
Zhang et al. Advances in Difference Equations  (2018) 2018:370 
https://doi.org/10.1186/s13662-018-1840-3

R E S E A R C H Open Access

Nontrivial solutions for boundary value
problems of a fourth order difference
equation with sign-changing nonlinearity
Keyu Zhang1*, Donal O’Regan2 and Zhengqing Fu3

*Correspondence:
keyu_292@163.com
1School of Mathematics, Qilu
Normal University, Jinan, China
Full list of author information is
available at the end of the article

Abstract
In this paper, using the topological degree theory, we establish two existence
theorems for nontrivial solutions for boundary value problems of a fourth order
difference equation with a sign-changing nonlinearity.
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1 Introduction
For a, b ∈ Z, let Tb

a = {a, a + 1, a + 2, . . . , b} with a < b. In this paper we consider the exis-
tence of nontrivial solutions for boundary value problems of the following fourth order
difference equation with a sign-changing nonlinearity

⎧
⎨

⎩

�4u(t – 2) = f (t, u(t)),

u(1) = u(T + 1) = �2u(0) = �2u(T) = 0,
(1.1)

where T is an integer with T ≥ 5, and f : TT
2 × R → R is a continuous function with

T
T
2 = {2, 3, . . . , T} and R = (–∞, +∞) (it is assumed to be continuous from the topological

spaceTT
2 ×R into the topological spaceR, the topology onT

T
2 being the discrete topology).

Difference equations with discrete boundary value conditions have been widely studied
in the literature; see, for example, [1–11] and the references therein. However, as men-
tioned in [6], very few results are available with sign-changing nonlinearities; see [6–11].
Other related work in this field can be found in [12–45] and the references therein. In
[7], C.S. Goodrich used the Krasnosel’skĭi fixed point theorem to obtain the existence of
at least one positive solution to the following discrete fractional semipositone boundary
value problem

⎧
⎨

⎩

�νy(t) = λf (t + ν – 1, y(t + ν – 1)), t ∈ [0, T] ∩Z,

y(ν – 1) = y(ν + T) +
∑N

i=1 F(ti, y(ti)),
(1.2)

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1840-3
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1840-3&domain=pdf
mailto:keyu_292@163.com


Zhang et al. Advances in Difference Equations  (2018) 2018:370 Page 2 of 13

where �ν is the νth fractional difference with ν ∈ (0, 1), f is continuous, bounded below
(i.e., f + M ≥ 0 for some M > 0), and

lim
y→+∞

f (t, y)
y

= 0 uniformly for t ∈ [ν – 1,ν + T]Zν–1 . (1.3)

In [10], J. Xu and D. O’Regan used the fixed point index to obtain the existence of nontrivial
solutions for (1.2) with weaker conditions than that of (1.3), and also in [11], J. Xu et al.
considered the existence of positive solutions for system (1.2), with adopted convex and
concave functions to depict the coupling behavior of nonlinearities. In [40], Y. Cui used
the u0-positive operator to study the uniqueness of solutions for the following nonlinear
fractional boundary value problems:

⎧
⎨

⎩

Dpx(t) + p(t)f (t, x(t)) + q(t) = 0, t ∈ (0, 1),

x(0) = x′(0) = 0, x(1) = 0,
(1.4)

where Dp is the Riemann–Liouville fractional derivative, and f is a Lipschitz continuous
function, with the Lipschitz constant associated with the first eigenvalue for the relevant
operator. Using similar methods, the authors in [12, 39, 41] obtained some existence and
nonexistence theorems for their problems.

Motivated by the works mentioned above, we consider the existence of nontrivial solu-
tions for (1.1) involving sign-changing nonlinearities. Using the topological degree theory
of a completely continuous field, and conditions concerning the first eigenvalue corre-
sponding to the relevant linear problem, two existence theorems are obtained.

