RESEARCH

Open Access

Positive solutions for a singular fractional nonlocal boundary value problem

CrossMark

Luyao Zhang¹, Zhongmin Sun² and Xinan Hao^{1*}

*Correspondence: haoxinan2004@163.com

¹School of Mathematical Sciences, Qufu Normal University, Qufu, P.R. China Full list of author information is available at the end of the article

Abstract

We investigate a singular fractional differential equation with an infinite-point fractional boundary condition, where the nonlinearity f(t, x) may be singular at x = 0, and g(t) may also have singularities at t = 0 or t = 1. We establish the existence of positive solutions using the fixed point index theory in cones.

MSC: 26A33; 34B08; 34B10; 34B16; 34B18

Keywords: Positive solution; Singular; Infinite-point fractional boundary condition; Fixed point index

1 Introduction

We consider the existence of positive solutions for the following fractional nonlocal boundary value problem:

$$\begin{cases} D_{0^+}^{\alpha} x(t) + \lambda g(t) f(t, x(t)) = 0, & t \in (0, 1), \\ x(0) = x'(0) = \dots = x^{(n-2)}(0) = 0, & D_{0^+}^{\beta} x(1) = \sum_{i=1}^{\infty} \alpha_i D_{0^+}^{\gamma} x(\xi_i), \end{cases}$$
(1.1)

where $\lambda > 0$ is a parameter, $D_{0^+}^{\alpha}$, $D_{0^+}^{\beta}$, and $D_{0^+}^{\gamma}$ denote the Riemann–Liouville fractional derivatives, $2 \le n - 1 < \alpha \le n$, $1 \le \beta \le n - 2$, $0 \le \gamma \le \beta$, $\alpha_i \ge 0$, $0 < \xi_1 < \xi_2 < \cdots < \xi_{i-1} < \xi_i < \cdots < 1$ $(i = 1, 2, \ldots)$, and $\Gamma(\alpha - \gamma) > \Gamma(\alpha - \beta) \sum_{i=1}^{\infty} \alpha_i \xi_i^{\alpha - \gamma - 1}$. The function f(t, x) may have singularity at x = 0, and g(t) may be singular at t = 0 and/or t = 1.

Fractional differential equations describe many phenomena in various fields of science and engineering [1-4]. For the development of the fractional differential equations, see [5-23] and the references therein. Recently, the existence of positive solutions for fractional differential equation multipoint boundary value problems (BVPs) have been studied by many authors; see [24-33]. Using the compression expansion fixed point theorem due to Krasnosel'skii, Henderson and Luca [27] studied the fractional BVP

$$\begin{cases} D_{0^+}^{\alpha} x(t) + \lambda f(t, x(t)) = 0, & 0 < t < 1, \\ x(0) = x'(0) = \dots = x^{(n-2)}(0) = 0, & D_{0^+}^{\beta} x(1) = \sum_{i=1}^m \alpha_i D_{0^+}^{\gamma} x(\xi_i), \end{cases}$$
(1.2)

where $\lambda > 0$, $2 \le n - 1 < \alpha \le n$, $\alpha_i \ge 0$, $0 < \xi_1 < \xi_2 < \cdots < \xi_m < 1$ $(i = 1, 2, \dots, m)$, $1 \le \beta \le n - 2$, $0 \le \gamma \le \beta$, and f(t, x) may be singular at t = 0, 1 and may change sign. In [28], for

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

.

 λ = 1, the authors investigated the existence and multiplicity of positive solutions for BVP (1.2). In [29, 30], the authors discussed the following infinite-point BVP:

$$\begin{cases} D_{0^+}^{\alpha} x(t) + f(t, x(t)) = 0, & 0 < t < 1, \\ x(0) = x'(0) = \dots = x^{(n-2)}(0) = 0, & x^{(i)}(1) = \sum_{j=1}^{\infty} \alpha_j x(\xi_j), \end{cases}$$
(1.3)

where $i \in \{1, 2, ..., n-2\}$, and $\sum_{j=1}^{\infty} \alpha_j \xi_j^{\alpha-1} < (\alpha - 1) \cdots (\alpha - i)$. The existence, uniqueness, and multiplicity of positive solutions for BVP (1.3) are established. Qiao and Zhou [31] discussed the singular BVP

$$\begin{cases} D_{0^+}^{\alpha} x(t) + g(t) f(t, x(t)) = 0, & 0 < t < 1, \\ x(0) = x'(0) = \dots = x^{(n-2)}(0) = 0, & D_{0^+}^{\beta} x(1) = \sum_{i=1}^{\infty} \alpha_i x(\xi_i), \end{cases}$$
(1.4)

where $\beta \in [1, \alpha - 1]$, and $\Gamma(\alpha) > \Gamma(\alpha - \beta) \sum_{i=1}^{\infty} \alpha_i \xi_i^{\alpha - 1}$. For more results on the fractional infinite-point BVPs, see [24, 25, 32, 33] and the references therein.

