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Abstract
Recently, distributed convex optimization using a multiagent system has received
much attention by many researchers. This problem is frequently approached by
combing the consensus algorithms in the multiagent literature and the gradient
algorithms in the convex optimization literature. Compared with unconstrained
distributed optimization, the constrained case is more challenging, and it is usually
tackled by the projected gradient method. However, the projected gradient
algorithm involves projection nonlinearity and thus is hard to analyze. To avoid
gradient projection, in this paper, we present a novel distributed convex optimization
algorithm in continuous time by using mirror design. The resulting optimization
dynamics is smooth without using gradient projection and is designed in a
primal-dual framework, where the primal and dual dynamics are respectively aided
by the mirror descent and the mirror ascent. As for the merit of mirror design in our
paper, it avoids gradient projection in the optimization dynamics design and removes
the difficulty of analyzing projection nonlinearity. Furthermore, the mirror base
primal-dual optimization dynamics facilitates more convenience construction of
Lyapunov functions in the stability analysis.

Keywords: Distributed convex optimization; Mirror descent; Multiagent;
Constrained optimization

1 Introduction
Optimization is an important field in mathematics, and many engineering applications
can be converted into optimization problems [1–10]. Recent years have witnessed an in-
creasing attention on distributed convex optimization using multiagent systems [11, 12],
which is motivated by the emergence of large-scale networks such as internet networks,
wireless sensor networks, and mobile ad hoc networks. Distributed convex optimization
refers to minimizing the aggregate sum of N convex cost functions by designing N dynam-
ics, where each dynamics is distributed on one node and has only access to the information
of one cost function and the state from its neighboring dynamics. The objective is that all
the states of the N dynamics consensually and asymptotically converge to the minimizer
of the total objective function. The optimization is solved in a distributed way since each
local optimization dynamics, termed as a node on the network, uses information from
its neighbors. The distributed optimization problem has been investigated from different
perspectives; refer [11, 13–15] and references therein for details.
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For the distributed optimization problem, there were many useful algorithms reported
in the literature, such as distributed primal-dual gradient algorithm [16], nonsmooth-
analysis-based algorithm [17], and approximate-projection-based algorithm [18]. Of par-
ticular interest among them is the distributed gradient projection method [11, 19–22],
which requires computing the projection of the gradient. To overcome this difficulty,
we propose a novel distributed convex optimization algorithm utilizing the mirror as-
cent/descent method. The original mirror ascent/descent method was proposed by Ne-
mirovski and Yudin [23] and later evolved into a series of papers [24, 25]. However, most
of these algorithms were discrete-time algorithms [20, 26–28], with relatively few putting
attention on the case of continuous time [29]. As for distributed mirror descent algorithm,
the continuous-time case, compared with discrete-time case, is more attractive since it can
facilitate the use of the elegant Lyapunov argument [30] to aid the convergence analysis
and allow the tool of differential geometry to be used in optimizing constrained prob-
lem [31].

Along the line of utilizing continuous-time mirror descent algorithms for distributed
convex optimization problem, the work [32] was one of the earliest contributions; how-
ever, no proof of convergence was given there. Later, the authors in [33] presented a proof
by using tools from nonsmooth analysis and set-valued dynamical systems, but with a
limitation of only considering the simple case of unconstrained optimization, leaving the
challenging case of constrained optimization untouched. The first contribution of this pa-
per is to tackling the hard problem of constrained optimization under the framework of
continuous-time mirror descent.

Generalizion of the above works on continuous-time distributed mirror descent algo-
rithms from the unconstrained case to the constrained one is not a simple task. By re-
viewing some commonly used constrained optimization algorithms and by pointing out
their inherent disadvantages, in this paper, we apply the continuous-time mirror descent
to design a novel optimization algorithm, which overcomes these disadvantages. It is well
known that for distributed optimization problem, it is not a simple task when constraints
in the optimization problem are taken into account. To handle the constraints, a variety of
approaches, including the logarithmic barrier method [32], Lagrangian multiplier method
[15], projected consensus algorithm [11], penalty-based method [34], and global lineariza-
tion approach [9], can be resorted to. Among them, the primal-dual method is the most
popular. It transforms the constrained optimization problem into an equivalent uncon-
strained one by designing the primal and dual dynamics. We note that the dual dynamics
designed in this way is nonsmooth due to the projection operator involved to keep the
evolution of the Lagrangian multipliers within the nonnegative orphan, and therefore it is
difficult to analyze. As another contribution of this paper, we pursue a novel line of design-
ing the dual dynamics via the mirror descent method. The merit of our design is avoiding
gradient projection, and furthermore the resulting optimization dynamics is smooth.

