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Abstract
We investigate a singular fractional differential equation with an infinite-point
fractional boundary condition, where the nonlinearity f (t, x) may be singular at x = 0,
and g(t) may also have singularities at t = 0 or t = 1. We establish the existence of
positive solutions using the fixed point index theory in cones.
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1 Introduction
We consider the existence of positive solutions for the following fractional nonlocal
boundary value problem:

⎧
⎨

⎩

Dα
0+ x(t) + λg(t)f (t, x(t)) = 0, t ∈ (0, 1),

x(0) = x′(0) = · · · = x(n–2)(0) = 0, Dβ

0+ x(1) =
∑∞

i=1 αiDγ

0+ x(ξi),
(1.1)

where λ > 0 is a parameter, Dα
0+ , Dβ

0+ , and Dγ

0+ denote the Riemann–Liouville fractional
derivatives, 2 ≤ n – 1 < α ≤ n, 1 ≤ β ≤ n – 2, 0 ≤ γ ≤ β , αi ≥ 0, 0 < ξ1 < ξ2 < · · · < ξi–1 < ξi <
· · · < 1 (i = 1, 2, . . .), and �(α – γ ) > �(α – β)

∑∞
i=1 αiξ

α–γ –1
i . The function f (t, x) may have

singularity at x = 0, and g(t) may be singular at t = 0 and/or t = 1.
Fractional differential equations describe many phenomena in various fields of science

and engineering [1–4]. For the development of the fractional differential equations, see [5–
23] and the references therein. Recently, the existence of positive solutions for fractional
differential equation multipoint boundary value problems (BVPs) have been studied by
many authors; see [24–33]. Using the compression expansion fixed point theorem due to
Krasnosel’skii, Henderson and Luca [27] studied the fractional BVP

⎧
⎨

⎩

Dα
0+ x(t) + λf (t, x(t)) = 0, 0 < t < 1,

x(0) = x′(0) = · · · = x(n–2)(0) = 0, Dβ

0+ x(1) =
∑m

i=1 αiDγ

0+ x(ξi),
(1.2)

where λ > 0, 2 ≤ n – 1 < α ≤ n, αi ≥ 0, 0 < ξ1 < ξ2 < · · · < ξm < 1 (i = 1, 2, . . . , m), 1 ≤ β ≤
n – 2, 0 ≤ γ ≤ β , and f (t, x) may be singular at t = 0, 1 and may change sign. In [28], for
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λ = 1, the authors investigated the existence and multiplicity of positive solutions for BVP
(1.2). In [29, 30], the authors discussed the following infinite-point BVP:

⎧
⎨

⎩

Dα
0+ x(t) + f (t, x(t)) = 0, 0 < t < 1,

x(0) = x′(0) = · · · = x(n–2)(0) = 0, x(i)(1) =
∑∞

j=1 αjx(ξj),
(1.3)

where i ∈ {1, 2, . . . , n – 2}, and
∑∞

j=1 αjξ
α–1
j < (α – 1) · · · (α – i). The existence, uniqueness,

and multiplicity of positive solutions for BVP (1.3) are established. Qiao and Zhou [31]
discussed the singular BVP

⎧
⎨

⎩

Dα
0+ x(t) + g(t)f (t, x(t)) = 0, 0 < t < 1,

x(0) = x′(0) = · · · = x(n–2)(0) = 0, Dβ

0+ x(1) =
∑∞

i=1 αix(ξi),
(1.4)

where β ∈ [1,α – 1], and �(α) > �(α – β)
∑∞

i=1 αiξ
α–1
i . For more results on the fractional

infinite-point BVPs, see [24, 25, 32, 33] and the references therein.
In the present paper, we investigate the existence of positive solutions for the singular

fractional infinite-point BVP (1.1) using the fixed point index theory in cones. Note that
f (t, x) may be singular at x = 0 and g(t) may be singular at t = 0 or t = 1.

2 Preliminaries and lemmas
Definition 2.1 ([1–4]) The Riemann–Liouville fractional integral of order α > 0 of a func-
tion h : (0, +∞) → R is given by

Iα
0+ h(t) =

1
�(α)

∫ t

0
(t – s)α–1h(s) ds,

provided that the right-hand side is defined pointwise on (0, +∞).

Definition 2.2 ([1–4]) The Riemann–Liouville fractional derivative of order α > 0 of a
function h : (0, +∞) →R is given by

Dα
0+ h(t) =

1
�(n – α)

(
d
dt

)n ∫ t

0

h(s)
(t – s)α–n+1 ds,

where n is the smallest integer not less than α, provided that the right-hand side is defined
pointwise on (0, +∞).

By arguments similar to those in [30, 31], we have the following two lemmas.

