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1 Introduction
The notion of the Ulam stability was originated from a question on group homomor-
phisms posed by Ulam [24] in 1940. The essential problem of this type of stability is sum-
marized as follows: “Under what conditions can a solution of a perturbed equation be close
to a solution of the original equation?” In the following year, Hyers [9] gave a first affirma-
tive partial answer to the Cauchy equation in a Banach space. Afterward, this work was
generalized by Rassias [19] for linear mappings by considering unbounded Cauchy differ-
ences. It is worth mentioning that Rassias’ work has a great impact on the development
of the Ulam stability of functional equations. Since then, almost all studies related to the
Ulam stability have focused on different types of functional equations or abstract spaces.
For more detailed results, we refer to the monographs [1, 7, 10, 12, 21] and references
therein.

Let (X,‖ · ‖) be a normed space, n a positive integer, and F : Xn → X a mapping. The
nth-order difference equation

F(yk , yk+1, . . . , yk+n) = 0, k ∈ N, (1)

is said to have Hyers–Ulam stability or to be stable in the Hyers–Ulam sense if whenever
a given ε > 0 and a sequence {xk} satisfy the inequality

∥
∥F(xk , xk+1, . . . , xk+n)

∥
∥ ≤ ε, k ∈N,

there exists a solution {yk} of (1) such that

‖xk – yk‖ ≤ K(ε), k ∈N,
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where K(ε) depends only on ε, and limε→0 K(ε) = 0. More generally, we say that the dif-
ference equation (1) is Hyers–Ulam–Rassias stable or generalized Hyers–Ulam stable if ε

and K(ε) are replaced by two control sequences ϕk and �k , respectively.
In 2005, Popa [17] initiated the study of the Ulam stability of difference equations.

Specifically, the author proved the Hyers–Ulam–Rassias stability of the linear difference
equation of first order xk+1 = akxk + bk in a Banach space. At the same time, Popa [18]
also established the Hyers–Ulam stability of higher-order linear difference equations with
constant coefficients. These results showed that the Hyers–Ulam stability of a linear dif-
ference equation with constant coefficients depends strongly on the roots of the char-
acteristic equation. Several examples showed that the difference equation is not Hyers–
Ulam stable if the characteristic equation admits a root with modulus equal to 1. For this
reason, Brzdȩk et al. [2] considered the nonstability of linear difference equations with
constant coefficients. In 2007, Brzdȩk et al. [3] investigated the Ulam stability of the non-
linear difference equation xk+1 = ak(xk) + bk in an Abelian group with invariant metric d.
Afterward, Brzdȩk et al. [4] presented the (εk)k≥0-stability of difference equations that is
weaker than the Hyers–Ulam stability, and they considered the (εk)k≥0-stability of first-
order linear difference equations. Based on the previous related works, they also gave a
systematic answer to the Hyers–Ulam stability of higher-order linear difference equations
with constants coefficients. In 2015, Xu and Brzdȩk [26] studied the Hyers–Ulam stability
of systems of first-order linear difference equations with constant coefficients in a Banach
space. Furthermore, Brzdȩk and Wójcik [6] established the Ulam stability of two kinds
of difference equations in a metric space. As far as we know, this is the most general re-
sult associated with the Ulam stability of difference equations. In addition, Jung [13] also
considered the Hyers–Ulam stability of first-order linear homogeneous matrix difference
equations. Later, Jung and Nam [14] investigated the Hyers-stability of the Pielou logistic
difference equation from a more general perspective. Recently, Onitsuka [16] established
the Hyers-stability of first-order nonhomogeneous linear difference equations with con-
stant stepsize, and the author further considered the best Hyers–Ulam stability constant
of the corresponding difference equations.

As is well known, many different methods for solving differential equations have been
used to study the Ulam stability of the corresponding equations, such as the integrating
factor [22, 25], the power series method [11], the Laplace transform [20], the method of
variation of constants [23], and so on. The Laplace transform method has a significant
advantage in solving linear differential equations with constant coefficients, because it
can turn a differential equation into an algebraic one. As a discrete case, the z-transform
has a similar advantage in solving linear difference equations with constant coefficients.
Inspired by the reference [20], the main purpose of this paper is to investigate the Ulam
stability of linear difference equations with constant coefficients by using the z-transform
method.