In the present paper, we investigate the existence of positive solutions for the singular fractional infinite-point BVP (1.1) using the fixed point index theory in cones. Note that f(t, x) may be singular at x = 0 and g(t) may be singular at t = 0 or t = 1.

2 Preliminaries and lemmas

Definition 2.1 ([1–4]) The Riemann–Liouville fractional integral of order $\alpha > 0$ of a function $h: (0, +\infty) \rightarrow \mathbb{R}$ is given by

$$I_{0^+}^{\alpha}h(t)=\frac{1}{\Gamma(\alpha)}\int_0^t(t-s)^{\alpha-1}h(s)\,ds,$$

provided that the right-hand side is defined pointwise on $(0, +\infty)$.

Definition 2.2 ([1–4]) The Riemann–Liouville fractional derivative of order $\alpha > 0$ of a function $h : (0, +\infty) \rightarrow \mathbb{R}$ is given by

$$D_{0^+}^{\alpha}h(t) = \frac{1}{\Gamma(n-\alpha)} \left(\frac{d}{dt}\right)^n \int_0^t \frac{h(s)}{(t-s)^{\alpha-n+1}} \, ds,$$

where *n* is the smallest integer not less than α , provided that the right-hand side is defined pointwise on $(0, +\infty)$.

By arguments similar to those in [30, 31], we have the following two lemmas.

Lemma 2.1 Given $y \in C(0,1) \cap L^1(0,1)$, the solution of the BVP

$$\begin{cases} D_{0^+}^{\alpha} x(t) + y(t) = 0, & t \in (0, 1), \\ x(0) = x'(0) = \cdots = x^{(n-2)}(0) = 0, & D_{0^+}^{\beta} x(1) = \sum_{i=1}^{\infty} \alpha_i D_{0^+}^{\gamma} x(\xi_i) \end{cases}$$

,

$$x(t) = \int_0^1 G(t,s)y(s)\,ds,$$

where G(t, s) is the Green's function given by

$$G(t,s) = \frac{1}{\Gamma(\alpha)q(0)} \begin{cases} q(s)(1-s)^{\alpha-\beta-1}t^{\alpha-1} - q(0)(t-s)^{\alpha-1}, & 0 \le s \le t \le 1, \\ q(s)(1-s)^{\alpha-\beta-1}t^{\alpha-1}, & 0 \le t \le s \le 1, \end{cases}$$

and

$$q(s) = \frac{1}{\Gamma(\alpha - \beta)} - \frac{1}{\Gamma(\alpha - \gamma)} \sum_{s \leq \xi_i} \alpha_i \left(\frac{\xi_i - s}{1 - s}\right)^{\alpha - \gamma - 1} (1 - s)^{\beta - \gamma}.$$

Lemma 2.2 The functions q and G given in Lemma 2.1 have the following properties:

- (i) $q \in C([0,1], (0, +\infty))$ is nondecreasing;
- (ii) $G(t,s) \in C([0,1] \times [0,1], [0,+\infty));$
- (iii) $p(t)G(1,s) \le G(t,s) \le G(1,s), t, s \in [0,1], where <math>p(t) = t^{\alpha-1}$.

Set *E* = *C*[0, 1] and $||x|| = \sup_{t \in [0,1]} |x(t)|$. We define the cones

$$P = \{x \in E : x(t) \ge 0, t \in [0, 1]\} \text{ and } K = \{x \in P : x(t) \ge p(t) ||x||, t \in [0, 1]\}.$$

For $0 < r < +\infty$, denote $K_r = \{x \in K : ||x|| < r\}$, $\partial K_r = \{x \in K : ||x|| = r\}$ and $\overline{K}_r = \{x \in K : ||x|| \le r\}$. Define the operators $A : \overline{K}_R \setminus K_r \to P$ and $L : E \to E$ by

$$Ax(t) = \lambda \int_0^1 G(t,s)g(s)f(s,x(s)) \, ds, \quad t \in [0,1],$$
$$Lx(t) = \int_0^1 G(t,s)g(s)x(s) \, ds, \quad t \in [0,1].$$

Clearly, $L: K \to K$ is a completely continuous linear operator. Moreover, if x is a fixed point of A, then x is a solution of BVP (1.1).