Aside from modifying the nonsmooth dual dynamics (i.e., the dynamics for the La-
grangian multipliers) in the existing literature into a smooth version by borrowing the
idea of mirror descent algorithm, we also redesign the primal dynamics in the existing lit-
erature by using the mirror ascend. For our smooth dual dynamics, it is designed in such
a way that if the initial value of the dual variable is positive, then the value of the multi-
pliers stays positive all the time with the evolution of the dual dynamics. Such a design
has the benefit that the positive system theory can be utilized for convergence analysis.
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Also, we redesign the primal dynamics in the existing literature in a mirror descent way so
that the theory of Bregman divergence and Frenchel coupling can be utilized in the stabil-
ity analysis. The stability of our resulting primal-dual optimization dynamics is analyzed
by constructing a Lyapunov function, which is exactly the Fenchel coupling of the Breg-
man function; for details, refer the explicit form of our Lyapunov function in the proof of
Theorem 3. The construction of a new Lyapunov function and the corresponding stability
analysis constitute the last contribution of this paper.

In conclusion, the main novelties of this paper are as follows. Firstly, we obtain a
continuous-time and distributed version of mirror descent algorithm, which complements
the existing distributed optimization discrete-time algorithms. Secondly, the results in
this paper consider the more challenging case of constrained distributed mirror descent
algorithms, extending the existing results, which only deal with the unconstrained case.
The third superiority of our method in comparison with existing results lies in the fact
that it avoids using gradient projection in the optimization algorithm design. Therefore,
it removes the difficulty of analyzing the resulting nonsmooth optimization dynamics and
makes the simulation easier. Fourthly, the frequently used primal-dual algorithm for the
optimization problem in the existing literature is modified in our paper via the mirror
descent method, giving rise to new primal and dual dynamics. The modified primal dy-
namics facilitates the use of Bregman divergence and Frenchel coupling in the stability
analysis, and the redesigned dual dynamics for the evolution of positive Lagrange mul-
tiplier does not include projection and therefore reduces the complexity of convergence
analysis. Also, the construction of a Lyapunov function and the corresponding stability
analysis are novel.

The rest of this paper is organized as follows. The problem is formulated in Sect. 3. In
Sect. 4, we introduce the distributed mirror descent algorithm and use it in the primal
and dual dynamics design and in the corresponding convergence analysis. The simulation
results supporting our theoretical results are presented in Sect. 5. In Sect. 6, we summarize
the paper.

2 Preliminaries
A. Notation. By R and R+ we denote the sets of real and nonnegative real numbers, re-
spectively; Rn and R

n
+ are the sets of n-dimensional vectors and n-dimensional vectors

with nonnegative components, respectively. The norm of a vector x ∈ R
n is denoted by

‖x‖ =
√∑n

i=1 x2
i . By x ≺ 0 (x � 0) for a vector x we mean that each entry of x is less than

(less than or equal to) zero. For two vectors x, y ∈ R
n, their inner product is defined as

〈x, y〉 = xT y. We denote 1n = (1, 1, . . . , 1)T ∈ R
n and 0n = (0, 0, . . . , 0)T ∈ R

n. For a set of
vectors x1, . . . , xN ∈ R

n, we denote col{x1, . . . , xN } = (xT
1 , . . . , xT

N )T . For a number a ∈ R, the
projection P+[a] is defined to be zero if a < 0 and a if a ≥ 0. For a vector x, its projec-
tion P+[x] is defined componentwise. The n-dimensional identity matrix is denoted by
In. For arbitrary matrices A and B, A ⊗ B denotes the Kronecker product of matrices.
The eigenvalues of a matrix A ∈ R

n×n are denoted by λi(A) for i ∈ 1, . . . , n. For an inte-
ger k ≥ 1, we denote by Ck the set of k times continuously differentiable functions. For
f : Rn → R, ∇f (x) = ( ∂f (x)