Lemma 2.1 Given y ∈ C(0, 1) ∩ L1(0, 1), the solution of the BVP

⎧
⎨

⎩

Dα
0+ x(t) + y(t) = 0, t ∈ (0, 1),

x(0) = x′(0) = · · · = x(n–2)(0) = 0, Dβ

0+ x(1) =
∑∞

i=1 αiDγ

0+ x(ξi),

is

x(t) =
∫ 1

0
G(t, s)y(s) ds,
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where G(t, s) is the Green’s function given by

G(t, s) =
1

�(α)q(0)

⎧
⎨

⎩

q(s)(1 – s)α–β–1tα–1 – q(0)(t – s)α–1, 0 ≤ s ≤ t ≤ 1,

q(s)(1 – s)α–β–1tα–1, 0 ≤ t ≤ s ≤ 1,

and

q(s) =
1

�(α – β)
–

1
�(α – γ )

∑

s≤ξi

αi

(
ξi – s
1 – s

)α–γ –1

(1 – s)β–γ .

Lemma 2.2 The functions q and G given in Lemma 2.1 have the following properties:
(i) q ∈ C([0, 1], (0, +∞)) is nondecreasing;

(ii) G(t, s) ∈ C([0, 1] × [0, 1], [0, +∞));
(iii) p(t)G(1, s) ≤ G(t, s) ≤ G(1, s), t, s ∈ [0, 1], where p(t) = tα–1.

Set E = C[0, 1] and ‖x‖ = supt∈[0,1] |x(t)|. We define the cones

P =
{

x ∈ E : x(t) ≥ 0, t ∈ [0, 1]
}

and K =
{

x ∈ P : x(t) ≥ p(t)‖x‖, t ∈ [0, 1]
}

.

For 0 < r < +∞, denote Kr = {x ∈ K : ‖x‖ < r}, ∂Kr = {x ∈ K : ‖x‖ = r} and Kr = {x ∈ K :
‖x‖ ≤ r}. Define the operators A : KR\Kr → P and L : E → E by

Ax(t) = λ

∫ 1

0
G(t, s)g(s)f

(
s, x(s)

)
ds, t ∈ [0, 1],

Lx(t) =
∫ 1

0
G(t, s)g(s)x(s) ds, t ∈ [0, 1].

Clearly, L : K → K is a completely continuous linear operator. Moreover, if x is a fixed
point of A, then x is a solution of BVP (1.1).

We further assume that:
(H1) g ∈ C((0, 1), [0,∞)) and 0 <

∫ 1
0 G(1, s)g(s) ds < +∞.

(H2) f ∈ C([0, 1] × (0,∞), [0,∞)), and for any 0 < r < R < +∞,

lim
m→∞ sup

u∈KR\Kr

∫

D(m)
g(s)f

(
s, x(s)

)
ds = 0,

where D(m) = [0, 1
m ] ∪ [ m–1

m , 1].
We obtain the following lemma using proofs similar to those in [34, 35].

Lemma 2.3 Suppose that (H1) and (H2) hold. Then A : KR\Kr → K is completely contin-
uous.

By Lemma 2.2 we can show that the spectral radius r(L) > 0; see, for example, Lemma 2.5
of [36]. Using the Krein–Rutman theorem (see Theorem 19.2 on p. 226 of [37]), we have
the following result.

Lemma 2.4 Suppose that (H1) and (H2) are satisfied. Then the first eigenvalue of L is λ1 =
(r(L))–1 > 0, and there exists a positive eigenfunction ϕ1 such that ϕ1 = λ1Lϕ1.
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The main tool in the paper is the following fixed point index theorem.

Lemma 2.5 ([38]) Let K be a cone in a Banach space E, and let T : Kr → K be a completely
continuous operator.

(i) If there exists u0 ∈ K\{θ} such that u – Tu �= μu0 for any u ∈ ∂Kr and μ ≥ 0, then
i(T , Kr , K) = 0.

(ii) If Tu �= μu for any u ∈ ∂Kr and μ ≥ 1, then i(T , Kr , K) = 1.

3 Main results
Theorem 3.1 Suppose that (H1) and (H2) are satisfied. If

0 ≤ f ∞ := lim sup
x→+∞

max
t∈[0,1]

f (t, x)
x

< λ1 < f0 := lim inf
x→0

min
t∈[0,1]

f (t, x)
x

≤ +∞,

then BVP (1.1) has at least one positive solution for any

λ ∈
(

λ1

f0
,
λ1

f ∞

)

. (3.1)

Proof By (3.1) we have f0 > λ1
λ

, and there exists r1 > 0 such that f (t, x) ≥ λ1
λ

x for 0 < x ≤ r1

and 0 ≤ t ≤ 1. For any x ∈ ∂Kr1 , we obtain

(Ax)(t) = λ

∫ 1

0
G(t, s)g(s)f

(
s, x(s)

)
ds ≥ λ1(Lx)(t), t ∈ [0, 1].

