known influenza disease. If such an asymptomatic
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subpopulation is considered in the model, then it turns out that the exposed have differ-
ent transitions to the symptomatic infectious and to the asymptomatic ones so that a part
of the exposed become asymptomatic infectious after a certain time while others become
symptomatic infectious. Finally, it is well known that in the case of Ebola disease, the in-
fective lying dead corpses are infective [4—7], which causes serious sanitary problems in
third-world tropical countries with low or scarce sanitary means when an Ebola disease
spreads thoroughly, especially when it is transmitted from rural areas to high-populated
urban ones. The dead infective corpses can be considered in the model as a new subpop-
ulation “D”.

It is well known from the related background literature that a parallel disposal of mul-
tiestimation or multicontrol devices (or hybrid of both of them), together with a supervi-
sory scheme for switching through time for choosing the active scheme, can improve very
much the transient performance. Another advantage is that, due to the parallel computa-
tional structure, the multicontroller-supervised scheme is not excessively time consuming
compared to the use of a single-controller. Basically, the computation time on an active in-
terval is that associated with a single controller plus the moderate calculation time of the
supervisory decision about the next switching action. Such a performance is evaluated in
terms of minimizing a judiciously defined loss function being a measure of the current
system behavior or, eventually, of the discrepancies compared to the suited ideal behav-
ior if available. The online supervisory action decides if the active configuration has to be
switched or not at each current tentative testing switching time instant. See, for instance,
[14, 31-33], references therein, and [34]. In particular, the parametrical estimation is in-
corporated as well in [35-38] to identify potentially unknown system parameters. It can
be pointed out that supervision, or monitoring, techniques are very common as strategies
to improve the performances in a wide variety of problems like, for instance, in problems
of updating sampling rates in data acquisition according to the sampled signal dominant
frequencies, in multirate sampling problems associated with the need for using different
sampling periods for distinct signals integrated in the same problem to deal with, in classi-
fication techniques in random fields or the supervision of time intervals for the activation
of devices in machine-to-machine communication problems, etc. See, for instance, [31—
33] and also [37-40] related to the two last mentioned potential applications. The main
objective of this paper is to develop a parallel multicontroller scheme with a supervisory
scheme for the online decision on the choice of the appropriate active configuration. The
number of models of the parallel structure can be either constant through time or, even-
tually, time-varying while constant in each interswitching time interval. The supervision
scheme decides on each current active controller by choosing the one that minimizes its
supervisory loss function. Several variants of the design strategies to follow are proposed
and discussed. In particular, the decision time instant candidates can be anyone satisfying
a minimum permanence threshold interval at each active configuration or multiple of a
“minimum residence” (or “dwelling”) time interval compatible with the stability proper-
ties. On the other hand, the loss functions to decide on switching or not to the next active
configuration can have several weighted additive terms of free-design choice, typically,
the infection cost evolution and the vaccination/treatment/corpses removal costs. Also,
the strategies can have the objective of targeting a prescribed stable disease-free equilib-
rium solutions in the case this objective is feasible or to reject approaching to the endemic
equilibrium solution, if this one is stable, by conducting the trajectory solution to oscillate
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around both equilibrium solutions. Alternatively, the disease-free solution for the nonzero
components (i.e. susceptible and recovered subpopulations) can be allowed to be of free-
design as the best supervisory function evolves with time. On the other hand, it is also
possible the use of distinct time-invariant model parameterizations, each one with an as-
sociate parallel multicontroller scheme. This strategy can be useful, in particular, when the
model is uncertain around a nominal parameterization so that the control multischeme
can include tandems of model parameterizations, each with a set of associated controllers
in a parallel disposal. It can be pointed out that the proposed supervisory scheme can be
a simple alternative to the use of optimal control techniques, which are difficult to rigor-
ously apply due to the highly nonlinear nature of the problem at hand. On the other hand,
the importance of the discretization of mathematical models is relevant in certain prac-
tical real problems. For instance, some coupled difference equations and the associated
convergence problems have been studied in [41], whereas the estimation of parameters
of epidemic models has been dealt with in [42]. In this work, the switched mechanism is
deliberately introduced to improve the controlled behavior of the evolution of the epidemic.
In this way, the approach adopted in this paper is definitely different from previous ones.
Another novelty is the incorporation of the dead-infective subpopulation and the culling ac-
tion, interpreted as an impulsive control on the subpopulation time-derivative. Performed
simulation examples show the usefulness of the proposed supervision for the Ebola spread.

The paper is organized as follows. Section 2 introduces the SEIADR model with six
subpopulations (S, E, I, A, D, R) under controls in terms of vaccination control on the sus-
ceptible and antiviral treatment on the symptomatic infectious subpopulation. Such con-
trols are combinations of feedback-independent (which can be constant, in particular) and
feedback-linear terms. There is also an additional impulsive control action of retirement
of corpses to reduce the risks of dead-contagion to the alive uninfectious population. The
controls can have feedback information taken on line from their respective subpopula-
tions and are not exerted necessarily at the same impulsive time instants. Section 3 sum-
marizes some local and global stability conditions proved in the background literature to-
gether with some further direct conclusion about the variation of the nonzero-component
disease-free equilibrium points depending on the limit vaccination gains. The disease-free
equilibrium point is specified, and some concerns about the existence of endemic equi-
librium solutions (which can be, in particular, endemic equilibrium points) are given in
terms of the size of the coefficient transmission rates being below certain threshold value.
Section 4 describes and develops the parallel multicontroller scheme with different op-
tional variants to define and address the losses functions that measure with predesigned
or updated weighting terms the infection and vaccination costs. In particular, the switch-
ing time instants for the decision on the next active configuration in operation can be
multiple of a minimum constant threshold interval or time-varying when evaluating the
supervisory losses function of each testable control configuration. The parameterizations
of the multicontrol scheme can be either prefixed through time or of updated values at
each new switching time instant around each active one in operation. Also, the scheme
can be adapted to uncertain or time-varying models under certain a priori knowledge
of the parameterizations by using tandems of parallel multicontrol schemes for distinct
constant parameterizations around a nominal time-invariant one. Section 5 gives and dis-
cusses some numerical comparative examples and emphasizes the advantages of the use of
parallel controller disposals against the use of fixed ones, especially, in the cases of uncer-
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tain or time-varying models or when a low vaccination cost or infection evolution through
time is suited. Finally, conclusions end the paper.

1.1 Notation

R.={reR:r>0}, Ry, ={reR:r>0},
Z, ={reZ:r>0}, Zy, ={reZ:r>0}.

The symbols Vv and A stand, respectively, for logic “or” and “and”.

C% and PC? are, respectively, the sets of continuous and piecewise continuous functions
on domain / with image X. The functions f : I — X in those sets are denoted, respectively,
by f € C°(1, X) and f € PC°(I, X).

card(A) denotes the cardinality of a set A, card(A) = R indicates that the cardinality of a
denumerable set A is infinity as opposed to card(A) = 0o, denoting the infinite cardinality
of a nondenumerable set A.

1,, is the nth identity matrix, §(¢£) denotes the Dirac distributionatt =0, m = {1,2,...,m}.