∂x1
, . . . , ∂f (x)

∂xn
)T is its gradient, and for L : Rn × R

m → R, we denote
∇λL(x,λ) = ( ∂L(x,λ)

∂λ1
, ∂L(x,λ)

∂λ2
, . . . , ∂L(x,λ)

∂λn
)T . We say that f : Rn → R is a convex function if for

any x, y ∈R
n and 0 ≤ λ ≤ 1, it satisfies f ((1 – λ)x + λy) ≤ (1 – λ)f (x) + λf (y). The convexity
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of f implies ∇f (x)(y – x) ≤ f (y) – f (x). Furthermore, when x 
= y, the strict convexity of f is
equivalent to ∇f (x)(y – x) < f (y) – f (x) or to ∇2f (x) > 0.

B. Graph theory. Consider a graph G = (V ,E), where V = {1, 2, . . . , N} is the set of nodes
representing N agents, and E ⊂ V × V is the set of edges of the graph. An edge of G
is denoted by (i, j), which means that agents i and j can exchange information between
them. A graph is undirected if the edges (i, j) and (j, i) in V are considered to be the same;
otherwise, the graph is directed. The set of neighbors of node i is denoted by Ni = {j ∈ V :
(j, i) ∈ E , j 
= i}. The adjacency matrix A = [aij] of a graph G on vertex {1, . . . , N} is the N ×N
matrix with off-diagonal elements defined by specifying aij = 1 if (i, j) is an edge of G and
aij = 0 otherwise and with diagonal elements defined as aii = –

∑
j∈Ni

aij. The Laplacian
matrix L ∈ R

N×N of a graph G = (V ,E) is defined as follows: if i = j, then Lij =
∑

j∈Ni
aij,

and if i 
= j, then Lij = –aij. For any undirected graph, its Laplacian is symmetric positive
semidefinite and satisfies L · 1N = 0 · 1N . We say that the graph is strongly connected if
there is a path between any pair of vertices. Furthermore, the graph G is connected if and
only if its Laplacian matrix has a simple zero eigenvalue.

3 Problem formulation
Consider a network described by a graph G = {V ,E}, where V = {1, 2, . . . , N} represents
the set of N nodes, and E ⊂ V × V denotes the set of edges of the graph. For each node
i ∈ V , there are a convex cost function fi : Rn →R, a set of inequality constraints gij ≤ 0, j =
1, . . . , ri, and a set of equality constraints hij = 0, j = 1, . . . , si, where ri, si are positive integers,
and gij : Rn →R, j = 1, . . . , ri, and hij : Rn →R, j = 1, . . . , si, are all convex functions. If there
are no constraints for agent i, we set gij(x) ≡ 0, j = 1, . . . , si, and hij ≡ 0, j = 1, . . . , ri. The
global network cost function f : Rn → R is defined as f (x) =

∑N
i=1 fi(x). In this paper, we

consider the following optimization problem:

⎧
⎪⎪⎨
⎪⎪⎩

minimize f (x) =
∑N

i=1 fi(x),

subject to gi(x) � 0, i = 1, . . . , N ,

hi(x) = 0, i = 1, . . . , N ,

(3.1)

where gi = (gi1, . . . , giri )T and hi = (hi1, . . . , hisi )T . Obviously, gi : Rn → R
r and hi : Rn → R

s,
where r = r1 + · · ·+rN and s = s1 + · · ·+ sN . The optimization problem is to find x∗ ∈R

n such
that the objective function f (x) is minimized and the constraints gi(x∗) � 0 and hi(x∗) = 0
are satisfied. Such x∗ is called the optimal solution, and the corresponding value f ∗ = f (x∗)
is called the optimal value.

This problem is usually solved by introducing a Lagrangian function and its saddle point,
which are defined as follows.