We further assume that:

(*H*₁) $g \in C((0, 1), [0, \infty))$ and $0 < \int_0^1 G(1, s)g(s) \, ds < +\infty$. (*H*₂) $f \in C([0, 1] \times (0, \infty), [0, \infty))$, and for any $0 < r < R < +\infty$,

$$\lim_{m\to\infty}\sup_{u\in\overline{K}_R\setminus K_r}\int_{D(m)}g(s)f(s,x(s))\,ds=0,$$

where $D(m) = [0, \frac{1}{m}] \cup [\frac{m-1}{m}, 1].$

We obtain the following lemma using proofs similar to those in [34, 35].

Lemma 2.3 Suppose that (H_1) and (H_2) hold. Then $A : \overline{K}_R \setminus K_r \to K$ is completely contin*uous*.

By Lemma 2.2 we can show that the spectral radius r(L) > 0; see, for example, Lemma 2.5 of [36]. Using the Krein–Rutman theorem (see Theorem 19.2 on p. 226 of [37]), we have the following result.

Lemma 2.4 Suppose that (H_1) and (H_2) are satisfied. Then the first eigenvalue of L is $\lambda_1 = (r(L))^{-1} > 0$, and there exists a positive eigenfunction φ_1 such that $\varphi_1 = \lambda_1 L \varphi_1$.

The main tool in the paper is the following fixed point index theorem.

Lemma 2.5 ([38]) Let K be a cone in a Banach space E, and let $T : \overline{K}_r \to K$ be a completely continuous operator.

- (i) If there exists $u_0 \in K \setminus \{\theta\}$ such that $u Tu \neq \mu u_0$ for any $u \in \partial K_r$ and $\mu \ge 0$, then $i(T, K_r, K) = 0$.
- (ii) If $Tu \neq \mu u$ for any $u \in \partial K_r$ and $\mu \ge 1$, then $i(T, K_r, K) = 1$.

3 Main results

Theorem 3.1 Suppose that (H_1) and (H_2) are satisfied. If

$$0 \le f^{\infty} := \limsup_{x \to +\infty} \max_{t \in [0,1]} \frac{f(t,x)}{x} < \lambda_1 < f_0 := \liminf_{x \to 0} \min_{t \in [0,1]} \frac{f(t,x)}{x} \le +\infty,$$

then BVP(1.1) has at least one positive solution for any

$$\lambda \in \left(\frac{\lambda_1}{f_0}, \frac{\lambda_1}{f^\infty}\right). \tag{3.1}$$

Proof By (3.1) we have $f_0 > \frac{\lambda_1}{\lambda}$, and there exists $r_1 > 0$ such that $f(t, x) \ge \frac{\lambda_1}{\lambda} x$ for $0 < x \le r_1$ and $0 \le t \le 1$. For any $x \in \partial K_{r_1}$, we obtain

$$(Ax)(t) = \lambda \int_0^1 G(t,s)g(s)f(s,x(s)) ds \ge \lambda_1(Lx)(t), \quad t \in [0,1].$$

Suppose that φ_1 is the positive eigenfunction corresponding to λ_1 and that *A* has no fixed points on ∂K_{r_1} . We claim that

$$x - Ax \neq \mu \varphi_1, \quad x \in \partial K_{r_1}, \mu \ge 0.$$
 (3.2)