2 The SEIADR epidemic model

An SEIADR model is an extended SEIR model proposed in [43]. Apart from the classical
subpopulations of “susceptible” (S), “exposed” (E), “symptomatic infectious” (I), and “re-
covered” (or immune) (R), it has two additional subpopulations, namely, “asymptomatic
infectious” (A) and “dead-infective” (D). It can be of interest for certain infective diseases
for which the lying bodies are extra infective subpopulations, for instance, in the case of
Ebola. This model incorporates three controls, which can be combined to define the whole
control to be injected. Those controls are the vaccination control on the susceptible sub-
population, the antiviral treatment on the infective subpopulation, and the dead-infective
removal. The epidemic SEIADR model is the following one:

5(2) = by — (by + BI(2) + BaA() + BpD(£))S(2) + nR(2) - V(8), 1)
E() = =(ba + y)E@) + (BI(t) + BaA(t) + BpD(1))S(8), (2)
1(t) = =(by + @ + T0)I(2) + ypE(t) — £(2), (3)
At) = ~(by + T0)A(t) + y (1 - p)E(®), (4)
D(t) = —uD(t) + by (I(t) + A(t)) + al(t) — 0(2), (5)
R(£) = =(by + DR + 10(I0) + A(D)) + £(2) + VD), 6)
V(£) = Vo(®) + Ky (DS(®), )
&(f) = Ke()1(2), (8)
0(0) = o) D 8(t ~to0), ©)
tyiclmp D

for all ¢ € Ry, with initial conditions satisfying min(S(0), E(0), 1(0), A(0), D(0), R(0)) > 0,
where:

ImpD = {t € Ry, : D(t) #D(¢t")} = ] ImpD(®)

teRo
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is the total set of impulsive (“removal”) time instants ¢y; € Imp D for removal of infective
corpses (note that the notation for f(¢*) is simplified to f(¢)). Besides,

ImpD(¢7) ={o € ImpD:0o <t},
ImpD(¢) ={o €eIlmpD:o <t} = ImpD(t‘) ift ¢ImpD, and

ImpD(t) ={o €eIlmpD:o <t} = ImpD(t‘) U{¢} ifteImpD,

and the (nonnegative) parameters and controls are the following ones:
b, is the recruitment rate,
by is the natural average death rate,
B, Ba, Bp are the various disease transmission coefficients from the susceptible to the
respective symptomatic infectious, asymptomatic, and infective corpses
subpopulations,
n is a parameter such that 1/ is the average duration of the immunity period
reflecting a transition from the recovered to the susceptible,
y is the transition rate from the exposed to all (i.e. both symptomatic and
asymptomatic) infectious,
o is the average extra mortality associated with the symptomatic infectious
subpopulation,
7 is the natural immune response rate for the whole infectious subpopulation (i.e.
A + 1), respectively, p is the fraction of the exposed individuals that become
symptomatic infectious,
1 - p is the fraction of the exposed that become asymptomatic infectious,
1/ is the average period of infectiousness after death,
V(t) and &(2) are, respectively, the vaccination and antiviral treatment controls, and
pp(te;)D(te;) is the impulsive action of removal of corpses (or “removal”) for all
tg; € Imp D with pp(t) € [0,1].

The above model has the subsequent basic characteristics:

(a) Itis assumed that the mortality rate of the asymptomatic subpopulation is similar to
that of the healthy one. Thus, there is no extra disease mortality associated with the
asymptomatic infectious subpopulation, whereas there is an extra mortality rate
associated with the symptomatic infectious subpopulation.

(b) The model lies into the class of pseudo-mass action (or density-dependent) class of
epidemic models. Those models are not subject to disease transmission rates
modulated by the total population. It is well known that there is another class of
models, the so-called true-mass (or frequency-dependent) epidemic models. In
these models, the transmission rates are normalized by the total population, and the
simple physical interpretation is that the contagion rates decrease as the
environment total population increases [44].

(c) The controls (7)—(9) can be of different types including constant and feedback
actions. The nonnegativity and boundedness of the solutions through time, the
equilibrium points, their stability, and the existence of eventual limit oscillatory
solutions and their stability properties have been investigated in [43]. The study of
those properties is common in a wide sampling of other alternative epidemic
models discussed in the background literature. See, for instance, [10-16, 22, 23], and
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susceptible

recovered

Figure 1 Flow diagram of the control-free model transitions

[45, 46]. In particular, a discrete epidemic model is investigated in [14], which
possesses a unique nonnegative equilibrium to which the solutions converge, and
the case of imperfect vaccination under nonlinear incidence rate is investigated in
[16]. On the other hand, in [47], general conditions for maintenance of the positivity
of a dynamic system under its discretization are given and discussed. An illustrative
flux diagram in the absence of vaccination, antiviral treatment, and corpses removal
controls (7)—(9) is shown in Fig. 1. The transitions between various subpopulations
of the model (white thick arrows) and their coupled dynamics (black thin arrows),

defined by Egs. (1)—(6), are also displayed.

3 SEIADR model, its equilibrium solutions and their stability properties
The following result holds concerning the disease-free equilibrium point.

Theorem 1 Assume that Vy(t) — Vi, Ky(t) — Ki,, Ke(t) — K taking nonnegative values
all the time and pp(tyg;) = pjy = 0 and (ty,i1 — to;)) = T} as t,ty; (€ Imp D) — co. Assume
also that Vy(t) € [0,b1], min(Ky(2), Ke(2)) = 0, and pp(t) € [0,1] for all t € Ry.. Then, all
the subpopulations are nonnegative all the time under nonnegative initial conditions, and,
furthermore, the following properties hold.:

(i) (Theorem 5(i) of [43]). There is a unique disease-free equilibrium point satisfying

¥ye = Jim x(6) = (3 Ee Lip Al Do Ri) ' = (S50 0,0,0,0,Rg)"

with

o ba(b1 = V§)+nby b1+ NG - Vy
St = = (10)
bz(bz +n+ I(‘t) bz +n+ I(é;

and

. Ve Ky KN+ Ve KySi+ Vi

= = =N7i — S5, 11
df byby+n+Kj) by+n+ K, by+n df ~ Odf (11)

leading to an associated limit total population N Zf =N +D =Nj =S+ R} = Z—; under
a vaccination disease-free limit control Vi = Vi + Ki,S}; and a zero antiviral treatment

limit control.
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(ii) For any given real constant A € [0, bzf}:’}<‘*/ 1, the susceptible and immune equilibrium

subpopulations can be prefixed to values S = AN} = Ab1/by and R} = (1 - )Ny = (1 -
A)b1/by, respectively, by injecting a constant vaccination on the susceptible subpopulation

given by
* s % Ok * s bl
Vo = Var = KySae = Vag = M<vb_
2

=b [1 i i((1 - - u(;)]
by

or
1 b
1<;:X[n_b—2(vg—b1)}—b2—n if » € (0,1].
1

In particular:
If Vi = K3, = 0 (vaccination-free case), then S} = Nj; = b1/by and R} = 0 with A = 1.
IfKy = by + n and V§ =0, then S} = Rl = Njy/2 = 5 with ) = 1/2.
If V§ = b1(1 + n/by), then S} = 0 and R} = Nj; = % with L = 0 irrespective of K3, (in
particular, if K, = 0).