Definition 1 (Lagrangian function [35]) The Lagrangian function associated with prob-
lem (3.1) is defined as a mapping L : Rn ×R

r
+ ×R

s →R specified by

L(x,λ,ν) =
N∑

i=1

fi(x) +
N∑

i=1

ri∑
j=1

λijgij(x) +
N∑

i=1

si∑
j=1

νijhij(x), (3.2)

where λ = col{λ1, . . . ,λN } with λi = col{λi1, . . . ,λiri} ∈ R
ri
+ , and ν = col{ν1, . . . ,νN } with νi =

col{νi1, . . . ,νisi} ∈R
si . Obviously, λ ∈R

r
+ and ν ∈R

s.
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Definition 2 (Saddle point [36]) A couple (x∗, (λ∗,ν∗)) ∈R
n × (Rr

+ ×R
s) is a saddle point

of the Lagrangian function L if it satisfies

L
(
x∗, (λ,ν)

) ≤ L
(
x∗,

(
λ∗,ν∗)) ≤ L

(
x,

(
λ∗,ν∗)).

To the Lagrangian function L(x,λ,ν), there corresponds the Lagrange dual function � :
R

r
+ ×R

s →R defined as

�(λ,ν) = inf
x∈Rn

L(x,λ,ν).

Obviously, �(λ,ν) = infx∈Rn L(x,λ,ν) ≤ L(x∗,λ,ν) ≤ f (x∗) = f ∗. So the dual function pro-
vides a lower bound for the optimal value. We hope that the best lower bound

ρ∗ = sup
λ�0,v∈Rs

�(λ,ν).

The couple of values (λ∗,ν∗) satisfying �(λ∗,ν∗) = ρ∗ is called the dual optimal solution,
whereas x∗ achieving f (x∗) = f ∗ is called the primal optimal solution. The case f ∗ = ρ∗ can
be guaranteed by imposing, for example, the Slater condition as follows.

Definition 3 (Slater’s constraint qualification certificate [36]) The Slater constraint quali-
fication certificate is satisfied by (3.1) if there exists x ∈R

n such that gi(x) ≺ 0 and hi(x) = 0
for i = 1, . . . , N .

It can be shown that the saddle point (x∗, (λ∗,ν∗)) of the Lagrangian L(x,λ,ν) associated
with problem (3.1) provides an optimal solution x∗ to the optimization problem (3.1), but
conversely, the primal optimal solution x∗ together with the dual optimal solution (λ∗,ν∗)
does not provide a saddle point (x∗, (λ∗,ν∗)) for L(x,λ,ν). To achieve this, the following
theorem, which can be found in [36, 37], is useful.

Theorem 1 If the pair (x∗, (λ∗,ν∗)) is a saddle point for L(x,λ,ν), then x∗ is an optimal
solution to problem (3.1). Conversely, if x∗ is an optimal solution to problem (3.1), then
there exists a couple of points (λ∗,ν∗) ∈ R

r
+ ×R

s such that (x∗, (λ∗,ν∗)) is a saddle point for
L(x,λ,ν).

Remark 1 According to this theorem, finding an optimal solution x∗ of problem (3.1)
transforms to seeking a saddle point (x∗, (λ∗,ν∗)) of the Lagrangian L(x,λ,ν) in (3.2). The
latter amounts to minimizing the Lagrangian with respect to x and maximizing the La-
grangian with respect to (λ,ν).

Another useful concept characterizing the optimal solution to problem (3.1) is the KKT
conditions stated in the following theorem [36].

Theorem 2 Suppose that the Slater conditions in Definition 3 are satisfied and fi, gi, hi,
i = 1, . . . , N , are convex. Then x∗ is a solution of (3.1) if and only if there exists (λ∗,ν∗) ∈
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R
r
+ ×R

s such that the following conditions (called the KKT conditions) hold:

KKT:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

gij(x∗) ≤ 0, j = 1, . . . , ri,

hij(x∗) = 0, j = 1, . . . , si,

λ∗
ij ≥ 0, j = 1, . . . , ri,

λ∗
ijgij(x∗) = 0, j = 1, . . . , ri,∑N

i=1 ∇fi(x∗) +
∑N

i=1
∑ri

j=1 λ∗
ij∇gij(x∗) +

∑N
i=1

∑si
j=1 ν∗

ij∇hij(x∗) = 0.

(3.3)

The point (x∗,λ∗,ν∗) obtained in Theorem 2 is called the KKT point. Motivated by this
theorem, we will tackle the constrained optimization problem (3.1) by adopting the dy-
namical system approach. We formulate the problem in detail as follows.

