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Abstract
This paper is concerned with the approximate controllability and complete
controllability of semilinear fractional functional differential systems with control
involving Caputo fractional derivative. By using the operator semigroup theory and
the fixed point theorem, we establish sufficient conditions for each of these types of
controllability. The results are obtained under the assumption that the corresponding
linear system is approximately controllable and completely controllable, respectively.
In the end, an example is presented to illustrate the obtained theory.
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1 Introduction
In this paper, we assume that X is a Hilbert space with the norm ‖ ·‖. Let I = [0, T]. Denote
C to be the Banach space of continuous functions from [–h, 0] into X with the norm ‖x‖ =
supt∈[–h,0] |x(t)|, x ∈ C. The aim of this paper is to study the controllability (approximate
and complete controllability) of semilinear fractional functional differential system with
control of the form:

⎧
⎨

⎩

CDq
t x(t) = Ax(t) + Bu(t) + f (t, xt , u(t)), t ∈ I = [0, T],

x0(θ ) = φ(θ ), –h ≤ θ ≤ 0,
(1)

where CDq
t is the Caputo fractional derivative of order 0 < q < 1, the state variable x(·)

takes values in X, the control function u(·) ∈ L2(I, U) takes values in a Hilbert space U .
A is the infinitesimal generator of an analytic semigroup {T(t)}t≥0 of bounded operators
on X, B : U → X is a bounded linear operator, and f : I × C × U → X is a given function
satisfying certain assumptions. If x : [–h, T] → X is a continuous function, then xt is an
element in C defined by xt(θ ) = x(t + θ ), θ ∈ [–h, 0], and φ ∈ C.

The controllability theory plays an important role in abstract control systems. Many
researchers investigated the approximate or complete controllability of control systems
(see [1–12] and the references therein). In particular, many authors [12–19] studied the
approximate or complete controllability for various semilinear fractional evolution sys-
tems. In particular, Sakthivel et al. [17] formulated a new set of sufficient conditions for

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1842-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1842-1&domain=pdf
mailto:wenyanhua0405@163.com


Wen and Zhou Advances in Difference Equations  (2018) 2018:375 Page 2 of 18

the approximate controllability of the semilinear fractional differential system

⎧
⎨

⎩

CDq
t x(t) = Ax(t) + Bu(t) + f (t, x(t)), t ∈ J = [0, T],

x(0) = x0,
(2)

where CDq
t is the Caputo fractional derivative of order q ∈ (0, 1), A is the infinitesimal

generator of a C0 semigroup T(t) of bounded operators on the Hilbert space X, B : U → X
is a bounded linear operator, U is a Hilbert space, f : J × X → X is a given function.

In [20, 21], the authors paid attention to the approximate controllability of semilinear
delay control systems in which the nonlinear terms depend on both state function and
control function under the assumption that the corresponding linear systems are approx-
imately controllable. On the other hand, Sukavanam et al. [22] formulated some suffi-
cient conditions for the approximate controllability of a semilinear fractional delay con-
trol system. Moreover, the approximate controllability of fractional order semilinear sys-
tems with bounded delay when the nonlinear term is independent of a control function
was addressed in [23]. The approximate controllability for a class of Riemann–Liouville
fractional differential inclusions via fractional calculus, multi-valued analysis, semigroup
theory, and the fixed-point technique was investigated by Yang and Wang in [24]. Also,
Sakthivel [25] dealt with the exact controllability for fractional neutral control systems by
using a fixed point analysis approach.

On the other hand, in order to study the various fractional systems, introducing a suit-
able concept of mild solutions will be of great importance. Zhou and Jiao [26] studied the
existence of mild solution of fractional neutral evolution equations by the fractional power
of operators and some fixed point theorems. Also, Wang and Zhou [27] investigated a new
mild solution for a class of fractional evolution equations, and then the existence of opti-
mal pairs of the considered system was also obtained. Furthermore, Wang and Zhou [8]
discussed the complete controllability of fractional evolution systems based on the frac-
tional calculus, properties of characteristic solution operators, and fixed point theorems.

Motivated by the above work, in this paper we first use the above suitable concept of
mild solution in [26, 27] and then adopt a method similar to paper [20] which investigates
the approximate controllability of integer semilinear functional differential equations. In
the end, we establish different sufficient conditions for the approximate and complete con-
trollability of the semilinear fractional functional differential system (1).

This paper is organized as follows. Section 2 is devoted to some preliminaries. In Sect. 3,
we give the approximate controllability result of system (1). In Sect. 4, we formulate suf-
ficient conditions for the complete controllability of system (1) by using the Banach fixed
point theorem when the semigroup {T(t)}t≥0 is not compact. An example is presented to
demonstrate the approximate controllability result in Sect. 5.

2 Preliminaries
In this section, we introduce some notations, definitions and lemmas which will be used
throughout this paper.
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Definition 2.1 ([28]) The fractional integral of order α with the lower limit 0 for a func-
tion g is defined as

Iαg(t) =
1

�(α)

∫ t

0

g(s)
(t – s)1–α

ds, t > 0, α > 0, (3)

provided the right-hand side is pointwise defined on [0,∞), where � is the gamma func-
tion.

Definition 2.2 ([28]) The Caputo derivative of order α with the lower limit 0 for a func-
tion g can be written as

CDαg(t) =
1

�(n – α)

∫ t

0

g(n)(s)
(t – s)α+1–n ds, t > 0, 0 ≤ n – 1 < α < n. (4)

If g is an abstract function with value in the Hilbert space X, then integrals which appear
in Definitions 2.1 and 2.2 are taken in Bochner’s sense.

By comparing with the fractional differential equations given in [26], we give the follow-
ing definition of a mild solution of system (1).