Proof Property (i) is stated and proved in [43]. The proof of Property (ii) is direct from

(10)~(11), N} = S} + R = 2, and S§ = Aby /by = " dl /o

Dotk leading to

1 ) by +1
bi|1+—(n-A(b K >0 ifa 0, ————|.
1[ +b2(n (by+n+ V))]_ i e[ b2+n+1({;]

The given particular cases are obtained with A = 1,1/2, and 0, respectively. O

The local instability of the endemic solutions is characterized under sufficiency-type
quantified conditions in Theorem 8 in [43]. Note that such endemic equilibrium solutions
exist only for the coefficient transmission rates exceeding a certain minimum threshold
value. The following result concerning the endemic equilibrium point or endemic periodic
solution holds:

Theorem 2 The following properties hold:

(i) (Theorem 5(ii) of [43]). Under the assumptions of Theorem 1, it follows that there exists
some large enough threshold Beenq such that, if, B > Beend> then there is a unique endemic
equilibrium point with all its components being positive and fulfilling:

Nt > Send
~ u(ba +y)(ba + 1) (b2 + @ + 79 + K)
By p(by + 7o) (it + Bpr(by + @) + ¥ (1 = p)(ba + @ + 10 + K7 ) (Barit + Bprba))’

(12)
o - by+y _ b= Vo + 1R (13)
7 B(Cr+ BarCa+ Bp-Cp) ~ ba+ K+ B(Cr + BarCa + Bo,CD)Edyy”
. (ot KNCr+ w0CA)Esy + Vi + K Sig
end = ’ (14)

by +1
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_ (b2 + O[)I:nd + bzA*

d
Dznd - 0" < ’ (15)
= _ (to + Kg)[;‘nd + A% 4+ Vo 1. K .
end bg +n bz +n end
+(Cr+Cq+Cp+1)E, 4, (16)

where Bar = Bal B and Bp, = Bpl B are relative disease coefficient transmission rates of the
asymptomatic infectious and lying infective corpses with respect to the symptomatic infec-
tious of coefficient transmission rate B, with

Yp y(1-p)
C=————, Cyp=——7,
! by +a+1+K; 47 b+ 1o
17)
oo L[ _batelyp  byy(l-p)
b u b2+oz+t0+Kg‘ by+t |

so that I} , = C(E% ,, A% = CAE] 4, and DY = CpE? .

(ii) (Theorem 5(iv) and Theorem 4(iii) in [43]). Assume that the hypotheses of Property (i)
hold except that the limit pj}, € (0,1). Then, the endemic equilibrium solution x?, ,(0) for 6 €
[0, T}) is periodic of period T}. In this case, the relations between the endemic components
of Property (i) hold with the modifications that the components and constants Cy, Cy4, Cp

become periodic functions of 6 € [0, T})) with

lim D(nT}, +6)

=D*(T} +0)
e M0 1-p2)(1—eH?
- T[(bz + ), + bﬁ:&[% -1+ eue} Vo € [0, T}], (18)
D

where the subscript “av” stands for the mean value of the corresponding subpopulation on
the period [0, T}).
(iii) (Theorem 6(i) in [43]). If S* .(0) > (1 +

end

K30)
by+n

)S5:(0), YO € [0, T},), then the endemic
equilibrium state exists neither as apoint nor as a periodic equilibrium solution.

The next result summarizes some conditions on local stability of the disease-free equi-
librium solutions and on global stability.

Theorem 3 (i) (Local stability of the disease-free equilibrium point, Theorem 9 of [43]).
Assume that B is small enough such that B < B.aswith respect to the threshold:

L+ Bar + Bor : .
Bedt = M[bg +min(y, K} - 1n)]
Sar
_ bz(bz +n+ I({;)
(1 + Bar + Bpr)[ba(br = V§) + b

(by + min(y, K3, — 1n)). (19)
Thus, the disease-free equilibrium point is locally asymptotically stable, provided that

o<W K3 >n— b, (20)

Page 9 of 31
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by € <max(n - Ky, Ky + 210 + K =,y (1= p) = 0, yp—a = 7o —1<g,0),

n—ao
5 ) (21)

(ii) (Global uniform asymptotic stability, Theorem 10 of [43]). Assume that pp(t) — p}, =
0 as t (€ Imp D) — oo. Then:

(ii.1) If the disease-free equilibrium point is locally asymptotically stable while the
endemic equilibrium point does not exist, then the epidemic model is globally
asymptotically stable, and all the solution trajectories converge asymptotically to
the disease-free equilibrium point.

(ii.2) If the disease-free equilibrium point is unstable and the endemic equilibrium state
exists, then the system is globally asymptotically stable, and all the solution
trajectories converge to the endemic equilibrium point.

(i.3) The disease-free and the endemic equilibrium points cannot be simultaneously
either stable or unstable.

Basically, it happens that:

(a) Concerning Theorem 3(ii), it is well known that, for small coefficient transmission
rates, the endemic equilibrium point has some components that are negative, so not allo-
cated in the first closed orthant of R®, and we interpret its nonreachability as its nonexis-
tence within the first closed orthant. Since then such an equilibrium point is not reachable
because of the solution nonnegativity all the time under any given nonnegative initial con-
ditions, the only equilibrium point is disease-free. If it is locally asymptotically stable, then
it is also globally asymptotically stable since it is the unique attractor and all the solutions
are bounded since it is guaranteed that the total population is bounded all the time, and
from the solution nonnegativity, as a result, it turns also out that all the subpopulations are
bounded all the time [43]. Since there is just a locally stable attractor and all the solutions
are bounded in the first closed orthant, no stable limit cycle can surround the locally stable
attractor since the stability of equilibrium points and the surrounding limit cycles are op-
posite (stable—unstable or unstable—stable). As a result, the disease-free equilibrium point
is globally asymptotically stable [Theorem 3(ii.1)]. If the coefficient transmission rate in-
creases, then the disease-free equilibrium point becomes unstable, and the endemic equi-
librium point becomes reachable. By a similar conclusion there is no stable limit cycle
surrounding the endemic equilibrium point, which is locally stable since the disease-free
one is unstable, and there is no limit cycle surrounding both points since their combined
Poincaré index is either zero (combination of a saddle critical point with another kind of
critical point) or two (combination of two critical points that are not saddle points), that is,
the combined index cannot be unity). As a result, the endemic equilibrium point is glob-
ally asymptotically stable [Theorem 3(ii.2)]. By combined reasoning on stability of both
equilibrium points we conclude that they cannot be jointly stable [43].

(b) The upper threshold of the disease transmission coefficient under which the local
stability of the disease-free equilibrium is guaranteed cannot be improved (i.e., increased)
by a judicious choice of the controller parameters. However, the equilibrium values of the
susceptible and immune subpopulations and, respectively, the transients of the solution
trajectories to them can be modified and improved by the choices of the limit controller
parameters.
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(c) Under periodic injections of vaccination control, antiviral control, or corpses removal
control effort, the equilibrium points become limit cycles.

(d) The trajectory solution is globally stable for any finite nonnegative initial conditions
as a result of the positivity properties of each subpopulation evolution through time.

4 Parallel multicontroller scheme

This section relies on the proposed loss function for the online supervision. It also de-
scribes and discusses the structure, strategies, and variants of the supervised multicontrol
scheme with parallel disposal, and we discuss how the closed-loop stability is preserved in
the presence of switching for the choice of active configuration. It is seen that it suffices to
respect a minimum threshold for the residence time interval at each active configuration.
See Fig. 2 for an intuitive parallel multicontroller device block description. In the scheme,
there is a set of models running in parallel, the illness parameters being identical for all of
them while controlled by different control gains. The N epidemic models of the parallel
configuration have all the same uncontrolled parameterization (1) to (6). However, at least
one of the control laws (7)—(9) has at least one different control gain. In this context, the
parameterizations of all them are distinct from each other. The chosen active one within
the current active time interval is that providing the minimum value of the loss function.
It turns out that, at the expense of a higher complexity and computational effort, the paral-
lel structure can contain a number of unforced models under different parameterizations,
each one with an associated potential number of parallel controllers. This idea would be
a simple direct extension of the current proposal. According to the supervisory loss func-
tion, one of the models is chosen as active along a certain time interval to generate the

control action to be performed on the corresponding subpopulations. The chosen one as
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active is that minimizing the supervisory loss function. After a minimum residence time
at this current active configuration, the loss function is tested again to decide whether to

switch to a new active configuration or to proceed with the current one until a new test.