2 Preliminaries
For convenience, we let T

T+1
1 = {1, 2, 3, . . . , T , T + 1}, TT+2

0 = {0, 1, 2, 3, . . . , T + 1, T + 2},
T

T
2 = {2, 3, . . . , T}. Then we define our space E as the collection of all maps from T

T+2
0 to

R equipped with the norm ‖u‖ = maxj∈TT+2
0

|u(j)|. Consequently, E is a Banach space, and
we let P = {u ∈ E : u(t) ≥ 0, t ∈ T

T+1
1 }. Then P is a cone on E. Throughout our paper, we let

Bρ = {u ∈ E : ‖u‖ < ρ} for ρ > 0. Now ∂Bρ = {u ∈ E : ‖u‖ = ρ} and Bρ = {u ∈ E : ‖u‖ ≤ ρ}.
In what follows, we establish the Green’s function for (1.1). As in [3, 4], we transform

(1.1) into its equivalent sum equation

u(t) =
T∑

s=2

H(t, s)
T∑

j=2

H(s, j)f
(
j, u(j)

)
, t ∈ T

T+1
1 , (2.1)

where

H(t, s) =
1
T

⎧
⎨

⎩

(t – 1)(T + 1 – s), 1 ≤ t ≤ s ≤ T ,

(s – 1)(T + 1 – t), 2 ≤ s ≤ t ≤ T + 1.
(2.2)

Lemma 2.1 Green’s function H has the following properties:
(i) H(t, s) > 0 for (t, s) ∈ T

T
2 ×T

T
2 ,

(ii) 1
T H(t, t)H(s, s) ≤ H(t, s) ≤ H(s, s) for (t, s) ∈ T

T
2 ×T

T+1
1 .
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Proof We only need to prove the first inequality of (ii). Indeed, for all (t, s) ∈ T
T
2 × T

T+1
1 ,

from the definitions of H(t, s) and H(s, s) we have

H(t, s)
H(s, s)

=

⎧
⎨

⎩

t–1
s–1 ≥ t–1

T ≥ t–1
T

T+1–t
T = 1

T H(t, t), 1 ≤ t ≤ s ≤ T ,
T+1–t
T+1–s ≥ T+1–t

T ≥ T+1–t
T

t–1
T = 1

T H(t, t), 2 ≤ s ≤ t ≤ T + 1.

Then we have H(t, s) ≥ 1
T H(t, t)H(s, s) for (t, s) ∈ T

T
2 ×T

T+1
1 . This completes the proof. �

We define an operator A : E → E as follows:

(Au)(t) =
T∑

s=2

H(t, s)
T∑

j=2

H(s, j)f
(
j, u(j)

)
, t ∈ T

T+1
1 . (2.3)

The existence of solutions for (1.1) is equivalent to that of fixed points of A.
From [4], we know that sin π (t–1)

T := ϕ0(t), t ∈ T
T
2 is the eigenfunction related to the eigen-

value 1
16 sin–4 π

2T of the eigenproblem

⎧
⎨

⎩

�4u(t – 2) = λu(t), t ∈ T
T
2 ,

u(1) = u(T + 1) = �2u(0) = �2u(T) = 0,

i.e., the following two equations hold:

T∑

s=2

T∑

j=2

H(t, s)H(s, j) sin
π (j – 1)

T
=

1
16

sin–4 π

2T
sin

π (t – 1)
T

, t ∈ T
T
2 , (2.4)

T∑

s=2

T∑

t=2

H(t, s)H(s, j) sin
π (t – 1)

T
=

1
16

sin–4 π

2T
sin

π (j – 1)
T

, t ∈ T
T
2 . (2.5)

Lemma 2.2 Let e(t) = 1
T H(t, t) and P0 = {u ∈ P : u(t) ≥ e(t)‖u‖, t ∈ T

T+1
1 }. Then L(P) ⊂ P0,

where

(Lu)(t) =
T∑

s=2

H(t, s)
T∑

j=2

H(s, j)u(j), t ∈ T
T+1
1 . (2.6)

This is a direct result from Lemma 2.1(ii), so we omit its proof.
Now, we offer two basic theorems from the topological degree theory; for details we

refer the reader to [46].