Definition 2.3 ([26]) A function x ∈ C([–h, T]; X) is called a mild solution of system (1)
if on [–h, T] it satisfies

⎧
⎨

⎩

x(t) = Sq(t)φ(0) +
∫ t

0 (t – s)q–1Tq(t – s)(Bu(s) + f (s, xs, u(s))) ds, t ∈ [0, T],

x0(θ ) = φ(θ ), –h ≤ θ ≤ 0,
(5)

where

Sq(t) =
∫ ∞

0
φq(θ )T

(
tqθ

)
dθ ,

Tq(t) = q
∫ ∞

0
θφq(θ )T

(
tqθ

)
dθ ,

φq(θ ) =
1
q
θ

–1– 1
q ψq

(
θ

– 1
q
)
,

ψq(θ ) =
1
π

∞∑

n=1

(–1)n–1θ–qn–1 �(nq + 1)
n!

sin(nπq), θ ∈ (0,∞)

is a probability density function. In addition, φq(θ ) is the probability density function de-
fined as

φq(θ ) ≥ 0, θ ∈ (0,∞), and
∫ ∞

0
φq(θ ) dθ = 1.

Remark 2.1 For ξ ∈ [0, 1],
∫ ∞

0 θξφq(θ ) dθ = �(1+ξ )
�(1+qξ ) .

Lemma 2.1 ([6, 26]) The operators Sq(t) and Tq(t) have the following properties:
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(i) For any t ≥ 0, the operators Sq(t) and Tq(t) are linear and bounded operators, that
is, for any x ∈ X ,

∥
∥Sq(t)x

∥
∥ ≤ M‖x‖ and

∥
∥Tq(t)x

∥
∥ ≤ Mq

�(1 + q)
‖x‖.

(ii) {Sq(t)}t≥0 and {Tq(t)}t≥0 are strongly continuous.
(iii) For every t > 0, Sq(t) and Tq(t) are also compact operators if T(t), t > 0 is compact.

Definition 2.4 System (1) is said to be approximately controllable (completely control-
lable) on the interval I if R(T ,φ) = X (R(T ,φ) = X), where R(T ,φ) = {xT (φ, u)(0) : u(·) ∈
L2(I, U)}.

In order to deal with our problems, we introduce the following two operators:

�T
0 =

∫ T

0
(T – s)q–1Tq(T – s)BB∗T∗

q (T – s) ds,

R
(
μ,�T

0
)

=
(
μI + �T

0
)–1, μ > 0,

where B∗, T∗
q (t) denote the adjoint of B and Tq(t), respectively.

By [17, 29], we know that the linear fractional control system

⎧
⎨

⎩

CDq
t x(t) = Ax(t) + Bu(t), t ∈ I,

x(0) = φ(0)
(6)

is approximately controllable on I if and only if
(H0) μR(μ,�T

0 ) → 0 as μ → 0+ in the strong operator topology.

Lemma 2.2 (Hölder’s inequality) Assume p, q ≥ 1 and 1
p + 1

q = 1. If f ∈ Lp(I, R), g ∈ Lq(I, R),
then fg ∈ L1(I, R) and

‖fg‖L1(I) ≤ ‖f ‖Lp(I)‖g‖Lq(I).

Lemma 2.3 (Schauder’s fixed point theorem) If Q is a closed bounded and convex subset
of a Banach space E and 	 : Q → Q is completely continuous, then 	 has a fixed point
in Q.

3 Approximate controllability
In this section, we first prove that the operator Fμ, 0 < μ ≤ 1 (which is defined below) has
a fixed point based on the Schauder’s fixed point theorem. Then we consider the approxi-
mate controllability of system (1) under the condition that the linear fractional system (6)
is approximately controllable.

In the Banach space C(I, C) × C(I, U), let

Yr =
{

(x, u) ∈ C(I, C) × C(I, U) | ∥∥(x, u)
∥
∥ = ‖xt‖ +

∥
∥u(t)

∥
∥ ≤ r, t ∈ I

}
,

where r is a positive constant.
To prove the main results of this section, we impose the following hypotheses:
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(H1) T(t) is a compact operator for every t > 0.
(H2) The function f : I ×C ×U → X is continuous, and there exist a constant q1 ∈ (0, q),

λi(t) ∈ L
1

q1 (I, R+) and gi ∈ L1(C × U , R+), i = 1, 2, . . . , m, such that

∥
∥f (t, xt , u)

∥
∥

≤
m∑

i=1

λi(t) sup
{

gi(xt , u) : ‖xt‖ +
∥
∥u(t)

∥
∥ ≤ r

}
, (t, xt , u) ∈ I × C × U .

(H3) For each μ > 0,

lim sup
r→∞

(

r –
m∑

i=1

ci

μ
sup

{
gi(xt , u) : ‖xt‖ +

∥
∥u(t)

∥
∥ ≤ r

}
)

= ∞.

(H4) The function f : I × C × U → X is continuous and uniformly bounded, and there
is a constant N > 0 such that

∥
∥f (t,ϕ, u)

∥
∥ ≤ N , (t,ϕ, u) ∈ I × C × U .

For the sake of convenience, we also introduce the following notations.

k = max

{

1,
MMBTq

�(1 + q)

}

, MB = ‖B‖, a =
q – 1
1 – q1

∈ (–1, 0),

ai =
3kMBMq
�(1 + q)

× MqT (a+1)(1–q1)

�(1 + q)(1 + a)1–q1
‖λi‖

L
1

q1 [0,T]
,

bi =
3MqT (a+1)(1–q1)

�(1 + q)(1 + a)1–q1
‖λi‖

L
1

q1 [0,T]
,

ci = max{ai, bi},

d1 =
3kMBMq
�(1 + q)

(‖xT‖ + M‖φ‖), d2 = 3(M + 1)‖φ‖, d = max{d1, d2}.