4.1 Residence time at each active configuration
The following result is useful in discussing later on the stability of the parallel control
supervised scheme under switching.

Theorem 4 Counsider the switched piecewise constant time-differential linear system of
order n:

x(t) =A@x(@) + (@),  x(0) =xo, (22)

with
— W@ < Yolt) + Y1 (£)x(t;), where Yo, Y1 : Ror — R”;
— A(t)=A; e A, Vt e [t;, tis1) for t; € {ti} being any switching time subject to 0 € {t;} with
T;=tiy1 —t;, Vi€ Zy,, and Re L(A;) < —A; < 0 for any eigenvalue of A,
VA; € A={A1,As,..., A, ...} (afinite or infinite set).
Then:
Case (1) under a finite number of switches, x(t) — 0 as t — 00,
Case (2) under infinitely many switching actions, Alim,_, o |lx(&;) || and lim,_, o [lx(E) || =
0 for t; € {tx}, and x(t) > 0 as t — oo
if there exist . € R,, W € Ry, such that
(a) limsup,_, o (Re A(A;) + %) < 0 and Timsup, ¢ ))— co SWPe(s, s,y Y1(E) < U, where
MA;) is any eigenvalue of A;;
(b) liminf;_, o T; > T > O for a sufficiently large interswitching interval threshold
T =TK, A, ), where K (> 1) € R, and Aa (> -1) € R are such that
limsup,,_, o K; < K and limsup, _, . I + A(&)|| <1+ An, where K; (= 1) € R, and
A(t;) € R™" are such that ||eit|| < Kie™i, ¥t € R, and x(t;) — x(t7) = A(t:)x(t]) for
all t; € {tx};

(€) imsupy, e () o0 SUPse(s1;,y) Yo(£) = 0.

Proof For the proof, it suffices to consider Case 2 (performance of infinitely many
switches) since Case 1 can be addressed by redefining the finite initial conditions at the
last (finite) switching time instant. Note that x(t;) = (I + A(£;))x(£;) for the switching time
instants for some uniformly bounded sequence {A(¢;)} of square n-matrices for all ¢; € {t},
and

0
|(t:) + 0 || < Kie ™ ||x(t) | + / eyt + 1) dr; 0 €[0,T0), V8 € (&), (23)
0
for some real sequence {K;} with K; > 1 for K; € {Ky}, so that

()| < 17+ A | |*(5:4) |

T;

an+ﬁ e”mqum+IWdﬂ

< K1+ @) [
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o |[1—e i
S | GRSy [
i teltitivilticltn}
+ sup 1/fo(t)i| . (24)
teltptiviltielty)
Then
1—eifi
lim sup(Hx((tm)) | - K| I+ A)]| |:<e)‘iTi + n sup 1ﬁl(ﬂ) ()|
ti—>00 i teltptiv1 Ltielty)
+ sup wO(t):D <0, (25)
teltptiv1 ] tie{ty}

so that Jlimy,_, oo [|%(2,)]l and limy,_ [lx(%) | = O for ¢; € {} if the following conditions
hold:

(C1) limsup sup Yo(t) = 0;
ti—>00  te[tyti L€ty

1-e T

(C2) limsupKi||I+ A(ti)| [(e_m ’
o .

i

sup %(t))] <1

teltitiv1 Ltielty)

The above condition (C2) is guaranteed if liminf;_, o A; > A >0, liminf,o T; > T > 0,
and limsup, _, . Kill/ + A(%)]| < K(1 + A,) for some positive real constants Aand K > 1

and if limsup, _, o, SUpcpy, 1., ¥1(8) < ¥, and

1= e—XT

K(1+)LA)[<e‘XT+‘ —

A

E)] <1, (26)

which holds if A > 0 and the asymptotic minimum residence time interval T = T'(K, A,
Aa, V) is large enough. Furthermore, since x(t;) — 0 as t; — oo for t; € {t}, we have
x(t7) — 0 since x(t;) = (I + A(%))x(¢7). Also, since x(t) is piecewise continuous with
bounded jump-type discontinuities at the switching times that become asymptotically re-

moved, it follows that x(¢) — 0 as ¢t — oo. O

Note that # = 6 in the current system under study. Note also that a negative value of A 5
in (26) (i.e., to decrease the right limits of the state norm with respect to their left values
at the switching instants) allows decreasing the needed residence time interval threshold
compatible with stability. Theorem 4 can be specified for the particular case of asymptot-
ically stable disease-free equilibrium points of the SEIADR model as follows.

Corollary 1 Consider the SEIADR epidemic model with the following 6th state incremen-
tal error system with respect to the disease-free equilibrium:

X = A + ¥ (6x(0),  F0) = Fo,
where ¥ : Ry, x R® — R® is a piecewise constant function, and A(t) = A; € A ={A1, A, ...,

Az ..}, Ve € [t tia) for ¢ € {tk} being any switching time subject to ty = 0 € {t} with
T; = tis1 — t;, Vi € Zy,, with A(t) — A} € A as t — 0o, A being a finite or infinite set of

Page 13 of 31
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stability matrices, i.e., Re A(A;) < —A; < —A < 0, which describes the set of tentative disease-

free equilibrium points parameterized by A depending on the choices of the controller gains.

Assume without loss of generality that {t;} has infinite cardinality. Then, the following prop-

erties hold:

(i) Assume that all the disease-free equilibrium points associated with the members of A

are locally asymptotically stable and that the initial error norm ||Xol| is small enough.
Then, limy e (g ))— oo 1X(E) || such that lim,_, oo [|X(£) || = limg ez, ))— o0 1%(£) 1| = 0 if
tiy1 —t; = T > 0 under a sufficiently large interswitching interval threshold T = T (A).
Furthermore, ¥ (t,x(t)) — 0 and x(t) — 0 as t — o0.

(ii) Assume that all the disease-free equilibrium points associated with the members of A
are locally asymptotically stable, whereas the corresponding endemic equilibrium
solutions do not exist. Then, Property (i) holds irrespective of the size of the initial
conditions under a sufficiently large interswitching interval threshold since the
disease-free equilibrium solutions are globally asymptotically stable.

Proof Note that if the disease-free equilibrium point is locally asymptotically stable and all
the matrices A; are stable, then the piecewise continuous vector-valued functions v (¢, x(¢))
and x(¢) are uniformly bounded for any given finite initial conditions, and ¥ (¢,x(¢)) — 0
as t — oo if ||Xg]| is sufficiently small. This follows since there are sequences {¥(t;)} — 0,
{x(2:)} = «; so that ¥ (¢, x(2;)) — 0, X(t) — 0 and x(f) — x; as ¢ — oo. Property (i) has
been proved. The proof of Property (ii) is similar. d

Remark 1 Concerning some assumptions and previous results invoked in Corollary 1,
note that:
(1) the dependence of the matrix A on the choices of the controller gains is viewable in
Theorem 1(i), Egs. (10)—(11);
(2) A islocally asymptotically stable under the sufficiency-type conditions of
Theorem 3(i), Egs. (19)—(21);
(3) Sufficiency-type global asymptotic stability conditions of the system equilibrium
solutions are given in Theorems 3(ii.1) and 2(iii).