2 The z-transform and inverse z-transform
In this section, we recall some basic notions and results related to the z-transform and
inverse z-transform. We denote by N, R, and C the sets of nonnegative integers, real num-
bers, and complex numbers, respectively. Moreover, F denotes either the real field R or
the complex field C.
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Definition 2.1 (Kelley and Peterson [15]) Let {xk} be a sequence in F. The z-transform of
{xk} is the function X(z) of a complex variable z ∈C defined by

X(z) = Z(xk) =
∞

∑

k=0

xk

zk ,

and we say that the z-transform of {xk} exists if there is a real number r > 0 such that the
series

∑∞
k=0

xk
zk converges for |z| > r.

A sequence {xk} is said to be exponentially bounded if there exist M > 0 and c > 1 such
that

|xk| < Mck , k ∈N.

The following result is a sufficient condition for the existence of the z-transform of a
sequence.

Theorem 2.1 (Kelley and Peterson [15]) If the sequence {xk} is exponentially bounded,
then the z-transform X(z) of {xk} exists.

According to Definition 2.1, it is easy to show that the z-transform is linear, that is, if the
two sequences {xk} and {yk} are exponentially bounded, then

Z(αxk + βyk) = αZ(xk) + βZ(yk), α,β ∈ F,

for all z in the common domain of X(z) and Y (z).

Remark 1 Suppose that the sequence {xk} is exponentially bounded. For a positive integer
n, it is easy to verify that

Z(xk+n) = znZ(xk) –
n–1
∑

m=0

xmzn–m.

Definition 2.2 (Gradshteyn and Ryzhik [8]) Suppose that X(z) is the z-transform of
the sequence {xk} with the domain of convergence D = {z ∈ C : |z| > r}. The inverse z-
transform {xk} of X(z) is given by

xk = Z–1(X(z)
)

=
1

2π i

∮

C
X(z)zk–1 dz,

where C is a counterclockwise simple closed contour encircling all poles of X(z) and lying
entirely within the domain of convergence D.

Now we define the unit step sequence {uk(n)}, n ≥ 1, and the unit impulse sequence
{δk(m)}, m ≥ 0, respectively, by

uk(n) =

⎧

⎨

⎩

0, 0 ≤ k ≤ n – 1,

1, n ≤ k,
δk(m) =

⎧

⎨

⎩

1, k = m,

0, k �= m.
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It follows immediately from Definition 2.1 that

Z
(

δk(m)
)

=
1

zm , |z| > 0.

Notice that the convolution of two sequences {xk} and {yk} is defined by

xk ∗ yk =
k

∑

m=0

xk–mym.

Theorem 2.2 (Kelley and Peterson [15]) Suppose that X(z) and Y (z) exist for |z| > r1 and
|z| > r2, respectively. Then

Z(xk ∗ yk) = X(z)Y (z)

for |z| > max{r1, r2}.

Theorem 2.3 (Kelley and Peterson [15]) Let {yk} be a sequence such that the z-transform
Y (z) = Z(yk) exists for |z| > r. Then

Z
(

k(n)yk
)

= (–1)nzn dnY
dzn (z), n ≥ 1,

where k(n) = k(k + 1)(k + 2) · · · (k + n – 1).

Lemma 2.4 Let a ∈C. Then

Z
(

k(n)

n!
ak

)

=
azn

(z – a)n+1

for |z| > |a|.

Proof Since Z(ak) = z
z–a for |z| > |a|, from Theorem 2.3 we can infer that

Z
(

k(n)

n!
ak

)

= (–1)n zn

n!
dn

dzn

(
z

z – a

)

= (–1)n zn

n!
(–1)nn!a
(z – a)n+1

=
azn

(z – a)n+1 . �

3 The Ulam stability of linear difference equations with constant coefficients
Theorem 3.1 (Kelley and Peterson [15]) Suppose that the sequence {fk} is exponentially
bounded. Then each solution of the nth-order linear difference equation

yk+n + p1yk+n–1 + · · · + pnyk = fk

is exponentially bounded, and hence its z-transform exists.
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First of all, we consider the Ulam stability of first-order linear difference equations with
constant coefficients.