For μ > 0, we define the operator Fμ on C(I, C) × C(I, U) as

Fμ(x, u) = (z, v), (7)

where

v(t) = B∗T∗
q (T – t)R

(
μ,�T

0
)
p(x, u), (8)

z(t) = Sq(t)φ(0) +
∫ t

0
(t – s)q–1Tq(t – s)

(
Bv(s) + f

(
s, xs, u(s)

))
ds, t > 0,

z0(θ ) = φ(θ ), –h ≤ θ ≤ 0,
(9)

p(x, u) = xT – Sq(T)φ(0) –
∫ T

0
(T – s)q–1Tq(T – s)f

(
s, xs, u(s)

)
ds.

We next prove that the operator Fμ has a fixed point in C(I, C) × C(I, U).
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Theorem 3.1 If the hypotheses (H0)–(H2) are satisfied, then for each 0 < μ ≤ 1, the oper-
ator Fμ has a fixed point in C(I, C) × C(I, U).

Proof The proof of Theorem 3.1 is divided into several steps.
Step 1. We first prove that for an arbitrary 0 < μ ≤ 1, there is a constant r0 = r0(μ) > 0

such that Fμ : Yr0 → Yr0 . Let

ψi(r) = sup
{

gi(xt , u) : ‖xt‖ +
∥
∥u(t)

∥
∥ ≤ r, (xt , u) ∈ C × U

}
. (10)

It follows from (H3) and (10) that there exists r0 such that

r0 –
m∑

i=1

ci

μ
ψi(r0) ≥ d

μ
, (11)

that is,

d
μ

+
m∑

i=1

ci

μ
ψi(r0) ≤ r0. (12)

Direct calculation gives that (t – s)q–1 ∈ L
1

1–q1 [0, t], t ∈ [0, T], q1 ∈ (0, q). By Lemma 2.1(i),
(H2) and (10), using Hölder’s inequality, we obtain that

∫ t

0

∥
∥(t – s)q–1Tq(t – s)f

(
s, xs, u(s)

)∥
∥ds

≤ Mq
�(1 + q)

∫ t

0
(t – s)q–1

m∑

i=1

λi(s)ψi(r) ds

≤ Mq
�(1 + q)

(∫ t

0

(
(t – s)q–1) 1

1–q1 ds
)1–q1 m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r)

≤ MqT (a+1)(1–q1)

�(1 + q)(1 + a)1–q1

m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r). (13)

If (x, u) ∈ Yr0 , then it follows from (8), (12) and (13) that

∥
∥v(t)

∥
∥ =

∥
∥
∥
∥B∗T∗

q (T – t)R
(
μ,�T

0
)
(

xT – Sq(T)φ(0)

–
∫ T

0
(T – s)q–1Tq(T – s)f

(
s, xs, u(s)

)
ds

)∥
∥
∥
∥

≤ 1
μ

MBMq
�(1 + q)

(

‖xT‖ + M‖φ‖ +
MqT (a+1)(1–q1)

�(1 + q)(1 + a)1–q1

m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)

)

≤ 1
μ

[
d
3k

+
1

3k

m∑

i=1

ciψi(r0)

]

≤ 1
3kμ

[

d +
m∑

i=1

ciψi(r0)

]

≤ r0

3k
(14)
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and

∥
∥zt(θ )

∥
∥ ≤

∥
∥
∥
∥Sq(t + θ )φ(0) +

∫ t+θ

0
(t + θ – s)q–1Tq(t + θ – s)

(
Bv(s) + f

(
s, xs, u(s)

))
ds

∥
∥
∥
∥

+ ‖φ‖

≤ (M + 1)‖φ‖ +
MMBTq

�(1 + q)
‖v‖ +

MqT (a+1)(1–q1)

�(1 + q)(1 + a)1–q1

m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)

≤ d
3

+ k‖v‖ +
1
3

m∑

i=1

ciψi(r0)

≤ 1
3

[

d +
m∑

i=1

ciψi(r0)

]

+ k‖v‖

≤ μr0

3
+

r0

3
≤ 2r0

3
. (15)

Thus,

∥
∥
(
Fμ(x, u)

)
(t)

∥
∥ =

∥
∥(z, v)

∥
∥ = ‖zt‖ +

∥
∥v(t)

∥
∥ ≤ r0. (16)

Therefore, Fμ : Yr0 → Yr0 .
Step 2. We will prove that Fμ : Yr0 → Yr0 is continuous. Let {(yn, un)} ⊂ Yr0 and (yn, un) →

(y, u), (y, u) ∈ Yr0 . By (H2), we have f (s, yn
s , un(s)) → f (s, ys, u(s)) as n → ∞, s ∈ I and

∥
∥f

(
s, yn

s , un(s)
)

– f
(
s, ys, u(s)

)∥
∥ ≤ 2

m∑

i=1

λi(s)ψi(r0). (17)

It follows from the Lebesgue dominated convergence theorem, (8) and (9) that for each
t ∈ [0, T], there exists a constant l such that

∥
∥
(
Fμ

(
yn, un))(t) –

(
Fμ(y, u)

)
(t)

∥
∥

=
∥
∥zn

t – zt
∥
∥ +

∥
∥vn(t) – v(t)

∥
∥

≤
∥
∥
∥
∥

∫ t+θ

0
(t + θ – s)q–1Tq(t + θ – s)

[
B
(
vn(s) – v(s)

)
+ f

(
s, yn

s , un(s)
)

– f
(
s, ys, u(s)

)]
ds

∥
∥
∥
∥

+
∥
∥B∗T∗

q (T – t)R
(
μ,�T

0
)[

p
(
yn, un) – p(y, u)

]∥
∥

≤ l
∫ t+θ

0
(t + θ – s)q–1∥∥f

(
s, yn

s , un(s)
)