Corollary 2 Assume that the assumption A(t) — A} € A as t — oo is removed in Corol-
lary 1. Assume also that all the disease-free equilibrium points associated with the members
of A are locally asymptotically stable, whereas the corresponding endemic equilibrium so-
lutions do not exist. Then, the epidemic model is globally stable under a sufficiently large
interswitching interval threshold.

Proof 1t is obvious since all the members of A are stability matrices. Thus, for any given
bounded x(0) and %, = 0, any sequence {¢;} defined according to t;,; > t; + T for some
sufficiently large finite threshold 7 is uniformly bounded and can be chosen such that
{II%(#;)]|} is nonincreasing. As a result, ||x(¢)|| is uniformly bounded on [£;,t;;1), so that
[12(2)|| is uniformly bounded on Ry.. O

Remark 2 Note that Corollary 1 assumes the convergence of A(¢) to a stable disease-free
matrix of dynamics in the set A. As a result, it follows from Theorem 1(i) that the tentative
disease-free equilibrium points converge to a value that is necessary for the controller
gains to converge. Corollary 2 is weaker than Corollary 1, but it guarantees the global
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(nonasymptotic) stability under switching for a sufficiently large residence time period

after each switching action.

4.2 Parallel multicontroller strategies

We now describe the parallel multicontroller scheme incorporating a supervisory scheme
for the online decision on the choice of the appropriate active configuration. We propose
several variants of the hierarchical proposed structure:

(a) Unprefixed stable disease-free equilibrium point strategy (UPDFS-strategy). If the
disease-free equilibrium point is stable, then the supervisory scheme selects online the
active controller at the successive testing time instants where the loss function of each
individual controller is evaluated along the last supervision time interval (i.e., the time
interval from the previous testing time instant to the current one). If there is some alter-
native controller leading to a smaller loss function, then the active controller switches from
the previous one to this new better candidate. Otherwise, the current active controller re-
mains in operation until the next test. The various gains of each individual controller are
updated at each switching time instant taking as reference values those of the new active
controller. The reached disease-free equilibrium depends on the limit controller gains to
which the individual controllers asymptotically converge.

Remark3 A variant of the UPDFS-strategy can be implemented to address the case where
the disease-free equilibrium points of all the configurations are stable, but the conver-
gence of the control gains is not pursued since a moderate infection is preferred around
the disease-free equilibrium with a simultaneous evolution of the control gains of each
controller. In this case, no disease-free equilibrium is reached in general except for partic-

ular cases of zeroing some relevant control gains.

(b) Prefixed stable disease-free equilibrium point strategy (PDFS-strategy): A stable
disease-free equilibrium point is targeted as a trajectory solution limit for all the individual
controllers of the parallel multicontrol disposal. Such an equilibrium point is prescribed a
priori by giving suitable percentages of susceptible and recovered subpopulations related
to the total population. All the individual controllers converge to a common one so that a
prefixed disease-free equilibrium point is targeted.

(c) Stable endemic equilibrium solution monitoring strategy (SEMS-strategy): For repro-
duction numbers exceeding unity, that is, for the disease transmission rate being over a
certain related threshold, the disease-free equilibrium is unstable, so that the trajectories
converge to the stable endemic equilibrium point (or periodic oscillation) for an uncon-
trolled model or a model controlled by a time-invariant single controller. Since such a
convergence implies that the disease is not only permanent but with eventual high lev-
els of infection as well, it might be convenient to adopt a supervisory strategy trying to
reject such a convergence by replacing it by switching between the parallel disposal try-
ing to keep lower levels of infection. If a parallel supervised multicontroller disposal is
used, then the loss function is minimized so that the behavior tries to tentatively reject
approaching the endemic equilibrium solution instead of approaching the (unreachable)
disease-free equilibrium solution. As a result, the resulting trajectory exhibits an oscilla-
tory behavior between both equilibrium points or equilibrium periodic solutions. Note
that if the coefficient pp does not vanish asymptotically, then the endemic equilibrium
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solution is oscillatory even in the absence of switching between configurations (see [43]),
rather than a critical, or equilibrium, point. In the first case, we have the presence of an
endemic oscillation as an endemic equilibrium solution, which is a limit cycle reducing to
an endemic equilibrium point in the second one. It can be also oscillatory under a forced
oscillation if some of the controls are oscillatory or, in the supervised scheme, there is a
monitoring process between several endemic equilibrium points.

Some variants that can be implemented on the above schemes:

(1) The use of constant testing time intervals between consecutive switching time instants
(CT-strategy). As a result, each permanence time interval of an active controller in
operation before the next switching action is a multiple of such a constant testing
interval.

(2) The use of time-varying testing intervals (TVT-strategy). As soon as an
improvement of the supervisory loss function by other alternative controller
candidate is detected, the switching is operated, provided that a minimum dwelling
(or residence) time interval has occurred. The residence time interval is introduced
to preserve the stability under switching of active configurations.

(3) The use of tandems of time-invariant model parameterizations (TMP-strategy), each
one with an associate supervised parallel multicontroller structure. If the model is
uncertain around a nominal parameterization, or if it is time-varying with known
definition intervals of its parameters, then the multischeme can include tandems of
model parameterizations, each with a set of associated controllers in a parallel
disposal. These disposals can be combined with the CT and TVT intervals to give,
respectively:

— The use of tandems of time-invariant model parameterizations with constant
testing time intervals (TMPCT -strategy).
— The use of tandems of time-invariant model parameterizations with
time-varying testing time intervals (TMPTV T -strategy).
Also, further variants of those strategies can include an online supervision and eventual

updating of the particular incremental controller gains between various configurations.

4.3 The supervisory loss function and the choice of the switching time instants
The following general loss function is used as a supervisory one for various controllers in
the parallel structure under the assumption that all of them are in operation over a single

epidemic model:

T = J(tre1, )

- Cyit) / " Vo) do + 1) /

k 73

I(o)do + Cre (t2) / ! Ke(o)(0) do

73

7351

+Colt) [ iV + o Y pri)D(tm)), VkeZy,  (27)

toi€ltiotis)

where:

— SI = {tx} is the sequence of switching time instants between active configurations,
which is subject to tx,1 — £ > g7 > 0, Vk € Zy, (and which can be eventually a finite set in
the case there is a finite terminal switching time), where g € Z, is chosen by the designer,

Page 16 of 31
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and T is a “minimum residence” (or “dwelling”) time interval at each active controller
configuration for the case g = 1 to be chosen by stability reasons.

— The weighting sequences {Cy (tx)}, {Cr(¢)}, {Cre ()}, {Cp ()}, and {Cp, ()} weighting
each additive term in the loss function are subject to the constraints

min| Cy (#), C; (&), Cre (t), Cp(t), Cp, ()] = 0
and
Cv(tx) + Cr(tx) + Cre(tr) + Cp(tr) + Cpp(te) = 1.

— There is a number of models m(t) = m(tx) = my that can be either time-varying or
constant, with i (t) = mi(ty) = my = {1,2,...,mi}, Vt € [tx, trs1), Vix € SI, Vk € Z,,, each
one being parameterized by its own set of controller parameterizations p,(t), Vt € [t, tis1),
Vi, € SI, VL € m.

— There is a switching sequence s : Ry, X [tk txi1) — My from each interswitching in-
terval to the set of configurations that selects through time each active one on the next
interswitching interval in such a way that s(¢) = s(t) = sk € My, Vt € [tk tis1), Vi € SI,
Vk e Zy,.