Lemma 2.3 Let E be a Banach space and 	 a bounded open set in E. Suppose that A : 	 →
E is a continuous compact operator. If there exists u0 ∈ E \ {0} such that

u – Au �= μu0, ∀u ∈ ∂	,μ ≥ 0,

then the topological degree deg(I – A,	, 0) = 0.
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Lemma 2.4 Let E be a Banach space and 	 a bounded open set in E with 0 ∈ 	. Suppose
that A : 	 → E is a continuous compact operator. If

Au �= μu, ∀u ∈ ∂	,μ ≥ 1,

then the topological degree deg(I – A,	, 0) = 1.

3 Nontrivial solutions for (1.1)
Now we present some assumptions for our nonlinearity f .

(H1) There exist two constants a > 0, b > 0 and a function k ∈ C(R,R+) such that

f (t, u) ≥ –a – bk(u), ∀u ∈R, t ∈ T
T
2 .

(H2) lim|u|→+∞ k(u)
|u| = 0.

(H3) lim inf|u|→+∞ f (t,u)
|u| > 16 sin4 π

2T uniformly on t ∈ T
T
2 ,

(H4) lim sup|u|→0
|f (t,u)|

|u| < 16 sin4 π
2T uniformly on t ∈ T

T
2 ,

(H5) lim infu→0+
f (t,u)

u > 16 sin4 π
2T , lim supu→0–

f (t,u)
u < 16 sin4 π

2T , uniformly on t ∈ T
T
2 ,

(H6) lim sup|u|→+∞
|f (t,u)|

|u| < 16 sin4 π
2T uniformly on t ∈ T

T
2 .

Theorem 3.1 Suppose that (H1)–(H4) hold. Then (1.1) has at least one nontrivial solution.

Proof From (H3) there exist ε0 > 0 and X0 > 0 such that

f (t, u) ≥
(

16 sin4 π

2T
+ ε0

)

|u|, ∀t ∈ T
T
2 , |u| > X0. (3.1)

For any given ε with ε0 – bε > 0, and from (H2), there exists X1 > X0 such that

k(u) ≤ ε|u|, ∀|u| > X1. (3.2)

Now since a > 0, b > 0 and k is a nonnegative function, we have

f (t, u) ≥
(

16 sin4 π

2T
+ ε0

)

|u| – a – bk(u)

≥
(

16 sin4 π

2T
+ ε0

)

|u| – a – bε|u|, ∀|u| > X1. (3.3)

Now we choose c1 = (16 sin4 π
2T +ε0 –bε)X1 +maxt∈TT

2 ,|u|≤X1
|f (t, u)| and k∗ = max|u|≤X1 k(u).

Then we have

f (t, u) ≥
(

16 sin4 π

2T
+ ε0 – bε

)

|u| – a – c1

=
(

16 sin4 π

2T
+ ε0 – bε

)

|u| – c2, ∀t ∈ T
T
2 , u ∈R, (3.4)
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where c2 = c1 + a. Note that ε can be chosen arbitrarily small, and we let

R > max

{ (c2 + bk∗)[(ε0 – bε)
∑T

s=2 H(s, s)
∑T

j=2 H(s, j) + (16 sin4 π
2T + ε0 – bε)

∑T
s=2

∑T
j=2 H(s, j)]

ε0 – bε – bε[(ε0 – bε)
∑T

s=2 H(s, s)
∑T

j=2 H(s, j) + (16 sin4 π
2T + ε0 – bε)

∑T
s=2

∑T
j=2 H(s, j)]

,

∑T
s=2 H(s, s)

∑T
j=2 H(s, j)(c2 + bk∗)

1 – bε
∑T

s=2 H(s, s)
∑T

j=2 H(s, j)
, 0

}

.

Now we prove that

u – Au �= μϕ0, ∀u ∈ ∂BR,μ ≥ 0. (3.5)

From (2.4) and Lemma 2.2, we have ϕ0 = 16 sin4 π
2T Lϕ0 ∈ P0. Indeed, if (3.5) isn’t true, then

there exist u0 ∈ ∂BR and μ0 > 0 such that

u0 – Au0 = μ0ϕ0. (3.6)

Let ũ(t) =
∑T

s=2 H(t, s)
∑T

j=2 H(s, j)(a + bk(u0) + c1). Then

ũ(t) ≤
T∑

s=2

H(t, s)
T∑

j=2

H(s, j)
(
c2 + bε|u0| + bk∗)

≤
T∑

s=2

H(s, s)
T∑

j=2

H(s, j)
(
c2 + bε‖u0‖ + bk∗).