– f
(
s, ys, u(s)

)∥
∥ds → 0, n → ∞, (18)

which implies

∥
∥Fμ

(
yn, un) – Fμ(y, u)

∥
∥ → 0, n → ∞. (19)

This means that Fμ is continuous.
Step 3. Next, we will show that

V =
{(

Fμ(x, u)
)
(·) : (x, u) ∈ Yr0

}
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is equicontinuous on [0, T]. Indeed, for 0 ≤ t1 + θ < t2 + θ ≤ T and (x, u) ∈ Yr0 , (8), (9) and
(13) imply

∥
∥v(t2) – v(t1)

∥
∥ =

∥
∥
∥
∥B∗(T∗

q (T – t2) – T∗
q (T – t1)

)
R
(
μ,�T

0
)
(

xT – Sq(T)φ(0)

–
∫ T

0
(T – s)q–1Tq(T – s)f

(
s, xs, u(s)

)
ds

)∥
∥
∥
∥

≤ MB

μ

∥
∥
∥
∥
∥

(
T∗

q (T – t2) – T∗
q (T – t1)

)
(

‖xT‖ + M‖φ‖

+
MqT (a+1)(1–q1)

�(1 + q)(1 + a)1–q1

m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)

)∥
∥
∥
∥
∥

= I0 (20)

and

∥
∥zt2 (θ ) – zt1 (θ )

∥
∥

=
∥
∥Sq(t2 + θ )φ(0) – Sq(t1 + θ )φ(0)

∥
∥

+
∥
∥
∥
∥

∫ t2+θ

0
(t2 + θ – s)q–1Tq(t2 + θ – s)

(
Bv(s) + f

(
s, xs, u(s)

))
ds

–
∫ t1+θ

0
(t1 + θ – s)q–1Tq(t1 + θ – s)

(
Bv(s) + f

(
s, xs, u(s)

))
ds

∥
∥
∥
∥

≤ ∥
∥Sq(t2 + θ )φ(0) – Sq(t1 + θ )φ(0)

∥
∥

+
∥
∥
∥
∥

∫ t2+θ

t1+θ

(t2 + θ – s)q–1Tq(t2 + θ – s)f
(
s, xs, u(s)

)
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t1+θ

0

[
(t2 + θ – s)q–1 – (t1 + θ – s)q–1]Tq(t2 + θ – s)f

(
s, xs, u(s)

)
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t1+θ

0
(t1 + θ – s)q–1[Tq(t2 + θ – s) – Tq(t1 + θ – s)

]
f
(
s, xs, u(s)

)
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t2+θ

t1+θ

(t2 + θ – s)q–1Tq(t2 + θ – s)Bv(s) ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t1+θ

0

[
(t2 + θ – s)q–1 – (t1 + θ – s)q–1]Tq(t2 + θ – s)Bv(s) ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t1+θ

0
(t1 + θ – s)q–1[Tq(t2 + θ – s) – Tq(t1 + θ – s)

]
Bv(s) ds

∥
∥
∥
∥

= I1 + I2 + I3 + I4 + I5 + I6 + I7. (21)

We now need to check Ii → 0 as t2 – t1 → 0, i = 0, 1, 2, . . . , 7.
For I0 and I1, by Lemma 2.1(ii), I0, I1 → 0 as t2 – t1 → 0.
For I2 and I3, similar to (13), by Lemma 2.1(i), (H2) and Lemma 2.2, we have

I2 =
∥
∥
∥
∥

∫ t2+θ

t1+θ

(t2 + θ – s)q–1Tq(t2 + θ – s)f
(
s, xs, u(s)

)
ds

∥
∥
∥
∥
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≤ Mq
�(1 + q)

(∫ t2+θ

t1+θ

(
(t2 + θ – s)q–1) 1

1–q1 ds
)1–q1 m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)

=
Mq(t2 – t1)(1+a)(1–q1)

�(1 + q)(1 + a)1–q1

m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)

→ 0 as t2 – t1 → 0 (22)

and

I3 =
∥
∥
∥
∥

∫ t1+θ

0

[
(t2 + θ – s)q–1 – (t1 + θ – s)q–1]Tq(t2 + θ – s)f

(
s, xs, u(s)

)
ds

∥
∥
∥
∥

≤ Mq
�(1 + q)

∫ t1+θ

0

[
(t1 + θ – s)q–1 – (t2 + θ – s)q–1]

m∑

i=1

λi(s)ψi(r0) ds

≤ Mq
�(1 + q)

(∫ t1+θ

0

((
(t1 + θ – s)q–1 – (t2 + θ – s)

)q–1) 1
1–q1 ds

)1–q1

×
m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)

≤ Mq
�(1 + q)

(∫ t1+θ

0
(t1 + θ – s)a – (t2 + θ – s)a ds

)1–q1 m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)

=
Mq

�(1 + q)(1 + a)1–q1

(
(t1 + θ )a+1 – (t2 + θ )a+1 + (t2 – t1)a+1)1–q1

×
m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)

≤ Mq(t2 – t1)(1+a)(1–q1)

�(1 + q)(1 + a)1–q1

m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)

→ 0 as t2 – t1 → 0. (23)

For t1 + θ = 0, 0 < t2 + θ ≤ T , it can be easily seen that I4 = 0. For t1 + θ > 0 and ε > 0 small
enough, by Lemma 2.1(i), (H2) and Lemma 2.2, we obtain

I4 =
∥
∥
∥
∥

∫ t1+θ

0
(t1 + θ – s)q–1[Tq(t2 + θ – s) – Tq(t1 + θ – s)

]
f
(
s, xs, u(s)

)
ds

∥
∥
∥
∥

≤
∫ t1+θ–ε

0
(t1 + θ – s)q–1∥∥Tq(t2 + θ – s) – Tq(t1 + θ – s)