Note that if £ and £, are consecutive switching time instants, then sx € iy, sk41 (# sk) €
Myt

— There isaset SJ = {],1,],3, e ,],:""}, Vk € Z,,, of my loss functions, each one of the form
(27), that is,

Li+1 Lk+1

Vi(o)do + CI(tk)/

73

/i = Cv(tk)/

23

+ CD(tk)/ k+lU(U)d0 +CDp(fk)< Z Pi)(tei)l)i(tei)>,
73

toi€ltiotks1)

. 7351 . .
P(o)do + C[g(tk)/ Ké (o) (o) do
tk

Vj € i, Vk € Zo,, (28)

while being associated to one of controllers of the parallel structure such that the one giv-
ing the minimum value chooses the active configuration and, eventually in more general
supervisory schemes, the switching time instant is chosen according toa TVT (i.e., time-
varying) strategy, that is, since ],i(t") = MiNger, ],f, Vk € Zy,, we have

tron =min(t € R, : (6>t +qT) A (O <J5VE (#5(0)) €y)),  Vk € Zo,, (29)
and, for the simpler CT-strategy, (23) is replaced with
tro =min(t R, : (¢ = T) A (B <J5VE (#5(t) €71k)), Yk € Zo,. (30)

We assume, by convention, that £, = 0 and s(Zy) € m1p is chosen either arbitrarily or by a
priori knowledge. Note that:
(a) for the eventual increase of the number of controllers at ti,1 € SI for any given
k € Zy,, we have that w1 = i U my if mg1 > my with #ig = @ if my,1 = my and
my = {my + L,myg +2,..., W1} if mig,q > my, and
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(b) for decreasing the number of controllers at t; € SI for any given k € Zy,, we have that
Wik = Mgy1 U g if my,y < my with the constraint s(t;) € #7ix,; and
Mg = {1 + 1L, Mg + 2,0, mpg ).

4.4 UPDFS-strategy

Since the disease-free equilibrium point is not prefixed, we can address two possibilities,
namely, (a) all the controller gains of the parallel disposal converge, so that a disease-free
equilibrium point is asymptotically reached; (b) the controller gains do not converge, so
that either the active controller does not switch, or there is a limit oscillation between
various controllers of the parallel distribution. The control gains are designed as

= s(t)) A Vo (),
)

K5 (t) = K5 (6) + (£ = s(t)) AKy (t),

Vﬁ(tk) = VO tk tk +
(31)

(¢

(
KL = K™ () + (£ - s(t0)) AK (%),
ph(t) = op (1) + (

€ —s(t)) App (&),

for all t; € SI, € € my, so that the incremental gains for various elements of the parallel
disposal are given by

AVo(tre1) = Svy (tre1) AV (),
AKy (tre1) = xyy (1) AKy (),
AKe (tes1) = S (tee1) AK (),

App(trar) = Eop (tra1) App(tr),

(32)

for all #; € SI. Note that the sequences of active gains are defined by the values given
by the switching function sequence {s(tx)}. Note also that the remaining elements of the
multicontroller structure are deviated related to the active ones by incremental positive
or negative values defined by integer multiples of the respective basic incremental se-
quences {AVy(tr)}, {AKy (tr)}, {AK: (tr)}, {App(tr)} with respective nonnegative weight-
ing sequences {¢v, (t)}, {Cx, ()} {Gx. (&)}, {Cpp(Eh)} related to their preceding values.
Such weighting sequences are sufficiently small such that all the devices of the mul-
ticontroller scheme satisfy the positivity constraints Vy(£) € [0,b1], pp(t) € [0,1], and
min(Ky(t), K¢ (t)) > 0, Vt € Ry,. Then we directly have the following result.

Proposition 1 Assume that either card(SI) = Ry (i.e., infinitely many switches) and that
limsup,, s o0 [max($vy (k) Sicy (E), S (Ek)> Eppy (8)) — 1] < O o7 respectively, that card(SI) =
z+ 1< +oo (i.e., a finite number of z+1 switches including the initial switching instant t,)
and ¢y, (t;) = iy (&) = Sx (82) = Epp () = 0

Then, lims(t);—, oo = ims(£x) g (esn—oo = S* 01, respectively, s(t) = s(t;) = s* for all t > t,,
and all the controller gains tend asymptotically to constant values or, respectively, are con-
stant in finite time. As a result, if the coefficient transmission rate is small enough, under a
critical stability value, and the inter-switching interval exceeds a minimum residence time
threshold, then the resulting disease-free equilibrium point is locally asymptotically stable
under the conditions of Corollary 1(i) or globally asymptotically stable under the conditions
of Corollary 1(ii).
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Note that Proposition 1 covers the situations where the difference gains between the
various controllers converge asymptotically to common constant values or where they are
kept constant and identical after a certain finite time. Both situations adjust to Egs. (31)-
(32).

4.4.1 Refinements

Some refinements can be applied in the sense that if the active costs are improving along a
chain of consecutive test with the same correcting action on the signs of the incremental
controller gains to update the next ones, then we can proceed with the same strategy. In
particular, let the subsequent indicator active loss supervisory sequence be {i(],f(t"))}:

1 lf]k () ] (tk-1 ,
i) =30 i = - 1>, vkez,, (33)
-1 lf]ktk ]ktk 1) ,

and its accumulated value of eventually time-varying size (/x + 1) on the discrete interval
[k — 25, k] is

&%
far = l,,(]k i) g &) = (]k G ’)), Vk (e Z,) > ko and some ko € Z,,
j=0

with eventually time-varying evaluation size ¢4 + 1 < k + 1 for any k. Thus, we can
proceed as follows to update the various weighting sequences {()(¢+1)} used in (32)
to calculate (31) respecting the positivity constraints V(¢) € [0,b1], pp(t) € [0,1], and
min(Ky (), Kg(£)) > 0, Vt € Ro,:

) (tre1) = Wi [£0) (8) + Wak sgniq (],i(tk),k, €) (20 8) = ¢ (B-) ], (34)

and {wi} and {w,} are modulating weighting sequences. For instance, if it is suited for
all the multicontroller devices in the parallel structure to converge to one representative
so that a common disease-free equilibrium is achievable as a result, then we can choose
wi = wk and w, = wK with w,w, € (0,1). This gives an exponentially convergent updating
rule in (34). Other convergence rules with slower convergence rates than exponential are,

for instance, wy = W and wy = with w,w, € (0,1) and p,, (> 1),p.w (> 1) €R.

1
(wg +k)Paw

4.5 PDFS-strategy

Note that in the previous strategy, we have the convergence of all the schemes to a common
disease-free equilibrium point, but this one, which is reachable, remains unspecified by a
priori design. See Theorem 1(i), Egs. (10)—(11). To fix a disease-free equilibrium point, we
replace (31) with

Vi (te) = Vi + (£ = s()) AV (),

Ky (te) = Ky + (€ = s(t) AKy (t), 5)
35

Ki () = K¢ + (€ - s(tx)) AK: (1),

pp(te) = P+ (€ = s(t)) App(te),
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for all £ € SI, £ € m with pj; = 0, that is, we update the incremental gains with respect
to nominal values of the control gains that define the prefixed disease-free equilibrium
point. Then, we can use (32) in (35) for the weighting sequences updating procedure ap-
plying Proposition 1 to conclude the convergence to a prefixed disease-free equilibrium
point since the incremental gains converge asymptotically to zero. It is also possible to
incorporate the refinement of (33)—(34) leading to the same conclusion.