Otherwise, there would exist $x_1 \in \partial K_{r_1}$ and $\mu_1 \ge 0$ such that $x_1 - Ax_1 = \mu_1 \varphi_1$. Then $\mu_1 > 0$ and $x_1 = Ax_1 + \mu_1 \varphi_1 \ge \mu_1 \varphi_1$. Denote $\overline{\mu} = \sup\{\mu \mid x_1 \ge \mu \varphi_1\}$. Then $\overline{\mu} \ge \mu_1, x_1 \ge \overline{\mu} \varphi_1$, and $Ax_1 \ge \lambda_1 \overline{\mu} L \varphi_1 = \overline{\mu} \varphi_1$. Thus

$$x_1 = Ax_1 + \mu_1\varphi_1 \ge \overline{\mu}\varphi_1 + \mu_1\varphi_1 = (\overline{\mu} + \mu_1)\varphi_1,$$

which contradicts to the definition of $\overline{\mu}$. It follows from (3.2) and Lemma 2.5(i) that

$$i(A, K_{r_1}, K) = 0.$$
 (3.3)

On the other hand, by (3.1) we have $f^{\infty} < \frac{\lambda_1}{\lambda}$, and there exist $r_2 > r_1$ and $0 < \sigma < 1$ such that $f(t, x) \le \sigma \frac{\lambda_1}{\lambda} x$ for $x \ge r_2$ and $0 \le t \le 1$. We define $L_1 u = \sigma \lambda_1 L u$. Obviously, the linear operator $L_1 : E \to E$ is bounded, and $L_1(K) \subset K$. From the definition of λ_1 and $0 < \sigma < 1$ it follows that

$$(r(L_1))^{-1} = (\sigma \lambda_1)^{-1} (r(L))^{-1} = \sigma^{-1} > 1.$$
(3.4)

Choose $\varepsilon_0 = \frac{1}{2}(1 - r(L_1))$. Then by Gelfand's formula there exists a natural number $N \ge 1$ such that $||L_1^k|| \le [r(L_1) + \varepsilon_0]^k$ for $k \ge N$. We now define

$$\|x\|^* = \sum_{i=1}^{N} [r(L_1) + \varepsilon_0]^{N-i} \|L_1^{i-1}x\|, \quad x \in E,$$

where $L_1^0 = I$ is the identity operator. Since L_1 is linear, it is easy to verify that $||x||^*$ is a norm in *E*. Let $M_0 = \sup_{x \in \partial K_{r_2}} \lambda \int_0^1 G(1,s)g(s)f(s,x(s)) ds$. Then $M_0 < +\infty$. We define $M_0^* = ||M_0||^*$ and take $r_3 > \max\{r_2, 2M_0^*\varepsilon_0^{-1}\}$. Noting that $||x||^* > [r(L_1) + \varepsilon_0]^{N-1} ||x||$, we can find $r_4 > r_3$ large enough such that $||x|| \ge r_4$ and thus $||x||^* > r_3$.

We next prove that

$$Ax \neq \mu x, \quad x \in \partial K_{r_4}, \mu \ge 1. \tag{3.5}$$

Arguing indirectly, we get that there exist $x_2 \in \partial K_{r_4}$ and $\mu_2 \ge 1$ such that $Ax_2 = \mu_2 x_2$. We define $\widetilde{x}(t) = \min\{x_2(t), r_2\}$ for $t \in [0, 1]$ and $H(x_2) = \{t \in [0, 1] : x_2(t) > r_2\}$. It is easy to see that $\|\widetilde{x}\| = r_2$. We have $\widetilde{x} \in \partial K_{r_2}$ since $\widetilde{x}(t) = \min\{x_2(t), r_2\} \ge \min\{p(t)r_4, r_2\} \ge p(t)r_2$, $t \in [0, 1]$. It follows that

$$\begin{aligned} \mu_{2}x_{2}(t) &= (Ax_{2})(t) \\ &= \lambda \int_{0}^{1} G(t,s)g(s)f(s,x_{2}(s)) \, ds \\ &\leq \lambda \int_{H(x_{2})} G(t,s)g(s)f(s,x_{2}(s)) \, ds + \lambda \int_{[0,1] \setminus H(x_{2})} G(1,s)g(s)f(s,x_{2}(s)) \, ds \\ &\leq \sigma \lambda_{1} \int_{0}^{1} G(t,s)g(s)x_{2}(s) \, ds + \lambda \int_{0}^{1} G(1,s)g(s)f(s,\widetilde{x}(s)) \, ds \\ &\leq (L_{1}x_{2})(t) + M_{0}, \quad t \in [0,1]. \end{aligned}$$