Theorem 3.2 Let {fk} and {ϕk} be two exponentially bounded sequences, and let {ϕk} be a
positive sequence. Assume that p ∈ F \ {0}. If a sequence {xk} satisfies the inequality

|xk+1 – pxk – fk| ≤ ϕk (2)

for all k ∈N, then there exists a solution {yk} of the first-order linear difference equation

yk+1 = pyk + fk (3)

such that

|xk – yk| ≤
k

∑

m=1

ϕk–m|p|m–1 (4)

for all k ∈N.

Proof Set vk = xk+1 – pxk – fk , k ∈ N. Obviously, vk is exponentially bounded. Taking into
account Theorem 2.1, Theorem 3.1, and Remark 1 and applying the z-transform to vk , we
have

V (z) = zX(z) – zx0 – pX(z) – F(z),

where V (z) and F(z) denote the z-transforms of the sequences {vk} and {fk}, respectively.
Then, we obtain

X(z) =
z

z – p
x0 +

V (z) + F(z)
z – p

. (5)

Set

yk = pkx0 + fk ∗ (

pk–1uk(1)
)

.

It is easily seen that y0 = x0. By Theorem 2.2, using the identity pk–1uk(1) = pk ∗ δk(1), we
get

Y (z) =
z

z – p
x0 +

F(z)
z – p

. (6)

Then we obtain

Z(yk+1 – pyk) = zY (z) – zy0 – pY (z) = (z – p)Y (z) – zx0 = F(z) = Z(fk).

Notice that the inverse z-transform gives yk+1 = pyk + fk . This shows that yk is a solution
of the difference equation (3).
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From (5) and (6) it follows that

Z(xk) – Z(yk) =
Z(vk)
z – p

.

Again using the inverse z-transform, we obtain

xk – yk = vk ∗ (

pk–1uk(1)
)

.

From (2) we can infer that

|xk – yk| =
∣
∣vk ∗ (

pk–1uk(1)
)∣
∣

=

∣
∣
∣
∣
∣

k
∑

m=0

vk–mpm–1um(1)

∣
∣
∣
∣
∣

≤
k

∑

m=0

∣
∣vk–mpm–1um(1)

∣
∣

≤
k

∑

m=0

ϕk–m
∣
∣pm–1um(1)

∣
∣

=
k

∑

m=1

ϕk–m|p|m–1,

which completes the proof. �

As a direct consequence of Theorem 3.2, for |p| < 1, we obtain the Hyers–Ulam stability
of the linear difference equation (3).

Corollary 3.3 Let {fk} be given as in Theorem 3.2, and let 0 < |p| < 1. For a given ε > 0, if a
sequence {xk} satisfies the inequality

|xk+1 – pxk – fk| ≤ ε

for all k ∈ N, then there exists a solution {yk} of the first-order linear difference equation (3)
such that

|xk – yk| ≤ ε

1 – |p|

for all k ∈N.

Corollary 3.4 Let {fk} be given as in Theorem 3.2, and let |p| = 1. Assume that λ > 1. For a
given ε > 0, if a sequence {xk} satisfies the inequality

|xk+1 – pxk – fk| ≤ ε

λk
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for all k ∈ N, then there exists a solution yk of the first-order linear difference equation (3)
such that

|xk – yk| ≤ λε

λ – 1

for all k ∈N.

Lemma 3.5 Let

P(z) = α0 + α1z + α2z2 + · · · + αnzn

and

Q(z) = β0 + β1z + β2z2 + · · · + βmzm,

where m, n ∈N with m < n, and αj and βj are scalars. Then there exists a sequence {gk} such
that

Z(gk) = G(z) =
Q(z)
P(z)

for |z| > rp, where rp = max{|z1|, |z2|, . . . , |zl|}, and zi, i = 1, 2, . . . , l, are mutually different
roots of the polynomial equation P(z) = 0.