Problem formulation: In what follows, we will design in a distributed way a continuous-
time dynamics for (x,λ,ν) such that:

• the dynamics is smooth by avoiding projection;
• the equilibrium of this dynamics is exactly the saddle point or the KKT point;
• the equilibrium of this dynamics is asymptotically stable;
• the λ-subdynamics remains nonnegative all the time for a nonnegative initial

condition.

Remark 2 In the literature, the gradient method is used to design the primal dynamics
ẋ = –∇xL(x,λ,ν), and the projected gradient method is applied to design the dual dy-
namics λ̇ = P+[∇λL(x,λ,ν)], ν̇ = ∇νL(x,λ,ν). The λ-dynamics is obviously nonsmooth. To
overcome the difficulty of the nonsmoothness in the dual dynamics, this paper proposes
a mirror descent method, rather than the projected gradient method, to design a smooth
λ-dynamics. This paper also extends the gradient x-dynamics to a mirror descent setup
and the distributed framework.

4 Distributed mirror descent algorithm for constrained optimization
According to Theorems 1 and 2, the constrained optimization problem (3.1) can be trans-
formed to solving the unconstrained optimization problem of minimizing the Lagrangian
L(x,λ,ν) with respect to x and maximizing L(x,λ,ν) with respect to (λ,ν). Let us review
the traditional way to tackle these minimization and maximization problems:

• Minimization of L(x,λ,ν) with respect to x can be realized by designing a dynamics
following the gradient descent as ẋ = –∇xL(x,λ,ν), extended in a distributed way by
including a consensus term to the following form:

ẋi = –∇fi(xi) –
ri∑
j

λij∇gij(xi) –
si∑
j

νij∇hij(xi) +
∑
j∈Ni

(xj – xi). (4.1)

• Likewise, maximization of L(x,λ,ν) with respect to (λ,ν) can be achieved by resorting
the projected gradient ascent method λ̇ = P+[∇λL(x,λ,ν)], ν̇ = ∇νL(x,λ,ν), or more
specifically,

λ̇ij = P+
[
gij(xi)

]
, j = 1, . . . , ri, (4.2)

ν̇ij = hij(xi), j = 1, . . . , si, (4.3)

where the projection P+ is used to keep positive λij(t) all the time.
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In this section, we will borrow the mirror method to redesign the projected λ-dynamics in
(4.2) such that the redesigned λ-dynamics is smooth and positive invariant with respect to
� = {λ | λij ≥ 0, j = 1, . . . ri, i = 1, . . . , N}. More specifically, Sect. 4.1 is devoted to the general
theory of continuous-time mirror descent, which is used to redesign the dual λ-dynamics
in Sect. 4.2 and x-dynamics in Sect. 4.3.

4.1 General theory on mirror descent
The mirror descent algorithm is devoted to the constrained minimization problem

min
x∈X

�(x), (4.4)

where X is a convex compact set in R
n. To explain this algorithm, the following definitions

are reviewed for later use.

Definition 4 (Distance-generating function [29]) A function φ : X → R is called a
distant-generating function modulus α > 0 with respect to ‖ · ‖ if φ is convex and con-
tinuous on X , the set X o = {x ∈ X | ∇φ(x) 
= ∅} is convex (note that X o contains the rela-
tive interior ofX ) and φ restricted toX o is continuously differentiable and strongly convex
with parameter α with respect to ‖ ·‖ in the sense that (y – x)T (∇φ(y) –∇φ(x)) ≥ α‖y – x‖2

for all x, y ∈X o.

Definition 5 (Bregman divergence [38]) A function Bφ : X o ×X →R+ defined by

Bφ(x, y) = φ(y) – φ(x) – ∇φ(x)T (y – x)

is called the Bregman divergence (or prox-function) associated with φ.

In what follows, we use the Bregman divergence associated with φ(x) =
∑N

i=1 xilog(xi);
in this case, we easily calculate

Bφ

(
x, x′) =

N∑
i=1

xi log
xi

x′
i

+
N∑

i=1

(
x′

i – xi
)
.

The definition of conjugate and its properties is very important in the analysis of mirror
image descent.

Remark 3 Let Z = {z ∈R
n | z = ∇φ(x), x ∈X }. We can define the so-called Fenchel cou-

pling F(x∗, z) = φ(x∗)+φ∗(z)–〈z, x∗〉 for x∗ ∈X and z ∈Z , which is nonnegative and strictly
convex in both arguments.