Suppose that ϕ1 is the positive eigenfunction corresponding to λ1 and that A has no fixed
points on ∂Kr1 . We claim that

x – Ax �= μϕ1, x ∈ ∂Kr1 ,μ ≥ 0. (3.2)

Otherwise, there would exist x1 ∈ ∂Kr1 and μ1 ≥ 0 such that x1 – Ax1 = μ1ϕ1. Then μ1 > 0
and x1 = Ax1 + μ1ϕ1 ≥ μ1ϕ1. Denote μ = sup{μ | x1 ≥ μϕ1}. Then μ ≥ μ1, x1 ≥ μϕ1, and
Ax1 ≥ λ1μLϕ1 = μϕ1. Thus

x1 = Ax1 + μ1ϕ1 ≥ μϕ1 + μ1ϕ1 = (μ + μ1)ϕ1,

which contradicts to the definition of μ. It follows from (3.2) and Lemma 2.5(i) that

i(A, Kr1 , K) = 0. (3.3)

On the other hand, by (3.1) we have f ∞ < λ1
λ

, and there exist r2 > r1 and 0 < σ < 1 such
that f (t, x) ≤ σ

λ1
λ

x for x ≥ r2 and 0 ≤ t ≤ 1. We define L1u = σλ1Lu. Obviously, the linear
operator L1 : E → E is bounded, and L1(K) ⊂ K . From the definition of λ1 and 0 < σ < 1 it
follows that

(
r(L1)

)–1 = (σλ1)–1(r(L)
)–1 = σ –1 > 1. (3.4)
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Choose ε0 = 1
2 (1 – r(L1)). Then by Gelfand’s formula there exists a natural number N ≥ 1

such that ‖Lk
1‖ ≤ [r(L1) + ε0]k for k ≥ N . We now define

‖x‖∗ =
N∑

i=1

[
r(L1) + ε0

]N–i∥∥Li–1
1 x

∥
∥, x ∈ E,

where L0
1 = I is the identity operator. Since L1 is linear, it is easy to verify that ‖x‖∗ is a norm

in E. Let M0 = supx∈∂Kr2
λ

∫ 1
0 G(1, s)g(s)f (s, x(s)) ds. Then M0 < +∞. We define M∗

0 = ‖M0‖∗

and take r3 > max{r2, 2M∗
0ε

–1
0 }. Noting that ‖x‖∗ > [r(L1) + ε0]N–1‖x‖, we can find r4 > r3

large enough such that ‖x‖ ≥ r4and thus ‖x‖∗ > r3.
We next prove that

Ax �= μx, x ∈ ∂Kr4 ,μ ≥ 1. (3.5)

Arguing indirectly, we get that there exist x2 ∈ ∂Kr4 and μ2 ≥ 1 such that Ax2 = μ2x2.
We define x̃(t) = min{x2(t), r2} for t ∈ [0, 1] and H(x2) = {t ∈ [0, 1] : x2(t) > r2}. It is easy
to see that ‖̃x‖ = r2. We have x̃ ∈ ∂Kr2 since x̃(t) = min{x2(t), r2} ≥ min{p(t)r4, r2} ≥ p(t)r2,
t ∈ [0, 1]. It follows that

μ2x2(t) = (Ax2)(t)

= λ

∫ 1

0
G(t, s)g(s)f

(
s, x2(s)

)
ds

≤ λ

∫

H(x2)
G(t, s)g(s)f

(
s, x2(s)

)
ds + λ

∫

[0,1]\H(x2)
G(1, s)g(s)f

(
s, x2(s)

)
ds

≤ σλ1

∫ 1

0
G(t, s)g(s)x2(s) ds + λ

∫ 1

0
G(1, s)g(s)f

(
s, x̃(s)

)
ds

≤ (L1x2)(t) + M0, t ∈ [0, 1].

Since L1(K) ⊂ K , we have 0 ≤ (Lj
1(Ax2)(t)) ≤ (Lj

1(L1x2 + M0)(t)), j = 0, 1, 2, . . . , N – 1. Then
‖Lj

1(Ax2)‖ ≤ ‖Lj
1(L1x2 + M0)‖, j = 0, 1, 2, . . . , N – 1, and hence

‖Ax2‖∗ ≤
N∑

i=1

[
r(L1) + ε0

]N–i∥∥Li–1
1 (L1x2 + M0)

∥
∥ = ‖L1x2 + M0‖∗.