Therefore,

‖ũ‖ ≤
T∑

s=2

H(s, s)
T∑

j=2

H(s, j)
(
c2 + bεR + bk∗). (3.7)

Then from L(P) ⊂ P0, ϕ0 ∈ P0, and

u0(t) + ũ(t) = ũ(t) + (Au0)(t) + μ0ϕ0(t)

=
T∑

s=2

H(t, s)
T∑

j=2

H(s, j)
(
f
(
j, u0(j)

)
+ bk

(
u0(j)

)
+ a + c1

)
+ μ0ϕ0(t),

we have

u0 + ũ ∈ P0.

As a result, we obtain

(Au0)(t) + ũ(t)

=
T∑

s=2

H(t, s)
T∑

j=2

H(s, j)
(
f
(
j, u0(j)

)
+ bk

(
u0(j)

)
+ c2

)
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≥
T∑

s=2

H(t, s)
T∑

j=2

H(s, j)
((

16 sin4 π

2T
+ ε0 – bε

)
∣
∣u0(j)

∣
∣ – c2 + bk

(
u0(j)

)
+ c2

)

≥
(

16 sin4 π

2T
+ ε0 – bε

) T∑

s=2

H(t, s)
T∑

j=2

H(s, j)
∣
∣u0(j)

∣
∣

≥
(

16 sin4 π

2T
+ ε0 – bε

) T∑

s=2

H(t, s)
T∑

j=2

H(s, j)u0(j). (3.8)

On the other hand, from the definition of L, we get

(

16 sin4 π

2T
+ ε0 – bε

) T∑

s=2

H(t, s)
T∑

j=2

H(s, j)u0(j)

= 16 sin4 π

2T

T∑

s=2

H(t, s)
T∑

j=2

H(s, j)
(
u0(j) + ũ(j)

)

– 16 sin4 π

2T

T∑

s=2

H(t, s)
T∑

j=2

H(s, j)ũ(j)

+ (ε0 – bε)
T∑

s=2

H(t, s)
T∑

j=2

H(s, j)u0(j)

≥ 16 sin4 π

2T

T∑

s=2

H(t, s)
T∑

j=2

H(s, j)
(
u0(j) + ũ(j)

)
; (3.9)

in order to obtain the above inequality, we prove that

–16 sin4 π

2T

T∑

s=2

H(t, s)
T∑

j=2

H(s, j)ũ(j)

+ (ε0 – bε)
T∑

s=2

H(t, s)
T∑

j=2

H(s, j)u0(j) ≥ 0. (3.10)

Indeed, since u0 + ũ ∈ P0, we have u0(t) + ũ(t) ≥ e(t)‖u0 + ũ‖ ≥ e(t)(‖u0‖ – ‖ũ‖). Note that
H(t, s) vanishes at t = 1 and t = T + 1, H(t, s) is symmetric on T

T
2 , i.e., H(t, s) = H(s, t). Then

(ε0 – bε)
T∑

s=2

H(t, s)
T∑

j=2

H(s, j)
(
ũ(j) + u0(j)

)

–
(

16 sin4 π

2T
+ ε0 – bε

) T∑

s=2

H(t, s)
T∑

j=2

H(s, j)ũ(j)

≥ (ε0 – bε)
(
R – ‖ũ‖)

T∑

s=2

H(t, s)
T∑

j=2

H(s, j)e(j)

–
(

16 sin4 π

2T
+ ε0 – bε

) T∑

s=2

H(t, s)
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×
T∑

j=2

H(s, j)e(j)

( T∑

s=2

T∑

j=2

H(s, j)
(
c2 + bεR + bk∗)

)

≥ 0.