Definition 6 (Legendre–Fenchel conjugate [39]) For a distance-generating function
φ : X → R, its Legendre–Fenchel conjugate convex function φ∗ is defined as φ∗(ω) =
supx∈X {(x,ω) – φ(x)}, which can be shown to be strictly convex and twice differentiable.

In our notation, the general continuous-time mirror ascent algorithm for the con-
strained optimization problem maxx∈X �(x) takes the form

ż = ∇�(x), (4.5)
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x = ∇φ∗(z). (4.6)

Remark 4 For later use, let us give some comments regarding the Legendre–Fenchel con-
jugate and its properties:

• Similarity: we can define φ∗∗ : X →R as φ∗∗(x) = supω∈X {(ω, x) – φ∗(ω)}. Under the
condition that φ is strictly convex and twice differentiable, we have φ∗∗ = φ.

• The gradients of φ and φ∗ are inverse to each other. This can be seen as follows. For
any fixed ω∗ ∈X , evaluating φ∗(ω) = supx∈X {(x,ω) – φ(x)} at ω∗, we obtain
φ∗(ω∗) = supx∈X {(x,ω∗) – φ(x)}. Denoting the maximum by x∗, we have
(x∗,ω∗) = φ(x∗) + φ∗(ω∗) or equivalently (x∗,ω∗) = φ∗∗(x∗) + φ∗(ω∗). It then follows
that the supremum in φ(x∗) = φ∗∗(x∗) = supω∈X {(ω, x∗) – φ∗(ω)} is achieved at ω∗.
Since x∗ and ω∗ are respectively the maxima of φ∗(ω∗) = supx∈X {(x,ω∗) – φ(x)} and
φ(x∗) = supω∈X {(ω, x∗) – φ∗(ω)}, by the Fermat theorem we have ω∗ = ∇φ(x∗) and
x∗ = ∇φ∗(ω∗). Therefore, ω∗ = ∇φ(∇φ∗(ω∗)). By the arbitrariness of ω∗ it follows that
(∇φ)–1 = ∇φ∗ and (∇φ∗)–1 = ∇φ.

4.2 Mirror design for dual λ-dynamics
Recall that the optimization problem (3.1) incorporates the subproblem of maximiza-
tion of L(x,λ,ν) with respect to (λ,ν). Since there is no constraint on the multiplier ν ,
minimization of L(x,λ,ν) with respect to ν can be realized by running the dynamics
ν̇(t) = –∇νL(x(t),λ(t),ν(t)). However, the method does not apply to the minimization of
L(x,λ,ν) with respect to λ since λ is required to stay positive. To tackle this constrained
optimization problem maxλ∈� L(x,λ,ν), we use the mirror descent framework developed
in the last subsection. According to Remark 4, equation (4.6) is equivalent to z = ∇φ(x).
Taking the derivative on both sides yields ż = ∇2φ(x)ẋ, which, together with (4.5), leads to
ẋ = [∇2φ(x)]–1∇�(x).

Now, by replacing �(x) and X in (4.4) respectively with �(x) = L(x,λ,ν) and X = � the
rephrased mirror ascent algorithm in this case becomes λ̇ = [∇2φ(λ)]–1∇λL(x,λ,ν). Noting
that the constraint set is �, we chose φ to be φ(λ) = α

2 ‖ λ ‖2 + β
∑N

i=1
∑ri

j=1 λij lnλij, which
is well defined on R

r
+, where α and β are arbitrary real numbers. We can check that ∇φ is

a surjective mapping from � to R
r . Now the ∇2φ(λ) can be easily calculated as

∇2φ(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α + β

λ11
. . .

α + β

λ1r1
α + β

λ21
. . .

α + β

λ2r2
. . .

α + β

λN1
. . .

α + β

λNrN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and, consequently,

[∇2φ(λ)
]–1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ11
β+αλ11

. . .
λ1r1

β+αλ1r1
λ21

β+αλ21
. . .

λ2r2
β+αλ2r2

. . .
λN1

β+αλN1
. . .