Therefore we obtain

μ2‖x2‖∗ = ‖Ax2‖∗

≤ ‖L1x2‖∗ + M∗
0

=
N∑

i=1

[
r(L1) + ε0

]N–i∥∥Li
1x2

∥
∥ + M∗

0

≤ [
r(L1) + ε0

]
N–1∑

i=1

[
r(L1) + ε0

]N–i–1∥∥Li
1x2

∥
∥ +

[
r(L1) + ε0

]N‖x2‖ + M∗
0

=
[
r(L1) + ε0

]
N∑

i=1

[
r(L1) + ε0

]N–i∥∥Li–1
1 x2

∥
∥ + M∗

0
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=
[
r(L1) + ε0

]‖x2‖∗ + M∗
0

≤ [
r(L1) + ε0

]‖x2‖∗ +
ε0

2
r3

<
[
r(L1) + ε0

]‖x2‖∗ +
ε0

2
‖x2‖∗

=
[

1
4

r(L1) +
3
4

]

‖x2‖∗.

Thus 1
4 r(L1) + 3

4 ≥ 1, that is, r(L1) ≥ 1, which contradicts (3.4). It follows from (3.5) and
Lemma 2.5(ii) that

i(A, Kr4 , K) = 1. (3.6)

By (3.3), (3.6), and the additivity of the fixed point index we have

i(A, Kr4\Kr1 , K) = i(A, Kr4 , K) – i(A, Kr1 , K) = 1.

Therefore A has at least one fixed point x∗ ∈ Kr4\Kr1 , which is a positive solution of BVP
(1.1). �

4 An example
Let α = 7

2 , β = 3
2 , γ = 1

2 ,αi = 2
i2 , ξi = 1 – 1

i+1 (i = 1, 2, . . .), g(t) = 1
4√t(1–t)

,f (t, x) =
√

2 – t + | ln x|.
Consider the following fractional BVP:

⎧
⎨

⎩

D
7
2
0+ x(t) + λ 1

4√t(1–t)

√
2 – t + | ln x(t)| = 0, t ∈ (0, 1),

x(0) = x′(0) = x′′(0) = 0, D
3
2
0+ x(1) =

∑∞
i=1

2
i2 D

1
2
0+ x(1 – 1

i+1 ).
(4.1)

Direct computation shows that �(α – β) = 1,�(α – γ ) = 2,
∑∞

i=1 αiξ
α–γ –1
i = 2( π2

6 – 1), and
1

�(α–β) – 1
�(α–γ )

∑∞
i=1 αiξ

α–γ –1
i ≈ 0.355 > 0.

Let K = {x ∈ C[0, 1] : x(t) ≥ p(t)‖x‖, t ∈ [0, 1]}, where p(t) = t 5
2 . For x ∈ KR\Kr , we obtain

| ln x(t)| ≤ | ln rp(t)|+ | ln R|. Due to
∫ 1

0 | ln p(t)|dt = 5
2 , we have limm→∞

∫

D(m) | ln p(t)|dt = 0.
Since 0 ≤ G(t, s) ≤ G(1, s) ≤ 1

�( 7
2 )(2– π2

6 )
, it follows that

∫ 1
0 G(1, s)g(s) ds ≤ 1

�( 7
2 )(2– π2

6 )
×

∫ 1
0 g(s) ds = 2[�( 3

4 )]2

�( 7
2 )(2– π2

6 )
√

π
. For x ∈ KR\Kr , we have

∫ 1

0
f 2(s, x(s)

)
ds ≤

∫ 1

0

(
2 – s + | ln r| + | ln R| +

∣
∣ln p(s)

∣
∣
)

ds = 4 + | ln r| + | ln R|.

Therefore

lim
m→∞ sup

x∈KR\Kr

∫

D(m)
g(s)f

(
s, x(s)

)
ds

≤ lim
m→∞ sup

x∈KR\Kr

(∫

D(m)
g2(s) ds

) 1
2
(∫

D(m)
f 2(s, x(s)

)
ds

) 1
2

≤ lim
m→∞

√
π

(∫

D(m)

(
2 – s + | ln r| + | ln R| +

∣
∣ln p(s)

∣
∣
)

ds
) 1

2
= 0.
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Direct computation yields f ∞ = 0 and f0 = +∞. Using Theorem 3.1, we can conclude that
the BVP (4.1) has at least one positive solution for any λ ∈ (0, +∞).

5 Conclusions
We established the existence of positive solutions for the singular fractional differential
equation infinite-point BVP (1.1) using the fixed point index theory in cones. Note that
the nonlinearity may possess singularities, that is, f (t, x) may have a singularity at x = 0,
and g(t) may be singular at t = 0 or t = 1.
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