Combining (3.8), (3.9) and (3.10), we have

(Au0)(t) + ũ(t) ≥ 16 sin4 π

2T

T∑

s=2

H(t, s)
T∑

j=2

H(s, j)
(
u0(j) + ũ(j)

)

= 16 sin4 π

2T
(
L(u0 + ũ)

)
(t). (3.11)

Using (3.6) we obtain

u0 + ũ = Au0 + ũ + μ0ϕ0 ≥ 16 sin4 π

2T
L(u0 + ũ) + μ0ϕ0 ≥ μ0ϕ0. (3.12)

Define

μ∗ = sup{μ > 0 : u0 + ũ ≥ μϕ0}.

Note that μ0 ∈ {μ > 0 : u0 + ũ ≥ μϕ0}, and then μ∗ ≥ μ0, u0 + ũ ≥ μ∗ϕ0. From (2.4) we have

16 sin4 π

2T
L(u0 + ũ) ≥ μ∗16 sin4 π

2T
Lϕ0 = μ∗ϕ0,

and hence

u0 + ũ ≥ 16 sin4 π

2T
L(u0 + ũ) + μ0ϕ0 ≥ (

μ0 + μ∗)ϕ0,

which contradicts the definition of μ∗. Therefore, (3.5) holds, and from Lemma 2.3 we
obtain

deg(I – A, BR, 0) = 0. (3.13)

On the other hand, from (H4), there exist ε1 ∈ (0, 16 sin4 π
2T ) and r ∈ (0, R) such that

∣
∣f (t, u)

∣
∣ ≤

(

16 sin4 π

2T
– ε1

)

|u|, ∀t ∈ T
T
2 , |u| < r. (3.14)

Now for this r, we show that

Au �= μu, u ∈ ∂Br ,μ ≥ 1. (3.15)

Otherwise, there would exist u1 ∈ ∂Br , μ1 ≥ 1 such that

∣
∣u1(t)

∣
∣ =

1
μ1

∣
∣(Au1)(t)

∣
∣ ≤ ∣

∣(Au1)(t)
∣
∣

=

∣
∣
∣
∣
∣

T∑

s=2

H(t, s)
T∑

j=2

H(s, j)f
(
j, u1(j)

)
∣
∣
∣
∣
∣
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≤
T∑

s=2

H(t, s)
T∑

j=2

H(s, j)
∣
∣f

(
j, u1(j)

)∣
∣

≤
(

16 sin4 π

2T
– ε1

) T∑

s=2

H(t, s)
T∑

j=2

H(s, j)
∣
∣u1(j)

∣
∣.

Multiplying both sides of the above inequality by sin π (t–1)
T , then summing from 2 to T ,

and using (2.5), we obtain

T∑

t=2

∣
∣u1(t)

∣
∣ sin

π (t – 1)
T

≤
(

16 sin4 π

2T
– ε1

) T∑

t=2

[ T∑

s=2

H(t, s)
T∑

j=2

H(s, j)
∣
∣u1(j)

∣
∣

]

sin
π (t – 1)

T

=
16 sin4 π

2T – ε1

16 sin4 π
2T

T∑

t=2

∣
∣u1(t)

∣
∣ sin

π (t – 1)
T

.

This implies that
∑T

t=2 |u1(t)| sin π (t–1)
T = 0, and whence u1(t) ≡ 0, which contradicts u1 ∈

∂Br . Hence, (3.15) holds, and from Lemma 2.4 we obtain

deg(I – A, Br , 0) = 1. (3.16)

This, together with (3.13), implies that

deg(I – A, BR \ Br , 0) = deg(I – A, BR, 0) – deg(I – A, Br , 0) = –1.

Therefore, the operator A has at least one fixed point in BR \ Br , and (1.1) has at least one
nontrivial solution. This completes the proof. �

Theorem 3.2 Suppose that (H5)–(H6) hold. Then (1.1) has at least one nontrivial solution.

Proof From (H5), there are ε2 ∈ (0, 16 sin4 π
2T ) and r > 0 such that

f (t, u) ≥
(

16 sin4 π

2T
+ ε2

)

u, ∀u ∈ [0, r], t ∈ T
T
2 ,

and

f (t, u) ≥
(

16 sin4 π

2T
– ε2

)

u, ∀u ∈ [–r, 0], t ∈ T
T
2 .