Proof Using the polynomial decomposition theorem, the polynomial P(z) can be decom-
posed as

P(z) = αn(z – z1)n1 (z – z2)n2 · · · (z – zl)nl ,

for some complex numbers zi, ni ∈N, i = 1, 2, . . . , l, such that n1 + n2 + · · · + nl = n.
Furthermore, applying the partial fraction decomposition, we obtain

Q(z)
P(z)

=
l

∑

i=1

ni∑

j=1

λij

(z – zi)j ,

where λij is a scalar for all i = 1, 2, . . . , l, j = 1, 2, . . . , ni.
Now we set

hij
k =

⎧

⎪⎪⎨

⎪⎪⎩

zk–1
i uk(j), zi �= 0, j = 1,

(k–j+1)(j–1)

(j–1)! zk–j
i uk(j – 1), zi �= 0, j = 2, 3, . . . , ni,

δk(j), zi = 0,

where i = 1, 2, . . . , l and j = 1, 2, . . . , ni.
Define

gk =
l

∑

i=1

ni∑

j=1

λijh
ij
k .
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From Lemma 2.4 and the linearity of the z-transform it follows that

G(z) = Z(gk) = Z

( l
∑

i=1

ni∑

j=1

λijh
ij
k

)

=
l

∑

i=1

ni∑

j=1

λijZ
(

hij
k
)

=
l

∑

i=1

ni∑

j=1

λij

(z – zi)j =
Q(z)
P(z)

(7)

for |z| > rp, where rp = max{|z1|, |z2|, . . . , |zl|}. �

Lemma 3.6 Let {fk} be an exponentially bounded sequence, and let P(z) be a complex poly-
nomial of degree n ≥ 1. Then there exists a sequence {hk} such that

Z(hk) =
Z(fk)
P(z)

(8)

for |z| > max{rf , rp}, where rp = max{|z∗| : P(z∗) = 0}, and rf is a nonnegative real number
such that the z-transform of {fk} exists for |z| > rf .

Proof Set Q(z) = 1. Note that P(z) is a complex polynomial of degree n ≥ 1. By Lemma 3.5
there exists a sequence {gk} such that

Z(gk) =
1

P(z)

for |z| > rp. Define hk = gk ∗ fk . For any |z| > max{rf , rp}, by Theorem 2.2 we have

Z(hk) = Z(gk ∗ fk) = Z(gk)Z(fk) =
Z(fk)
P(z)

. �

Now we discuss the Ulam stability of linear difference equations of nth order (n > 1).

Theorem 3.7 Let {fk} and {ϕk} be two exponentially bounded sequences, and let {ϕk} be a
positive sequence. Assume that p0, p1, . . . , pn–1 are scalars, n ∈ N \ {0, 1}. If a sequence {xk}
satisfies the inequality

∣
∣
∣
∣
∣
xk+n +

n–1
∑

m=0

pmxk+m – fk

∣
∣
∣
∣
∣
≤ ϕk (9)

for all k ∈N, then there exists a solution {yk} of the nth-order linear difference equation

yk+n +
n–1
∑

m=0

pmyk+m = fk (10)

such that

|xk – yk| ≤
k

∑

m=0

ϕk–m|p̃m| (11)
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for all k ∈ N, where p̃k = Z–1( 1
Pn,0(z) ), and Pn,0(z) is the characteristic polynomial of the cor-

responding homogeneous equation of (10).

Proof By Remark 1, for any n ∈ N \ {0, 1}, we have

Z(yk+n) = znZ(yk) –
n–1
∑

m=0

ymzn–m.

For notational convenience, we let pn = 1. Then, we note that a sequence {̃yk} is a solution
of (10) if and only if

Z(fk) =
n

∑

m=0

pmzmZ(̃yk) –
n

∑

m=1

pm

m–1
∑

j=0

ỹjzm–j

=
n

∑

m=0

pmzmZ(̃yk) –
n

∑

m=1

pm

m
∑

j=1

ỹj–1zm–j+1

=
n

∑

m=0

pmzmZ(̃yk) –
n

∑

j=1

n
∑

m=j

pm̃yj–1zm–j+1

= Pn,0(z)Z(̃yk) –
n

∑

j=1

zPn,j(z)̃yj–1, (12)

where the polynomial Pn,j(z) is given by

Pn,j(z) =
n

∑

m=j

pmzm–j = pj + pj+1z + · · · + pnzn–j, j = 0, 1, 2, . . . , n.