∥
∥
∥
∥f

(
s, xs, u(s)

)∥
∥ds

+
∫ t1+θ

t1+θ–ε

(t1 + θ – s)q–1∥∥
(
Tq(t2 + θ – s) – Tq(t1 + θ – s)

)
f
(
s, xs, u(s)

)∥
∥ds

≤ sup
s∈[0,t1+θ–ε]

∥
∥Tq(t2 + θ – s) – Tq(t1 + θ – s)

∥
∥

∫ t1+θ–ε

0
(t1 + θ – s)q–1

m∑

i=1

λi(s)ψi(r0) ds

+
2Mq

�(1 + q)

∫ t1+θ

t1+θ–ε

(t1 + θ – s)q–1
m∑

i=1

λi(s)ψi(r0) ds

≤ sup
s∈[0,t1+θ–ε]

∥
∥Tq(t2 + θ – s) – Tq(t1 + θ – s)

∥
∥

(∫ t1+θ–ε

0

(
(t1 + θ – s)q–1) 1

1–q1 ds
)1–q1
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×
m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0) +
2Mq

�(1 + q)

(∫ t1+θ

t1+θ–ε

(
(t1 + θ – s)q–1) 1

1–q1 ds
)1–q1

×
m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)

= sup
s∈[0,t1+θ–ε]

∥
∥Tq(t2 + θ – s) – Tq(t1 + θ – s)

∥
∥ ((t1 + θ )1+b – ε1+a)1–q1

(1 + a)1–q1

×
m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)

+
2Mq

�(1 + q)(a + 1)1–q1
ε(a+1)(1–q1)

m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0). (24)

Assumption (H1) and Lemma 2.1(ii), (iii) imply the continuity of Tq(t), t > 0 in the uniform
operator topology, then it is easy to obtain that I4 tends to zero as t2 – t1 → 0 and ε → 0.

On the other hand, by (14), we know that

‖v‖ =
∥
∥
∥
∥B∗T∗

q (T – t)R
(
μ,�T

0
)
(

xT – Sq(T)φ(0)

–
∫ T

0
(T – s)q–1Tq(T – s)f

(
s, xs, u(s)

)
ds

)∥
∥
∥
∥

≤ 1
μ

MBMq
�(1 + q)

(

‖xT‖ + M‖φ‖ +
MqT (a+1)(1–q1)

�(1 + q)(1 + a)1–q1

m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)

)

(25)

is bounded. Then, by using similar methods as we did to I2, I3 and I4, it follows

I5 =
∥
∥
∥
∥

∫ t2+θ

t1+θ

(t2 + θ – s)q–1Tq(t2 + θ – s)Bv(s) ds
∥
∥
∥
∥

≤ MqMB‖v‖
�(1 + q)

∫ t2+θ

t1+θ

(t2 + θ – s)q–1 ds

≤ MMB‖v‖
�(1 + q)

(t2 – t1)q

→ 0 as t2 – t1 → 0, (26)

I6 =
∥
∥
∥
∥

∫ t1+θ

0

[
(t2 + θ – s)q–1 – (t1 + θ – s)q–1]Tq(t2 + θ – s)Bv(s) ds

∥
∥
∥
∥

≤ MqMB‖v‖
�(1 + q)

∫ t1+θ

0

[(
(t1 + θ – s)q–1 – (t2 + θ – s)

)q–1]ds

=
MMB‖v‖
�(1 + q)

[
(t1 + θ )q – (t2 + θ )q + (t2 – t1)q]

≤ MMB‖v‖
�(1 + q)

(t2 – t1)q

→ 0 as t2 – t1 → 0 (27)
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and

I7 =
∥
∥
∥
∥

∫ t1+θ

0
(t1 + θ – s)q–1[Tq(t2 + θ – s) – Tq(t1 + θ – s)

]
Bv(s) ds

∥
∥
∥
∥

≤
∫ t1+θ–ε

0
(t1 + θ – s)q–1∥∥Tq(t2 + θ – s) – Tq(t1 + θ – s)

∥
∥MB‖v‖ds

+
∫ t1+θ

t1+θ–ε

(t1 + θ – s)q–1∥∥
(
Tq(t2 + θ – s) – Tq(t1 + θ – s)

)
Bv(s)

∥
∥ds

≤ sup
s∈[0,t1+θ–ε]

∥
∥Tq(t2 + θ – s) – Tq(t1 + θ – s)

∥
∥MB‖v‖ (t1 + θ )q – εq

q

+
2MMB‖v‖
�(1 + q)

εq

→ 0 as t2 – t1 → 0, ε → 0. (28)

In consequence, ‖Fμ(x, u)(t2) – Fμ(x, u)(t1)‖ = ‖zt2 – zt1‖ + ‖v(t2) – v(t1)‖ tends to zero
independently of (x, u) ∈ Yr0 as t2 – t1 → 0. This means that V = {(Fμ(x, u))(·) : (x, u) ∈ Yr0}
is equicontinuous.

Since the other cases t1 +θ < t2 +θ < 0, t1 +θ < 0 < t2 +θ are very simple, we only consider
the case 0 ≤ t1 + θ < t2 + θ . In conclusion, Fμ[Yr0 ] is equicontinuous and also bounded.

Step 4. It remains to prove that for any t ∈ [0, T], V (t) = {(Fμ(x, u))(t) : (x, u) ∈ Yr0} is
relatively compact.