The above two inequalities enable us to obtain

f (t, u) ≥
(

16 sin4 π

2T
+ ε2

)

u, ∀u ∈ [–r, r], t ∈ T
T
2 , (3.17)

f (t, u) ≥
(

16 sin4 π

2T
– ε2

)

u, ∀u ∈ [–r, r], t ∈ T
T
2 . (3.18)
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Define a cone P1 as follows:

P1 =

{

u ∈ P :
T∑

t=2

u(t) sin
π (t – 1)

T
≥ δ‖u‖

}

,

where δ =
∑T

t=2 e(t) sin π (t–1)
T . Then we claim

L(P) ⊂ P1. (3.19)

Indeed, for u ∈ P, from Lemma 2.1 we have

T∑

t=2

(Lu)(t) sin
π (t – 1)

T
=

T∑

t=2

T∑

s=2

H(t, s)
T∑

j=2

H(s, j)u(j) sin
π (t – 1)

T

≥
T∑

t=2

T∑

s=2

e(t)H(τ , s)
T∑

j=2

H(s, j)u(j) sin
π (t – 1)

T

= δ(Lu)(τ ), ∀τ ∈ T
T
2 ,

and thus

T∑

t=2

(Lu)(t) sin
π (t – 1)

T
≥ δ‖Lu‖.

Moreover, ϕ0 ∈ P1 since ϕ0 = 16 sin4 π
2T Lϕ0 ∈ P1. Now we claim that

u – Au �= μϕ0, ∀u ∈ ∂Br ,μ ≥ 0. (3.20)

If the claim is false, then there exist u2 ∈ ∂Br and μ2 ≥ 0 such that

u2 – Au2 = μ2ϕ0. (3.21)

From (3.17) we have Au2 ≥ (16 sin4 π
2T + ε2)Lu2 and so u2 ≥ (16 sin4 π

2T + ε2)Lu2, i.e.,

u2(t) ≥
(

16 sin4 π

2T
+ ε2

) T∑

s=2

H(t, s)
T∑

j=2

H(s, j)u2(j).

Multiplying both sides of the above inequality by sin π (t–1)
T , then summing from 2 to T ,

and using (2.5), we obtain

T∑

t=2

u2(t) sin
π (t – 1)

T

≥
(

16 sin4 π

2T
+ ε2

) T∑

t=2

[ T∑

s=2

H(t, s)
T∑

j=2

H(s, j)u2(j)

]

sin
π (t – 1)

T

=
16 sin4 π

2T + ε2

16 sin4 π
2T

T∑

t=2

u2(t) sin
π (t – 1)

T
,
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which implies that

T∑

t=2

u2(t) sin
π (t – 1)

T
≤ 0. (3.22)

On the other hand, from (3.21) we have

u2(t) –
(

16 sin4 π

2T
– ε2

)

(Lu2)(t)

= (Au2)(t) –
(

16 sin4 π

2T
– ε2

)

(Lu2)(t) + μ2ϕ0(t)

=
T∑

s=2

H(t, s)
T∑

j=2

H(s, j)
[

f
(
j, u2(j)

)
–

(

16 sin4 π

2T
– ε2

)

u2(j)
]

+ μ2ϕ0(t).

Then (3.18), (3.19) and ϕ0 ∈ P1 enable us to find u2 – (16 sin4 π
2T – ε2)Lu2 ∈ P1, and thus

∥
∥
∥
∥u2 –

(

16 sin4 π

2T
– ε2

)

Lu2

∥
∥
∥
∥

≤ 1
δ

T∑

t=2

[

u2(t) –
(

16 sin4 π

2T
– ε2

)

(Lu2)(t)
]

sin
π (t – 1)

T

=
ε2

δ16 sin4 π
2T

T∑

t=2

u2(t) sin
π (t – 1)

T
≤ 0.