λNrN
β+αλNrN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, the mirror ascent algorithm λ̇ = [∇2φ(λ)]–1∇λL(x,λ,ν) can be explicitly repre-
sented as

λ̇ij(t) =
λij(t)

β + αλij(t)
gij

(
xi(t)

)
, j = 1, . . . , ri, i = 1, . . . , N .

It can be shown by positive system theory that λij(t) remains nonnegative for all t ≥ 0 if
λij(0) ≥ 0.

4.3 Distributed mirror descent design for primal x-dynamics
Let φ be a distant-generating function and define Z = {z ∈R

n | z = ∇φ(x), x ∈X } to be the
image ofX under the mapping ∇φ. Then ∇φ : X →Z . It also follows from Remark (4) that
∇φ∗ : Z → X . With these preparations, the x-dynamics (4.1) defined in the state space
X = R

n can be extended to the mirror descent dynamics (x, z) defined in the extended sate
space X ×Z as follows:

żi = –∇fi(xi) –
ri∑
j

λij∇gij(xi) –
si∑
j

νij∇hij(xi) +
∑
j∈Ni

(xj – xi),

xi = ∇φ∗(zi).

(4.7)

In conclusion, for the optimization problem (3.1), we obtain the following mirror algo-
rithm:

żi = –∇fi(xi) –
ri∑
j

λij∇gij(xi) –
si∑
j

νij∇hij(xi) +
∑
j∈Ni

(xj – xi), (4.8a)

xi = ∇φ∗(zi), (4.8b)

λ̇ij =
λij

β + αλij
gij(xi), j = 1, . . . , ri, (4.8c)

ν̇ij = hij(xi), j = 1, . . . , si. (4.8d)
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Let x∗ be the optimal solution of the optimization problem (3.1), and let λ∗
ij and ν∗

ij be
defined as in Theorem 2. Define X = (x1, . . . , xN )T and X∗ = (x∗, . . . , x∗). Then by Theo-
rem 2 we can see that (X∗,λ∗,ν∗) is the equilibrium of the dynamical system (4.8a)–(4.8d).
Therefore, if we can prove the asymptotic stability of the equilibrium (X∗,λ∗,ν∗) of the dy-
namical system (4.8a)–(4.8d), then X(t)

t→∞−→ X∗, which implies that the states of all agents
can estimate the optimal solution x∗ consensually and asymptotically. The following the-
orem presents a convergence analysis for system (4.8a)–(4.8d).

Theorem 3 For the constrained optimization problem (3.1), let the Slater’constraint qual-
ification certificate in Definition 3 be satisfied. Suppose there are N agents whose dynamics
are given by (4.8a)–(4.8d) and connected by a fixed network. Then for any initial condition
with λij(0) ≥ 0, we have λij(t) ≥ 0 and limt→∞ ‖xi(t) – x∗‖ = 0.

Proof We use the Lyapunov method to prove the stability. To this end, construct a Lya-
punov candidate V (X,λ,ν) = V1 + V2 + V3 + V4 as

V1 =
N∑

i=1

[
φ
(
x∗) + φ∗(zi) –

〈
zi, x∗)], zi = ∇φ(xi),

V2 =
1
2

N∑
i=1

ri∑
j=1

α
(
λij – λ∗

ij
)2,

V3 =
N∑

i=1

ri∑
j=1

β

[(
λij – λ∗

ij
)

–
∑
i,j∈⋃

λ∗
ij
(
lnλij – lnλ∗

ij
)]

,

V4 =
1
2

N∑
i=1

si∑
j=1

(
νij – ν∗

ij
)2,

where
⋃

= {i, j | λ∗
ij 
= 0}. According to the third equation in (4.8a)–(4.8d), we see that

λij(t) ≥ 0 if λij(0) > 0; this equation also implies λ̇ij ≤ 0, which means that λij(t) is a de-
creasing function of t, and consequently λij(t) ≥ λ∗

ij > 0 for i, j ∈ ⋃
. Thus, V3 is well defined.