Set

hk = xk+n –
n–1
∑

m=0

pmxk+m – fk , k ∈N. (13)

Similarly, applying the z-transform to both sides of (13), we obtain

Z(hk) = Pn,0(z)Z(xk) –
n

∑

j=1

zPn,j(z)xj–1 – Z(fk).

Then we have

Z(xk) –
1

Pn,0(z)

( n
∑

j=1

zPn,j(z)xj–1 + Z(fk)

)

=
Z(hk)
Pn,0(z)

. (14)

For convenience, we assume that the z-transform of {fk} exists for |z| > rf . Let z1, z2, . . . , zn

be the roots of the polynomial Pn,0(z), and let rp = max{|zi| : i = 1, 2, . . . n}.
For |z| > max{rf , rp}, we let

G(z) =
1

Pn,0(z)

( n
∑

j=1

zPn,j(z)xj–1 + Z(fk)

)

. (15)
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By Lemma 3.6 there exists a sequence {̃fk} such that

Z(̃fk) =
Z(fk)

Pn,0(z)
(16)

for |z| > max{rf , rp}. Moreover, we also notice that

zPn,j(z)
Pn,0(z)

=
pjz + pj+1z2 + · · · + pnzn–j+1

Pn,0(z)

=
pjzj + pj+1zj+1 + · · · + pnzn

zj–1Pn,0(z)

=
Pn,0(z) – (p0 + p1z + · · · + pj–1zj–1)

zj–1Pn,0(z)

=
1

zj–1 –
p0 + p1z + · · · + pj–1zj–1

zj–1Pn,0(z)
(17)

for j = 1, 2, . . . , n and |z| > rp.
Let Q(z) = p0 + p1z + · · · + pj–1zj–1 and P(z) = zj–1Pn,0(z). By Lemma 3.5 there exists a

sequence {gk} such that

Z(gk) =
Q(z)
P(z)

=
p0 + p1z + · · · + pj–1zj–1

zj–1Pn,0(z)
. (18)

Let us define

f̂ j
k = δk(j – 1) – gk , j = 1, 2, . . . , n. (19)

Furthermore, we define

yk =
n

∑

j=1

f̂ j
k xj–1 + f̃k , k ∈ N. (20)

Then it follows from (15)–(20) that

Z(yk) =
n

∑

j=1

xj–1Z
(

f̂ j
k
)

+ Z(̃fk)

=
1

Pn,0(z)

( n
∑

j=1

zPn,j(z)xj–1 + Z(fk)

)

(21)

for |z| > max{rf , rp}. From (14) and (21) we know that the sequence {yk} given in (20) is a
solution of (10). Meantime, we can infer from (14) and (20) that

Z(xk) – Z(yk) =
Z(hk)
Pn,0(z)

.
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Therefore, using the inverse z-transform, we get

|xk – yk| = |hk ∗ p̃k|

=

∣
∣
∣
∣
∣

k
∑

m=0

hk–mp̃m

∣
∣
∣
∣
∣

≤
k

∑

m=0

|ϕk–mp̃m| =
k

∑

m=0

ϕk–m|p̃m|

for each k ∈N, where p̃k = Z–1( 1
Pn,0(z) ). �

Remark 2 In fact, Pn,0(z) is the characteristic polynomial of the corresponding homoge-
neous equation of (10). Assume that z1, z2, . . . , zl are distinct roots of the polynomial equa-
tion Pn,0(z) = 0 with multiplicities n1, n2, . . . , nl , respectively, such that n1 + n2 + · · · + nl = n.
Then we obtain

Pn,0(z) = (z – z1)n1 (z – z2)n2 · · · (z – zl)nl .