Obviously, for t = 0, V (0) is compact. Let 0 < t ≤ T be fixed and η be a given real number
satisfying 0 < η < t. For η ∈ (0, t) and ∀δ > 0, define an operator Fμ

η,δ as

(
Fμ

η,δ(x, u)
)
(t)

=
(∫ ∞

δ

φq(θ )T
(
tqθ

)
φ(0) dθ + q

∫ t–η

0

∫ ∞

δ

θ (t – s)q–1φq(θ )T
(
(t – s)qθ

)

× (
Bv(s) + f

(
s, xs, u(s)

))
ds, v(t)

)

=
(

T
(
ηqδ

)
[∫ ∞

δ

φq(θ )T
(
tqθ – ηqδ

)
φ(0) dθ + q

∫ t–η

0

∫ ∞

δ

θ (t – s)q–1φq(θ )

× T
(
(t – s)qθ – ηqδ

)(
Bv(s) + f

(
s, xs, u(s)

))
ds

]

, v(t)
)

=
(
T

(
ηqδ

)
z(t,η), v(t)

)
, (29)

where (x, u) ∈ Yr0 . Since T(ηqδ), ηqδ > 0 is compact, z(t,η) and v(t) are bounded on Yr0 ,
the set

Vη,δ(t) =
{(

Fμ
η,δ(x, u)

)
(t) : (x, u) ∈ Yr0

}

is relatively compact in C × U for η ∈ (0, t) and ∀δ > 0. Furthermore, for (x, u) ∈ Yr0 ,

∥
∥
(
Fμ(x, u)

)
(t) –

(
Fμ

η,δ(x, u)
)
(t)

∥
∥

=
∥
∥
∥
∥

∫ δ

0
φq(θ )T

(
tqθ

)
dθφ(0) + q

∫ t

0

∫ δ

0
θ (t – s)q–1φq(θ )T

(
(t – s)qθ

)
Bv(s) ds
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+ q
∫ t

0

∫ δ

0
θ (t – s)q–1φq(θ )T

(
(t – s)qθ

)
f
(
s, xs, u(s)

)
ds

+
∫ t

t–η

∫ ∞

δ

θ (t – s)q–1φq(θ )T
(
(t – s)qθ

)
Bv(s) ds

+
∫ t

t–η

∫ ∞

δ

θ (t – s)q–1φq(θ )T
(
(t – s)qθ

)
f
(
s, xs, u(s)

)
ds

∥
∥
∥
∥

≤ M1‖φ‖
∫ δ

0
φq(θ ) dθ + qM1MB‖v‖

∫ t

0
(t – s)q–1 ds

∫ δ

0
θφq(θ ) dθ

+ qM1

(∫ t

0

(
(t – s)q–1) 1

1–q1 ds
)1–q1

·
m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)
∫ δ

0
θφq(θ ) dθ

+ qM1MB‖v‖
∫ t

t–η

(t – s)q–1 ds
∫ ∞

0
θφq(θ ) dθ

+ qM1

(∫ t

t–η

(
(t – s)q–1) 1

1–q1 ds
)1–q1

·
m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)
∫ ∞

0
θφq(θ ) dθ

≤
[

M1‖φ‖ + M1MB‖v‖Tq

+ qM1
T (a+1)(1–q1)

(a + 1)1–q1
·

m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)

]∫ δ

0
θφq(θ ) dθ

+
M1MB‖v‖ηq

�(1 + q)
+

qM1

�(1 + q)(a + 1)1–q1
η(a+1)(1–q1)

m∑

i=1

‖λi‖
L

1
q1 [0,T]

ψi(r0)

→ 0 as δ,η → 0. (30)

Here the last inequality is based on Remark 2.1. This means that there are relatively com-
pact sets arbitrarily close to the set V (t), t ∈ (0, T]. Thus, for each t ∈ (0, T], V (t) is
relatively compact in C × U . By the Arzelá–Ascoli theorem, Fμ[Yr0 ] is relatively com-
pact in C(I, C) × C(I, U). We obtain that Fμ is a completely continuous operator. Hence,
Lemma 2.3 shows that Fμ has a fixed point. The proof is complete. �

Theorem 3.2 Assume that the hypotheses of Theorem 3.1 and (H4) are satisfied and that
the linear system (6) is approximately controllable on I . Then system (1) is approximately
controllable on I .

Proof Let (x̄μ(·), ūμ) be a fixed point in Yr0 , i.e.,

Fμ
(
x̄μ(·), ūμ

)
=

(
x̄μ(·), ūμ

)
,

where

x̄μ(t) = Sq(t)φ(0) +
∫ t

0
(t – s)q–1Tq(t – s)

(
Būμ(s) + f

(
s, x̄μ

s , ūμ(s)
))

ds, t > 0,

x̄μ
0 (θ ) = φ̄(θ ), –h ≤ θ ≤ 0

(31)
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and the control function

ūμ(t) = B∗T∗
q (T – t)R

(
μ,�T

0
)
p
(
x̄μ, ūμ

)
, (32)

p(x̄μ, ūμ) = xT – Sq(T)φ(0) –
∫ T

0 (T – s)q–1Tq(T – s)f (s, x̄μ
s , ūμ(s)) ds. By Definition 2.3, any

fixed point of Fμ is a mild solution of (1) under the control ūμ(t). Then, by (31), (32) and
the fact I – �T

0 R(μ,�T
0 ) = μR(μ,�T

0 ), we have

x̄μ(T) = xT – p
(
x̄μ, ūμ

)
+

∫ T

0
(T – s)q–1Tq(T – s)Būμ(s) ds

= xT – p
(
x̄μ, ūμ

)
+

∫ T

0
(T – s)q–1Tq(T – s)BB∗T∗

q (T – s)R
(
μ,�T

0
)
p
(
x̄μ, ūμ

)
ds

= xT – p
(
x̄μ, ūμ

)
+ �T

0 R
(
μ,�T

0
)
p
(
x̄μ, ūμ

)

= xT +
(
�T

0 R
(
μ,�T

0
)

– I
)
p
(
x̄μ, ūμ

)

= xT – μR
(
μ,�T

0
)
p
(
x̄μ, ūμ

)
. (33)