Since $L_1(K) \subset K$, we have $0 \le (L_1^j(Ax_2)(t)) \le (L_1^j(L_1x_2 + M_0)(t)), j = 0, 1, 2, ..., N - 1$. Then $\|L_1^j(Ax_2)\| \le \|L_1^j(L_1x_2 + M_0)\|, j = 0, 1, 2, ..., N - 1$, and hence

$$\|Ax_2\|^* \leq \sum_{i=1}^{N} \left[r(L_1) + \varepsilon_0 \right]^{N-i} \|L_1^{i-1}(L_1x_2 + M_0)\| = \|L_1x_2 + M_0\|^*.$$

Therefore we obtain

$$\begin{split} \mu_2 \|x_2\|^* &= \|Ax_2\|^* \\ &\leq \|L_1x_2\|^* + M_0^* \\ &= \sum_{i=1}^N [r(L_1) + \varepsilon_0]^{N-i} \|L_1^i x_2\| + M_0^* \\ &\leq [r(L_1) + \varepsilon_0] \sum_{i=1}^{N-1} [r(L_1) + \varepsilon_0]^{N-i-1} \|L_1^i x_2\| + [r(L_1) + \varepsilon_0]^N \|x_2\| + M_0^* \\ &= [r(L_1) + \varepsilon_0] \sum_{i=1}^N [r(L_1) + \varepsilon_0]^{N-i} \|L_1^{i-1} x_2\| + M_0^* \end{split}$$

$$= [r(L_1) + \varepsilon_0] ||x_2||^* + M_0^*$$

$$\leq [r(L_1) + \varepsilon_0] ||x_2||^* + \frac{\varepsilon_0}{2} r_3$$

$$< [r(L_1) + \varepsilon_0] ||x_2||^* + \frac{\varepsilon_0}{2} ||x_2||^*$$

$$= \left[\frac{1}{4} r(L_1) + \frac{3}{4}\right] ||x_2||^*.$$

Thus $\frac{1}{4}r(L_1) + \frac{3}{4} \ge 1$, that is, $r(L_1) \ge 1$, which contradicts (3.4). It follows from (3.5) and Lemma 2.5(ii) that

 $i(A, K_{r_4}, K) = 1.$ (3.6)

By (3.3), (3.6), and the additivity of the fixed point index we have

$$i(A, K_{r_4} \setminus \overline{K}_{r_1}, K) = i(A, K_{r_4}, K) - i(A, K_{r_1}, K) = 1$$

Therefore *A* has at least one fixed point $x^* \in K_{r_4} \setminus \overline{K}_{r_1}$, which is a positive solution of BVP (1.1).

4 An example

Let $\alpha = \frac{7}{2}$, $\beta = \frac{3}{2}$, $\gamma = \frac{1}{2}$, $\alpha_i = \frac{2}{i^2}$, $\xi_i = 1 - \frac{1}{i+1}$ (i = 1, 2, ...), $g(t) = \frac{1}{\sqrt[4]{t(1-t)}} f(t, x) = \sqrt{2 - t + |\ln x|}$. Consider the following fractional BVP:

$$\begin{cases} D_{0^+}^{\frac{7}{2}} x(t) + \lambda \frac{1}{\sqrt[4]{t(1-t)}} \sqrt{2 - t} + |\ln x(t)| = 0, \quad t \in (0,1), \\ x(0) = x'(0) = x''(0) = 0, \qquad D_{0^+}^{\frac{3}{2}} x(1) = \sum_{i=1}^{\infty} \frac{2}{i^2} D_{0^+}^{\frac{1}{2}} x(1 - \frac{1}{i+1}). \end{cases}$$
(4.1)

Direct computation shows that $\Gamma(\alpha - \beta) = 1$, $\Gamma(\alpha - \gamma) = 2$, $\sum_{i=1}^{\infty} \alpha_i \xi_i^{\alpha - \gamma - 1} = 2(\frac{\pi^2}{6} - 1)$, and $\frac{1}{\Gamma(\alpha - \beta)} - \frac{1}{\Gamma(\alpha - \gamma)} \sum_{i=1}^{\infty} \alpha_i \xi_i^{\alpha - \gamma - 1} \approx 0.355 > 0$.