Using the partial fraction decomposition, we have

1
Pn,0(z)

=
l

∑

i=1

ni∑

j=1

μij

(z – zi)j ,

where μij are scalars, i = 1, 2, . . . , l, j = 1, 2, . . . , ni.
Similar to the proof of Lemma 3.5, we define

qij
k =

⎧

⎪⎪⎨

⎪⎪⎩

zk–1
i uk(j), zi �= 0, j = 1,

(k–j+1)(j–1)

(j–1)! zk–j
i uk(j – 1), zi �= 0, j = 2, 3, . . . , ni,

δk(j), zi = 0,

where i = 1, 2, . . . , l and j = 1, 2, . . . , ni. Furthermore, we set

p̃k =
l

∑

i=1

ni∑

j=1

μijq
ij
k , k ∈N. (22)

Hence we can infer that

Z(p̃k) =
l

∑

i=1

ni∑

j=1

μijZ
(

qij
k
)

=
l

∑

i=1

ni∑

j=1

μij

(z – zi)j =
1

Pn,0(z)
.

Then the inverse z-transform implies that

p̃k = Z–1
(

1
Pn,0(z)

)

.

From the previous statement we can obtain the following results associated with the
Ulam stability of the linear difference equation (10).
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Corollary 3.8 Let {fk}, {ϕk} be given as in Theorem 3.7, and let p0, p1, . . . , pn be scalars with
pn = 1, n ∈N \ {0, 1}. Assume that z1, z2, . . . , zl are distinct roots of the polynomial equation
Pn,0(z) = 0 with multiplicities n1, n2, . . . , nl , respectively, such that n1 + n2 + · · · + nl = n. If
a sequence {xk} satisfies inequality (9) for all k ∈ N, then there exists a solution {yk} of the
nth-order linear difference equation (10) such that

|xk – yk| ≤
k

∑

m=0

ϕk–m|p̃m|

for each k ∈N, where p̃m is defined by (22).

Corollary 3.9 Let {fk} be an exponentially bounded sequence, and let p0, p1, . . . , pn be
scalars with pn = 1, n ∈ N \ {0, 1}. Assume that z1, z2, . . . , zn are n distinct roots of the poly-
nomial equation Pn,0(z) = 0 with max{|zi| : i = 1, 2, . . . , n} < 1. For a given ε > 0, if a sequence
{xk} satisfies the inequality

∣
∣
∣
∣
∣
xk+n –

n–1
∑

m=0

pmxk+m – fk

∣
∣
∣
∣
∣
≤ ε (23)

for all k ∈ N, then there exists a solution {yk} of the nth-order linear difference equation
(10) such that

|xk – yk| ≤
n

∑

i=1

ε|μi|
1 – |zi|

for all k ∈N, where μi can be determined by the partial fraction decomposition of 1
Pn,0(z) .

Proof By Corollary 3.8 there exists a solution {yk} of (10) such that

|xk – yk| ≤ ε

k
∑

m=0

|p̃m|, k ∈N.

However, if zi �= 0 for each i, then by (22) we obtain

k
∑

m=0

|p̃m| =
k

∑

m=0

∣
∣
∣
∣
∣

n
∑

i=1

μizm–1
i um(1)

∣
∣
∣
∣
∣

≤
k

∑

m=0

n
∑

i=1

∣
∣μizm–1

i um(1)
∣
∣

=
n

∑

i=1

|μi|
k

∑

m=0

∣
∣zm–1

i um(1)
∣
∣

=
n

∑

i=1

|μi|
k

∑

m=1

∣
∣zm–1

i
∣
∣
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≤
n

∑

i=1

|μi|
∞

∑

m=1

|zi|m–1

=
n

∑

i=1

|μi|
1 – |zi| ,

which implies the desired result. Moreover, if there exists i0 ∈ {1, 2, . . . , n} such that zi0 = 0,
then the foregoing result remains true. �

Corollary 3.10 Let {fk} be an exponentially bounded sequence, and let p0, p1, . . . , pn be
scalars with pn = 1, n ∈ N \ {0, 1}. Assume that z1, z2, . . . , zl are roots of the polynomial
equation Pn,0(z) = 0 with multiplicities n1, n2, . . . , nl , respectively, such that n1 + n2 + · · · +
nl = n, max{|zi| : i = 1, 2, . . . , l} < 1. For a given ε > 0, if a sequence {xk} satisfies inequality
(23) for all k ∈N, then there exists a solution {yk} of the nth-order linear difference equation
(10) such that

|xk – yk| ≤
l

∑

i=1

ni∑

j=1

ε|μij|
(1 – |zi|)j , k ∈N,

where μij can be determined by the partial fraction decomposition of 1
Pn,0(z) .