Furthermore, by condition (H4), it follows

(∫ T

0

∥
∥f

(
s, x̄μ

s , ūμ(s)
)∥
∥2 ds

) 1
2 ≤ NT

1
2 . (34)

Consequently, {f (s, x̄μ
s , ūμ(s))} is bounded in L2(I, X). Then there exists a subsequence, still

denoted by {f (s, x̄μ
s , ūμ(s))}, which weakly converges to f (s) in L2(I, X). Define

w = xT – Sq(T)φ(0) +
∫ T

0
(T – s)q–1Tq(T – s)f (s) ds. (35)

It follows from (35) that

∥
∥p

(
x̄μ, ūμ

)
– w

∥
∥

=
∥
∥
∥
∥

∫ T

0
(T – s)q–1Tq(T – s)

(
f
(
s, x̄μ

s , ūμ(s)
)

– f (s)
)

ds
∥
∥
∥
∥

= sup
0≤t≤T

∥
∥
∥
∥

∫ t

0
(t – s)q–1Tq(t – s)

(
f
(
s, x̄μ

s , ūμ(s)
)

– f (s)
)

ds
∥
∥
∥
∥. (36)

As Step 3, Step 4 in the proof of Theorem 3.1, using the Arzelá–Ascoli theorem one can
obtain that an operator g(·) → ∫ ·

0(· – s)q–1Tq(· – s)g(s) ds is compact. Thus, the right-hand
side of (36) tends to zero as μ → 0+. Then (H0), (33) and (36) imply

∥
∥x̄μ(T) – xT

∥
∥ =

∥
∥μR

(
μ,�T

0
)
p
(
x̄μ, ūμ

)∥
∥

=
∥
∥μR

(
μ,�T

0
)
(w) + μR

(
μ,�T

0
)(

p
(
x̄μ, ūμ

)
– w

)∥
∥

≤ ∥
∥μR

(
μ,�T

0
)
(w)

∥
∥ +

∥
∥μR

(
μ,�T

0
)∥
∥
∥
∥p

(
x̄μ, ūμ

)
– w

∥
∥

≤ ∥
∥μR

(
μ,�T

0
)
(w)

∥
∥ +

∥
∥p

(
x̄μ, ūμ

)
– w

∥
∥ → 0 (37)
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as μ → 0+. This proves that system (1) is approximately controllable on I . The proof is
complete. �

4 Complete controllability
In this section, we formulate sufficient conditions for complete controllability of the semi-
linear fractional system (1) under the assumption that the linear system (6) is completely
controllable. In this case, the condition of compactness of T(t) is not made. To prove our
results, let us assume that

(H5) The function f : I × C × U → X is continuous, and there exists a constant L > 0
such that

∥
∥f (t,ϕ, u)

∥
∥ ≤ L

(
1 + ‖ϕ‖C + ‖u‖), (t,ϕ, u) ∈ I × C × U .

(H6) There exists a constant L′ such that

∥
∥f (t,ϕ1, u1) – f (t,ϕ2, u2)

∥
∥

≤ L′(‖ϕ1 – ϕ2‖C + ‖u1 – u2‖
)

for (ϕ1, u1), (ϕ2, u2) ∈ C × U .

(H7) The linear system (6) is completely controllable.

Lemma 4.1 ([25, 30]) The linear fractional control system (6) is completely controllable on
I if and only if there exists γ > 0 such that

〈
�T

0 x, x
〉 ≥ γ ‖x‖2 in the Hilbert space X, i.e.,

∥
∥
(
�T

0
)–1∥∥ ≤ 1

γ
.

Define the operator F0 on C(I, C) × C(I, U) as

F0(x, u) = (z, v), (38)

where

v(t) = B∗T∗
q (T – t)

(
�T

0
)–1p(x, u), (39)

z(t) = Sq(t)φ(0) +
∫ t

0
(t – s)q–1Tq(t – s)

(
Bv(s) + f

(
s, xs, u(s)

))
ds,

z0(θ ) = φ(θ ), –h ≤ θ ≤ 0,
(40)

p(x, u) = xT – Sq(T)φ(0) –
∫ T

0
(T – s)q–1Tq(T – s)f

(
s, xs, u(s)

)
ds.

Theorem 4.1 Assume that the hypotheses (H5), (H6) and (H7) are satisfied. If

(
MBM2qTq

γ�2(1 + q)
+

M2
BM3qT2q

γ�3(1 + q)
+

MTq

�(1 + q)

)

L′ < 1, (41)

then the operator F0 has a fixed point in C(I, C) × C(I, U).
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Proof First we show that F0 maps C(I, C) × C(I, U) into itself. By (H5), Lemma 2.1(i) and
Lemma 4.1, there exist two constants l1, l2 > 0 such that

∥
∥v(t)

∥
∥ ≤ MBMq

γ�(1 + q)

(

‖xT‖ + M‖φ‖ +
Mq

�(1 + q)

∫ T

0
(T – s)q–1∥∥f

(
s, xs, u(s)

)∥
∥ds

)

≤ MBMq
γ�(1 + q)

(

‖xT‖ + M‖φ‖ +
MTq

�(1 + q)
L
(
1 + ‖x‖C + ‖u‖)

)

≤ l1
(
1 + ‖x‖C + ‖u‖) (42)

and

∥
∥z(t)

∥
∥ ≤ M‖φ‖ +

Mq
�(1 + q)

∫ t

0
(t – s)q–1∥∥Bv(s)

∥
∥ds

+
Mq

�(1 + q)

∫ t

0
(t – s)q–1∥∥f

(
s, xs, u(s)

)∥
∥ds

≤ M‖φ‖ +
MMBTq

�(1 + q)
C1

(
1 + ‖x‖C + ‖u‖) +

MTq

�(1 + q)
L
(
1 + ‖x‖C + ‖u‖)