Let $K = \{x \in C[0,1] : x(t) \ge p(t) ||x||, t \in [0,1]\}$, where $p(t) = t^{\frac{5}{2}}$. For $x \in \overline{K}_R \setminus K_r$, we obtain $|\ln x(t)| \le |\ln rp(t)| + |\ln R|$. Due to $\int_0^1 |\ln p(t)| dt = \frac{5}{2}$, we have $\lim_{m \to \infty} \int_{D(m)} |\ln p(t)| dt = 0$. Since $0 \le G(t,s) \le G(1,s) \le \frac{1}{\Gamma(\frac{7}{2})(2-\frac{\pi^2}{6})}$, it follows that $\int_0^1 G(1,s)g(s) ds \le \frac{1}{\Gamma(\frac{7}{2})(2-\frac{\pi^2}{6})} \times \int_0^1 g(s) ds = \frac{2[\Gamma(\frac{3}{4})]^2}{\Gamma(\frac{7}{2})(2-\frac{\pi^2}{6})\sqrt{\pi}}$. For $x \in \overline{K}_R \setminus K_r$, we have

$$\int_0^1 f^2(s, x(s)) \, ds \le \int_0^1 \left(2 - s + |\ln r| + |\ln R| + \left|\ln p(s)\right|\right) \, ds = 4 + |\ln r| + |\ln R|.$$

Therefore

$$\lim_{m \to \infty} \sup_{x \in \overline{K}_R \setminus K_r} \int_{D(m)} g(s) f(s, x(s)) ds$$

$$\leq \lim_{m \to \infty} \sup_{x \in \overline{K}_R \setminus K_r} \left(\int_{D(m)} g^2(s) ds \right)^{\frac{1}{2}} \left(\int_{D(m)} f^2(s, x(s)) ds \right)^{\frac{1}{2}}$$

$$\leq \lim_{m \to \infty} \sqrt{\pi} \left(\int_{D(m)} (2 - s + |\ln r| + |\ln R| + |\ln p(s)|) ds \right)^{\frac{1}{2}} = 0.$$

Direct computation yields $f^{\infty} = 0$ and $f_0 = +\infty$. Using Theorem 3.1, we can conclude that the BVP (4.1) has at least one positive solution for any $\lambda \in (0, +\infty)$.

5 Conclusions

We established the existence of positive solutions for the singular fractional differential equation infinite-point BVP (1.1) using the fixed point index theory in cones. Note that the nonlinearity may possess singularities, that is, f(t,x) may have a singularity at x = 0, and g(t) may be singular at t = 0 or t = 1.

Funding

Supported financially by the National Natural Science Foundation of China (11501318, 11871302), the China Postdoctoral Science Foundation (2017M612230), and the Natural Science Foundation of Shandong Province of China (ZR2017MA036).

Availability of data and materials

Not applicable.

Ethics approval and consent to participate Not applicable.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Authors' contributions

The authors contributed equally to this paper. All authors read and approved the final manuscript.

Author details

¹School of Mathematical Sciences, Qufu Normal University, Qufu, P.R. China. ²Weifang Engineer Vocational College, Shandong, P.R. China.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 22 July 2018 Accepted: 10 October 2018 Published online: 22 October 2018

References

- 1. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
- 2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
- Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
- 4. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
- 5. Goodrich, C.S.: Coercive nonlocal elements in fractional differential equations. Positivity 21, 377–394 (2017)
- Shabibi, M., Postolache, M., Rezapour, Sh.: Positive solutions for a singular sum fractional differential system. Int. J. Anal. Appl. 13, 108–118 (2017)
- 7. Shabibi, M., Postolache, M., Rezapour, Sh., Vaezpour, S.M.: Investigation of a multi-singular pointwise defined fractional integro-differential equation. J. Math. Anal. **7**, 61–77 (2016)
- Zhang, X., Liu, L., Wu, Y.: The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 37, 26–33 (2014)
- Zhang, X., Mao, C., Liu, L., Wu, Y.: Exact iterative solution for an abstract fractional dynamic system model for bioprocess. Qual. Theory Dyn. Syst. 16, 205–222 (2017)
- 10. Zhang, X., Liu, L., Wu, Y., Wiwatanapataphee, B.: The spectral analysis for a singular fractional differential equation with a signed measure. Appl. Math. Comput. 257, 252–263 (2015)
- Zhang, X., Liu, L., Wu, Y., Lu, Y.: The iterative solutions of nonlinear fractional differential equations. Appl. Math. Comput. 219, 4680–4691 (2013)
- 12. Cui, Y: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)
- Cui, Y., Ma, W., Sun, Q., Su, X.: New uniqueness results for boundary value problem of fractional differential equation. Nonlinear Anal., Model. Control 23, 31–39 (2018)
- Yan, F., Zuo, M., Hao, X.: Positive solution for a fractional singular boundary value problem with *p*-Laplacian operator. Bound. Value Probl. 2018, Article ID 51 (2018)
- Zou, Y., He, G.: On the uniqueness of solutions for a class of fractional differential equations. Appl. Math. Lett. 74, 68–73 (2017)