Proof Without loss of generality, we assume that z1 = 0 with multiplicity n1 < l, and
z2, z3, . . . , zt are simple roots, that is, n2 = n3 = · · · = nt = 1, 2 ≤ t < l. Just notice that

k
∑

m=0

|p̃m| =
k

∑

m=0

∣
∣
∣
∣
∣

l
∑

i=1

ni∑

j=1

μijqij
m

∣
∣
∣
∣
∣

≤
k

∑

m=0

l
∑

i=1

ni∑

j=1

∣
∣μijqij

m
∣
∣

=
k

∑

m=0

n1∑

j=1

∣
∣μ1jq1j

m
∣
∣ +

k
∑

m=0

t
∑

i=2

ni∑

j=1

∣
∣μijqij

m
∣
∣ +

k
∑

m=0

l
∑

i=t+1

ni∑

j=1

∣
∣μijqi,j

m
∣
∣

=
k

∑

m=0

n1∑

j=1

∣
∣μ1jδm(j)

∣
∣ +

k
∑

m=0

t
∑

i=2

∣
∣μi1zm–1

i um(1)
∣
∣

+
k

∑

m=0

l
∑

i=t+1

ni∑

j=1

∣
∣
∣
∣
μij

(m – j + 1)(j–1)

(j – 1)!
zm–j

i um(j – 1)
∣
∣
∣
∣

=
n1∑

j=1

|μ1j|
k

∑

m=0

∣
∣δm(j)

∣
∣ +

t
∑

i=2

|μi1|
k

∑

m=0

∣
∣zm–1

i um(1)
∣
∣

+
l

∑

i=t+1

ni∑

j=1

|μij|
(j – 1)!

k
∑

m=0

∣
∣(m – j + 1)(j–1)zm–j

i um(j – 1)
∣
∣

≤
n1∑

j=1

|μ1j|
∞

∑

m=0

∣
∣δm(j)

∣
∣ +

t
∑

i=2

|μi1|
∞

∑

m=1

|zi|m–1
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+
l

∑

i=t+1

ni∑

j=1

|μij| +
l

∑

i=t+1

ni∑

j=1

|μij|
(j – 1)!

∞
∑

m=j+1

(m – j + 1)(j–1)|zi|m–j

=
n1∑

j=1

|μ1j| +
t

∑

i=2

|μi1|
1 – |zi| +

l
∑

i=t+1

ni∑

j=1

|μij|

+
l

∑

i=t+1

ni∑

j=1

|μij|
(j – 1)!

(
(j – 1)!

(1 – |zi|)j –
1
j

)

=
n1∑

j=1

|μ1j| +
t

∑

i=2

|μi1|
1 – |zi| +

l
∑

i=t+1

ni∑

j=1

|μij|

+
l

∑

i=t+1

ni∑

j=1

|μij|
(1 – |zi|)j –

l
∑

i=t+1

ni∑

j=1

|μij|
j!

≤
l

∑

i=1

ni∑

j=1

|μij|
(1 – |zi|)j .

�

4 Conclusion
By using the z-transform method we have established the Ulam stability of linear differ-
ence equations with constant coefficients. In fact, the results obtained in this paper can
be regarded as a discrete analogue of the stability results for linear differential equations
in [20]. To a certain extent, our results constitute an important complement to the sta-
bility results obtained in [4, 5]. Additionally, this paper also provides another method to
study the Ulam stability of difference equations. Obviously, this paper shows that the z-
transform method is more convenient to study the Ulam stability of linear difference equa-
tions with constant coefficients.
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