≤ l2
(
1 + ‖x‖C + ‖u‖), (43)

respectively. It follows from (42) and (43) that there exists a constant C3 such that

∥
∥F0(x, u)

∥
∥ = ‖v‖ + ‖z‖ ≤ l3

(
1 + ‖x‖C + ‖u‖). (44)

This means F0 maps C(I, C) × C(I, U) into itself.
We next prove that F0 is a contraction mapping. For any (x, u), (y, w) ∈ C(I, C) × C(I, U),

it holds

∥
∥F0(x, u) – F0(y, w)

∥
∥

≤ ‖v1 – v2‖ + ‖z1 – z2‖

≤ ‖v1 – v2‖ +
∥
∥
∥
∥

∫ t

0
(t – s)q–1Tq(t – s)B

(
v1(s) – v2(s)

)
ds

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t

0
(t – s)q–1Tq(t – s)

(
f
(
s, xs, u(s)

)
– f

(
s, ys, w(s)

))
ds

∥
∥
∥
∥

= I1 + I2 + I3. (45)

It follows from Lemma 2.1(i), Lemma 4.1 and (H6) that

I1 = ‖v1 – v2‖

=
∥
∥
∥
∥B∗T∗

q (T – t)
(
�T

0
)–1

∫ T

0
(T – s)q–1Tq(T – s)

(
f
(
s, xs, u(s)

)
– f

(
s, ys, w(s)

))
ds

∥
∥
∥
∥

≤ MB

γ

M2q2

�2(1 + q)

∫ T

0
(T – s)q–1∥∥f

(
s, xs, u(s)

)
– f

(
s, ys, w(s)

)∥
∥ds

≤ MBM2qTq

γ�2(1 + q)
L′(‖x – y‖ + ‖u – w‖), (46)
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I2 =
∥
∥
∥
∥

∫ t

0
(t – s)q–1Tq(t – s)B

(
v1(s) – v2(s)

)
ds

∥
∥
∥
∥

≤ MTqMB

�(1 + q)
‖v1 – v2‖

≤ M2
BM3qT2q

γ�3(1 + q)
L′(‖x – y‖ + ‖u – w‖), (47)

and

I3 =
∥
∥
∥
∥

∫ t

0
(t – s)q–1Tq(t – s)

(
f
(
s, xs, u(s)

)
– f

(
s, ys, w(s)

))
ds

∥
∥
∥
∥

≤ Mq
�(1 + q)

∫ t

0
(t – s)q–1∥∥f

(
s, xs, u(s)

)
– f

(
s, ys, w(s)

)∥
∥ds

≤ MTq

�(1 + q)
L′(‖x – y‖ + ‖u – w‖). (48)

Then (45)–(48) imply

∥
∥F0(x, u) – F0(y, w)

∥
∥ ≤

(
MBM2qTq

γ�2(1 + q)
+

M2
BM3qT2q

γ�3(1 + q)
+

MTq

�(1 + q)

)

× L′(‖x – y‖ + ‖u – w‖). (49)

Combining (41) with (49) yields that F0 is a contraction mapping. Consequently, F0 has a
fixed point in C(I, C)×C(I, U) by the Banach fixed point theorem, which is a mild solution
of system (1). This completes the proof. �

Remark 4.1 It can be easily seen that inequality (41) is satisfied if the constant L′ is small
enough.

Theorem 4.2 Assume that the assumptions (H5), (H6) and (H7) are satisfied. Then system
(1) is completely controllable on I .

Proof If (x̄0, ū0) is a fixed point of the operator F0, then (33) holds with μ = 0, i.e., x̄0(T) =
xT for any xT ∈ X. Hence, system (1) is completely controllable on I . We omit the details
here. �

5 An example
As an application of our results, we consider the fractional partial differential equation of
the form

⎧
⎪⎪⎨

⎪⎪⎩

∂
q
t x(t, z) = ∂2

z x(t, z) + b(z)u(t) + f (t, x(t – h, z), u(t)), t ∈ [0, 1], z ∈ [0,π ],

x(t, 0) = x(t,π ) = 0, t > 0,

x(t, z) = φ(t, z), –h ≤ t ≤ 0,

(50)

here ∂
q
t is the Caputo fractional derivative of order 0 < q < 1 with respect to t, φ is contin-

uous, u ∈ U = L2[0, 1] is continuous, X = L2[0,π ], b ∈ X and f is a given continuous and
uniformly bounded function.
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Put x(t) = x(t, ·), i.e., x(t)(z) = x(t, z). Define the function f : [0, 1] × X × U → X by
f (t, xt , u)(z) = f (t, x(t – h, z), u(t)). Let B : U → X be a bounded linear operator defined
by

(Bu)(z) = b(z)u, z ∈ [0,π ], u ∈ U , b(z) ∈ X

and define an operator A : X → X by Av = v′′ with the domain

D(A) =
{

v ∈ X | v(·) ∈ L2[0,π ], v, v′ are absolutly continuous,

v′′ ∈ X and v(0) = v(π ) = 0
}

.

It follows

Av = –
∞∑

n=1

n2(v, en)en, v ∈ D(A),

where en(z) =
√

2
π

sin nz, 0 ≤ z ≤ π , n = 1, 2, . . . . It is well known that the operator A gen-
erates a compact semigroup T(t), t > 0, which is given by

T(t)v =
∞∑

n=1

e–n2t(v, en)en, v ∈ X.

For more details, please refer to [31]. Therefore, system (50) can be written to the abstract
form (1) and assumption (H1) is satisfied. Then under the condition imposed on f and
the linear system corresponding to (50) is approximately controllable on [0, 1], see [17],
system (50) is approximately controllable on [0, 1] by Theorem 3.2.
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