- Hao, X.: Positive solution for singular fractional differential equations involving derivatives. Adv. Differ. Equ. 2016, Article ID 139 (2016)
- 17. Hao, X., Wang, H., Liu, L., Cui, Y.: Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and *p*-Laplacian operator. Bound. Value Probl. **2017**, Article ID 182 (2017)
- Zuo, M., Hao, X., Liu, L., Cui, Y.: Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions. Bound. Value Probl. 2017, Article ID 161 (2017)
- Hao, X., Zuo, M., Liu, L.: Multiple positive solutions for a system of impulsive integral boundary value problems with sign-changing nonlinearities. Appl. Math. Lett. 82, 24–31 (2018)
- Zhang, X., Zhong, Q.: Uniqueness of solution for higher-order fractional differential equations with conjugate type integral conditions. Fract. Calc. Appl. Anal. 20, 1471–1484 (2017)
- 21. Zhang, X., Zhong, Q.: Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables. Appl. Math. Lett. 80, 12–19 (2018)
- 22. Hao, X., Sun, H., Liu, L.: Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval. Math. Meth. Appl. Sci. (2018). https://doi.org/10.1002/mma.5210
- Hao, X., Wang, H.: Positive solutions of semipositone singular fractional differential systems with a parameter and integral boundary conditions. Open Math. 16, 581–596 (2018)
- 24. Guo, L., Liu, L., Wu, Y.: Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions. Nonlinear Anal., Model. Control **21**, 635–650 (2016)
- Guo, L., Liu, L., Wu, Y.: Existence of positive solutions for singular higher-order fractional differential equations with infinite-point boundary conditions. Bound. Value Probl. 2016, Article ID 114 (2016)
- Salen, H.A.H.: On the fractional order *m*-point boundary value problem in reflexive Banach spaces and weak topologies. J. Comput. Appl. Math. 224, 565–572 (2009)
- Henderson, J., Luca, R.: Existence of positive solutions for a singular fractional boundary value problem. Nonlinear Anal., Model. Control 22, 99–114 (2017)
- Pu, R., Zhang, X., Cui, Y., Li, P., Wang, W.: Positive solutions for singular semipositone fractional differential equation subject to multipoint boundary conditions. J. Funct. Spaces 2017, Article ID 5892616 (2017)
- Zhai, C., Wang, L.: Some existence, uniqueness results on positive solutions for a fractional differential equation with infinite-point boundary conditions. Nonlinear Anal., Model. Control 22, 566–577 (2017)
- Zhang, X.: Positive solutions for a class of singular fractional differential equations with infinite-point boundary value conditions. Appl. Math. Lett. 39, 22–27 (2015)
- Qiao, Y., Zhou, Z.: Existence of positive solutions of singular fractional differential equations with infinite-point boundary conditions. Adv. Differ. Equ. 2017, Article ID 8 (2017)
- 32. Zhong, Q., Zhang, X.: Positive solution for higher-order singular infinite-point fractional differential equation with *p*-Laplacian. Adv. Differ. Equ. **2016**, Article ID 11 (2016)
- Li, B., Sun, S., Sun, Y.: Existence of solutions for fractional Langevin equation with infinite-point boundary conditions. J. Appl. Math. Comput. 53, 683–692 (2017)
- Hao, X., Liu, L., Wu, Y., Sun, Q.: Positive solutions for nonlinear nth-order singular eigenvalue problem with nonlocal conditions. Nonlinear Anal. 73, 1653–1662 (2010)
- Wang, Y., Liu, L., Wu, Y.: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. 74, 3599–3605 (2011)
- Webb, J.R.L., Lan, K.Q.: Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type. Topol. Methods Nonlinear Anal. 27, 91–115 (2006)
- 37. Deimling, K.: Nonlinear Functional Analysis. Spring, Berlin (1985)
- 38. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, San Diego (1988)

Submit your manuscript to a SpringerOpen^o journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com