Note that (16 sin4 π
2T – ε2)r(L) < 1, where r(L) is the spectral radius of L. Hence, we have

u2 = 0, contradicting u2 ∈ ∂Br . This implies that (3.20) holds, and from Lemma 2.3 we have

deg(I – A, Br , 0) = 0. (3.23)

On the other hand, from (H6) there exist ε3 ∈ (0, 16 sin4 π
2T ) and c3 > 0 such that

∣
∣f (t, u)

∣
∣ ≤

(

16 sin4 π

2T
– ε3

)

|u| + c3, ∀t ∈ T
T
2 , u ∈ R. (3.24)

Let M = {u ∈ E : u = λAu,λ ∈ [0, 1]}. Then we prove that M is bounded in E. If u ∈ M,
then from (3.24) we have

∣
∣u(t)

∣
∣ = λ

∣
∣(Au)(t)

∣
∣ ≤

T∑

s=2

H(t, s)
T∑

j=2

H(s, j)
∣
∣f

(
j, u(j)

)∣
∣

≤
T∑

s=2

H(t, s)
T∑

j=2

H(s, j)
[(

16 sin4 π

2T
– ε3

)
∣
∣u(j)

∣
∣ + c3

]

.

Multiplying both sides of the above inequality by sin π (t–1)
T , then summing from 2 to T ,

and using (2.5), we obtain

T∑

t=2

∣
∣u(t)

∣
∣ sin

π (t – 1)
T

≤ 1
16 sin4 π

2T

T∑

t=2

[(

16 sin4 π

2T
– ε3

)
∣
∣u(t)

∣
∣ + c3

]

sin
π (t – 1)

T
,
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and then

T∑

t=2

∣
∣u(t)

∣
∣ sin

π (t – 1)
T

≤ c3ε
–1
3

T∑

t=2

sin
π (t – 1)

T
.

We know that there is a t0 ∈ T
T
2 such that ‖u‖ = |u(t0)|, and thus

∣
∣u(t0)

∣
∣ sin

π (t0 – 1)
T

≤
T∑

t=2

∣
∣u(t)

∣
∣ sin

π (t – 1)
T

.

This implies that

‖u‖ ≤ c3ε
–1
3 sin–1 π (t0 – 1)

T

T∑

t=2

sin
π (t – 1)

T
,

proving the boundedness of M. Choose R > max{supu∈M ‖u‖, r} (r is defined by (3.17)),
then

λAu �= u, u ∈ ∂BR,λ ∈ [0, 1]. (3.25)

Lemma 2.4 implies that

deg(I – A, BR, 0) = 1. (3.26)

This, together with (3.23), implies that

deg(I – A, BR \ Br , 0) = deg(I – A, BR, 0) – deg(I – A, Br , 0) = 1.

Therefore, the operator A has at least one fixed point in BR \ Br , and (1.1) has at least one
nontrivial solution. This completes the proof. �

Example 3.3 Let f (t, x) = a|x| – bk(x), k(x) = ln(|x| + 1), x ∈ R, where a ∈ (16 sin4 π
2T , +∞)

and b ∈ (0, a + 16 sin4 π
2T ). Then lim|x|→+∞ k(x)

|x| = 0, and lim|x|→+∞ a|x|–b ln(|x|+1)
|x| = a >

16 sin4 π
2T , lim|x|→0

|a|x|–b ln(|x|+1)|
|x| = |a – b| < 16 sin4 π

2T . Therefore, (H1)–(H4) hold.

Example 3.4 Let f (t, x) =
{ ax + b sin x, x ≥ 0,

ax – bex + b, x ≤ 0, where a, b > 0 with a < 16 sin4 π
2T , a + b >

16 sin4 π
2T and a – b < 16 sin4 π

2T . Then limx→0+ ax+b sin x
x = a + b, limx→0– ax–bex+b

x = a – b,
limx→+∞ | ax+b sin x

x | = a, and limx→–∞ | ax–bex+b
x | = a. Therefore, (H5)–(H6) hold.

4 Conclusions
In this paper, we established the existence of nontrivial solutions for the boundary value
problems of the fourth order difference equation (1.1) with sign-changing nonlinearity
using the topological degree theory. Under some conditions concerning the first eigen-
value corresponding to the relevant linear problem, the results here improve and general-
ize those obtained in [1–11].
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