4.6 TMP-strategy

In this case, there is a set of available epidemic models, each with a multicontroller parallel
structure subjected to a switching rule. Thus, we have a set of testing loss indexes of the
form S§J = {]Z : (i,)) € (ex, my)}, Yk € Zy,,, each of the following form:

T =T (e 1)

7351 . 7351 L 7351 . ..
= Cv(tk)/ VY (o)do + Cl(tk)/ I(o)do + Clg(tk)/ Kg(a)l”(a)da
k 173 72

+ Colt) / . D‘7<o)do+ch<tk)( ) Pg(tai)DU(tei)>,

toi€ltiotis1)

Vi € e, Vj € my, Yk € Zy,. (36)

In this set, there are e; epidemic models with my controllers on the interval [f, t,1),
Vit € SI, where the first superscript refers to each time-invariant SEIADR model used to
approach the real SETADR system, whereas the second one indicates a particular controller
of its parallel multi-controller disposal. Its usefulness becomes apparent when some of the
parameters of the epidemic model are not known precisely, whereas their variation ranges
are known or when some of the parameters are time-varying within known prescribed
variation intervals. This strategy can be combined with a PDFS-strategy if the epidemic
model, provided to be time-varying with available a priori knowledge on its parameteri-
zation domains, converges asymptotically to a time-invariant one. A similar consideration
applies for the case of the combination of the TMP-strategy with a UPDFS-strategy. On
the other hand, the choice of either fixed time-interval (TMPCT-strategy) or time-varying
interval testing (TMPT VT-strategy) for eventual switching is of direct implementation in
this case by using (29) or (30).

4.7 SEMS-strategy

If the coefficient transmission rates exceed a certain threshold, then the endemic equi-
librium solution exists and is stable, wheras the disease-free one is unstable. In this case,
the parallel structure is organized with the objective that the trajectories try to reject ap-
proaching the endemic equilibrium solution so that they oscillate between the disease-
free equilibrium and the endemic one. Since the targeted solution, although unstable,
is a disease-free solution, the problem statement can be made as for the UPDFS/PDFS-
strategies.

5 Numerical simulations
We now describe several examples. The first one refers to the SEMS-strategy when the
reproduction number exceeds unity so that the asymptotic corpses removal of the dis-
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ease is not possible. The second and third examples discuss, respectively, the UPDFS (un-
prefixed susceptible and immune equilibrium percentages to reach) and PDPS (prefixed
percentages)-strategies under reproduction number less than unity. The fourth example
displays the relevance of the residence time at the active configuration in the supervised
loss.

Example 5.1 (SEMS-strategy) We present it through a set of numerical simulations. This
strategy is intended for the case where the reproduction number (or the coefficient trans-
mission rates) are large enough so that the disease-free equilibrium point is not reachable
and the disease cannot be asymptotically removed as a result. In this case, the supervisory
strategy is oriented to improve the supervised loss function (against the unsupervised one)
so that the potential convergence to a concrete endemic equilibrium associated with an
individual parameterization is tried to be rejected by the switching supervisory action so
that the overall supervised loss function is less than the unsupervised one.

The parameters of the model are obtained from real data from a study of Ebola [4]. The
recruitment rate and the natural average death rate are b; = b, = 1/(70 x 365) x days ™,
and the disease transmission coefficients are 8 = 0.11, B4 = 0.05, Bp = 0.15 (xdays™") re-
spectively. The average duration of the immunity period reflecting a transition from the
recovered to the susceptible is determined by 1/n = 10 days, the average transition rate
from the exposed to both infectious is y = 1/15.8 x days™, the average extra mortality
of the symptomatic infectious is @ = 1/13.3 x days™!, the natural immune response is
7o = 1/12 x days ™, the fraction of the exposed becoming symptomatic infectious is p = 0.5,
the initial control gains are K;(0) = 1/31.6, V(0) = b1/2, and Ky(0) = by/5, and the aver-
age duration of infection in the dead bodies is 1/u = 20 days. Given these parameters, the
reproduction number is Ry > 1. The initial conditions of the subpopulations are given by
the combination of both equilibrium points S(0) = Senxp + Spee, E(0) = Egnp, 1(0) = Ignp,
A(0) = Apnp, D(0) = Denp, R(0) = Rpeg + Renp and normalized so that the initial total alive
population is equal to unity: N(0) = S(0) + E(0) + I(0) + A(0) + D(0) + R(0) = 1. We will
conduct three different simulations with three different strategies, in which five different
models are run in parallel, and the costs of each of them are supervised at regular intervals.
If the parameters of the minimum cost of the simulations do not correspond to the current
“real model’, then the parameters are commuted to the “cheapest” virtual model, and those
from the virtual models are changed according to a function of the real model. Since the
reproduction number exceeds unity, the disease-free equilibrium is unstable and, since the
SEMS strategy is used for switching, the solution trajectory oscillates along the transient
trying to approach the endemic equilibrium solution with a trajectory such that the loss
function is minimized. Such an endemic equilibrium solution agrees with Theorem 2(ii).
The minimum residence time between consecutive switches has to be sufficiently large
to guarantee the stability of the solution according to Theorem 4. We run our first sim-
ulation for 650 days with a single control, which consists of an impulsive death infective
removal p} each 5.3 days. The virtual eligible values are a function of the real value given
by pg) = (1 - AP pR, with p% = 0.5 and A = 0.1. The control gains pp(t) and Ky (¢) are
monitored while K (t) = K¢ (0) for all time. We see the dynamics in logarithmic scale and
the evolution of the control gains in Fig. 3.

The supervision of the cost occurs every 17 days when a decision about switching or
not is taken. The resulting cost of the vaccination is then compared to a simulation for
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Figure 4 A comparison between supervised control and a constant control strategies

which the control remains constant and equal to the mean value of the values. We can

see in Fig. 4 how the constant control (pp = 0.074) presents a cost much higher than the
supervised one.
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Figure 5 (a) Dynamics of the subpopulations through time; (b) values of the parameters of the control
strategy through time

In Fig. 5, we see the dynamics of a strategy with parameters and initial conditions iden-
tical to those of the previous one from Figs. 3 and 4, but here the control includes a vari-
ation not only in the parameters pp, but also the gains Ky change accordingly to the rule
KD = (1= A)*- KR with the initial value K&b,/5. Thus, in this experiment, the above three
control gains are monitored by the supervisory scheme.

Again, a comparison of the costs between the supervised control and the constant one
(op = 0.074, Ky = 1.15 - 107°) reveals in Fig. 6 that the supervised one has a cost below the
constant control strategy.

Lastly, we present a supervised strategy in which the three control gains pp, Ky and K
are variable through time and the corresponding control gains are monitored by the su-
pervisory scheme as the algorithm changes to the model with the least cost. The dynamics
and the values of the control are seen in Fig. 7, and in Fig. 8, we can see the comparison be-
tween constant control gains (op = 0.074, Ky = 1.15 - 1076, K¢ =0.005) and the supervised
control.

Example 5.2 (UPDFS-strategy) This strategy is intended for the case where the repro-
duction number is less than one, so that the endemic equilibrium point does not exists
and the disease-free equilibrium point is asymptotically reachable so that the disease can
be asymptotically removed according to Theorem 1(i). The disease-free equilibrium point
depends on the limit values of the control gains. The values of the controls through time re-
spect the positivity conditions of the solution given by the theorem. However, the disease-
free equilibrium point is not prefixed a priori, in accordance with the UPDFS-strategy,
since it depends on the limit gains reached by the switching scheme. For the UPDFS-
strategy, the parameters are set, as in the previous case, from real data in [4]. The recruit-
ment rate and the natural average death rate are by = b, = 1/(70 x 365) x days_l, whereas
the disease transmission coefficients are 8 = 0.11, 84 = 0.05, 8p = 0.15 (Xdays’l), respec-
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Figure 7 (a) Dynamics of the subpopulations through time; (b) values of the parameters of the control
strategy through time

tively. The average duration of the immunity period reflecting a transition from the recov-
ered to the susceptible is determined by 1/5 = 10 days, the average transition rate from the
exposed to both infectious y = 1/15.8 x days", the average extra mortality of the symp-
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tomatic infectious & = 1/13.3 x days ™", the natural immune response 7y = 1/15.8 x days ™",
the fraction of the exposed becoming symptomatic infectious p = 0.15, and the control
gain K; = 1/15.8 days™ is constant through time. The vaccination gains are Vj = b;/2,
which is constant, and Ky is chosen by the supervisory scheme set from three prefixed
different values, namely, Ky = 2000 x by, Ky = 200 x by, and Ky3 = 20 x b,. The average
duration of infection in dead bodies is 1/ = 20 days. Observe that we have modified p
so that the reproduction number Ry < 1. The initial conditions are given as in the previ-
ous case by the combination of both equilibrium points S(0) = Sexp + Spre, E(0) = Eenp,
1(0) = Ienp, A(0) = Agnp, D(0) = Denp; R(0) = Rpre + Renp and normalized so that the ini-
tial total alive population is equal to unity, N(0) = S(0) + £(0) + 1(0) + A(0) + D(0) + R(0) = 1.
The weight of the cost for vaccination is 1/6500 of that of the cost for the infection, and the
rest of weights are zeroed as only vaccination and infectious subpopulations are relevant
in these simulations.

It can be seen in Figs. 9 and 10 that the UPDFS-strategy presents a dynamics that goes
steadily to the disease-free state with an improved achieved supervision cost related to the

unsupervised control when the controller gains do not converge.

Example 5.3 (PDFS-strategy) Another alternative PDFS-strategy is simulated, with the
same parameters and initial conditions as in Example 5.2, but here the three controller
gains Ky converge along the process to a limit value Ky = 2000 x b,. The main difference
related to Example 5.2 is that, in this case, the strategy consists of prefixing the disease-
free equilibrium point, which is still reachable, since the reproduction number is less than
unity, which is common to all the controllers within the parallel structure since the respec-
tive control gains converge asymptotically to common values. Note that this fact allows the
supervised scheme to prefix the final equilibrium state by fixing a priori the percentages of
equilibrium susceptible and immune subpopulations, which are considered to be appro-
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priate while improving the transient behavior and vaccination costs though monitoring

the supervised loss function through the supervised switched parallel control scheme. In

this case, the equilibrium susceptible and immune subpopulations are fixed to 0.9997 and

0.0003, respectively. The theoretical support is that the susceptible and immune subpop-
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ulations at the disease-free equilibrium can be prefixed as in Theorem 1(ii), subject to the
minimum residence time between consecutive switches of Theorem 4, to guarantee the
stability under switching. In Figs. 11 and 12, we see the dynamics of the supervised strategy
and the costs compared to the costs under the same control gains without commutation.
Figure 12 includes a particular zoom of the time interval of interest. Even though the dif-
ference is small (approximately 0.1%), there is an improvement in the costs that justify the
supervised action.

Example 5.4 (Test of the influence of the residence time) To further study the SEMS-
strategy, we take the example of Figs. 3 and 4 of Example 5.1 while we vary the residence
time, initially 17 days, to a range between 11 and 23 days, and then compare the cost of
the initial strategy to the constant strategy defined from the mean value of the supervised
strategy. The supervised and unsupervised costs are given in Table 1 over 650 days for
distinct residence times. Note that a sufficiency-type condition for a minimum residence
time guaranteeing the stability under switching is given by Theorem 4. Small residence
time periods worsen the supervision efficiency because of the very fast associated switch-

ing actions.

6 Conclusions and summary of the design characteristics

In this paper, a model for Ebola disease spread with an incorporated supervisory scheme
has been discussed. The supervisory scheme decides online correcting actions on the con-
trols which are of various types, namely, vaccination, treatment, and dead-infective re-
moval. An essential design issue is the use of switching among different parameterizations
of the control gains in order to choose the best active controls according to the supervisory
loss function. Such a supervisory loss function combines weighted terms related to both
the infection removal and the sanitary costs like vaccines or treatment costs or the use
of brigades for removal of lying infective corpses, and the relative weights are chosen by
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Table 1 Comparison of supervised and unsupervised costs over 650 days

Residence time (days) 11 13 15 17 19 21 23
Supervised cost 325 3.04 2.87 273 267 2.65 261

Unsupervised cost 1386 1350 1292 1226 1153 1108 1002
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the designer. There is also the possibility of prescribing the desired equilibrium state and

monitoring the transients toward reaching it or giving a certain freedom for the super-

vision to adapt the trajectory toward an equilibrium solution regime that minimizes the

value defined loss. The designer has a great freedom in defining the loss, the final target,

the weighting losses defining the partial sublosses contributing to the overall loss function,

and so on. Furthermore, the proposed strategy is easy to implement from a computational

point of view. As a result, it has been shown that the switching supervisory strategies may

improve and accommodate the reaction of the authorities in the administration of poten-

tially scarce resources to fight against the illness. The main characteristics of the proposed

technique are the following:

(1)

(4)

The proposed model is an extended SEIR model, which also incorporates two extra
subpopulations, namely, the asymptomatic infectious and the infective lying
corpses. Two more extra controls can be considered apart from the traditional
vaccination, namely, the antiviral treatment and the removal action on lying
infective corpses. The introduction of those corpses as an extra subpopulation
makes useful the model for its use for fighting against Ebola disease.

A supervised multiparallel scheme is proposed allowing the online selection of

various control gains. The members of the parallel disposal have different

parameterizations of the controllers. One of these members is chosen as being the
active one along a time interval by minimizing an ad hoc loss function. Such a loss
function is defined with additive weighted terms related to the infection costs

(trying to keep the infectious subpopulations at reasonably small levels) and the

health care costs (in terms of expenses in vaccines, treatment, and performances on

corpses removal brigades). There is a wide freedom in the design of the supervisory
loss function, its weights, and eventually their online updating.

Three types of controls can be monitored online through the online design of their

associated gains. Those controls are the vaccination control on the susceptible, the

antiviral treatment on the symptomatic infectious, and dead-infective removal.

Several updating rules for the control gains have been proposed and discussed.

Conceptually, in the case where the reproduction number does not exceed unity, the

main objective for the solution trajectory is to tend asymptotically to the stable

disease-free equilibrium point while minimizing the supervised loss. There are two
possible objectives, namely:

(a) To keep the disease-free equilibrium as a design-free one in the sense that the
susceptible and immune subpopulations reach asymptotic values, which are
dependent on the limit control gains which are not monitored, all the limit
infectious subpopulations being zero while minimizing the supervised loss;

(b) To predesign the percentages of disease-free equilibrium susceptible and
immune subpopulations. For this purpose, the transient control gains tend to

predesigned final values while minimizing the supervised loss.

In the case where reproduction number exceeds unity, the disease-free equilibrium is

unstable, so that the supervision objective is to reach an endemic equilibrium solution

with small transient costs through the supervisory action.
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