Further, a simple calculation shows that V3 ≥ 0. (In fact, V3 is the Bregman divergence in-
duced by φ(x) =

∑
i xi ln xi with respect to norm ‖ ·‖1.) Therefore, V ≥ 0 and V (X,λ,ν) = 0

if and only if (X,λ,ν) = (X∗,λ∗,ν∗).
We now calculate the time derivative of the Lyapunov function V along the trajectories

of system (4.8a)–(4.8d). For V1, a straightforward calculation shows that

V̇1 =
N∑

i=1

[∇φ∗(zi)żi –
〈
żi, x∗〉]

=
N∑

i=1

[〈
żi,∇φ∗(zi)

〉
–

〈
żi, x∗〉]

=
N∑

i=1

[〈
żi, xi – x∗〉]

=
N∑

i=1

[〈
xi – x∗, –∇fi(xi) +

∑
j∈Ni

(xj – xi) –
ri∑

j=1

λij∇gij(xi) –
si∑

j=1

νij∇hij(xi)

〉]
.
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Since (y – x)T∇f (x) ≤ f (y) – f (x) and LX∗ = 0, we get

V̇1 =
N∑

i=1

(
xi – x∗)T(

–∇fi(xi)
)

+
N∑

i=1

〈
xi – x∗,

∑
j∈Ni

(xj – xi)
〉

–
N∑

i=1

ri∑
j=1

λij
(
xi – x∗)T∇gij(xi) –

N∑
i=1

si∑
j=1

νij
(
xi – x∗)T∇hij(xi)

≤ –
(
X – X∗)TL

(
X – X∗) +

N∑
i=1

fi
(
x∗) –

N∑
i=1

fi(xi)

+
N∑

i=1

ri∑
j=1

λijgij
(
x∗) –

N∑
i=1

ri∑
j=1

λijgij(xi) +
N∑

i=1

si∑
j=1

νijhij
(
x∗) –

N∑
i=1

si∑
j=1

νijhij(xi).

Furthermore,

V̇2 + V̇3 =
N∑

i=1

ri∑
j=1

αλij(λij – λ∗
ij)

β + αλij
gij(xi) +

N∑
i=1

ri∑
j=1

βλij

β + αλij
gij(xi) –

∑
i,j∈⋃

βλ∗
ij

β + αλij
gij(xi)

=
N∑

i=1

ri∑
j=1

(
λij – λ∗

ij
)
gij(xi),

V̇4 =
N∑

i=1

si∑
j=1

(
vij – v∗

ij
)
hij(xi).

Combining these calculations together yields

V̇ ≤
N∑

i=1

fi
(
x∗) +

N∑
i=1

ri∑
j=1

λijgij
(
x∗) +

N∑
i=1

si∑
j=1

νijhij
(
x∗)

–
N∑

i=1

fi(xi) –
N∑

i=1

ri∑
j=1

λ∗
ijgij(xi) –

N∑
i=1

si∑
j=1

ν∗
ijhij(xi)

–
(
X – X∗)TL

(
X – X∗).

According to definition (1), we now define another Lagrangian L̄ : RnN ×R
r
+ ×R

s → R as
follows:

L̄(X,λ,ν) =
N∑

i=1

fi(xi) +
N∑

i=1

ri∑
j=1

λijgij(xi) +
N∑

i=1

si∑
j=1

νijhij(xi). (4.9)

Then we get

V̇ ≤ L̄
(
X∗,λ,ν

)
– L̄

(
X,λ∗,ν∗) –

(
X – X∗)TL

(
X – X∗)

≤ 0.
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We finally prove the asymptotic stability of the equilibrium. To this end, letting V̇ = 0
yields

L̄
(
X∗,λ,ν

)
– L̄

(
X,λ∗,ν∗) = 0, (4.10)

(
X – X∗)TL

(
X – X∗) = 0. (4.11)

Since the graph is connected, it then follows from (4.11) that X = X∗. Also noting that
(X∗, (λ∗,ν∗)) is a saddle point of the Lagrangian L̄, we have L̄(X∗,λ, v) = L̄(X,λ∗, v∗) =
L̄(X∗,λ∗, v∗). This yields

∑N
i=1

∑ri
j=1(λij – λ∗

ij)gij(x∗) = 0. Since gij(x∗) ≤ 0 and λij ≥ λ∗
ij, it

follows that(λij – λ∗
ij)gij(x∗) = 0. The KKT condition λ∗

ijgij(x∗) = 0 implies that, for all
λij ∈ {λij | gij(x∗) < 0}, λij = 0. Then from equation (4.8a) we have ∇fi(x∗) +

∑ri
j λij∇gij(x∗) +∑si

j νij∇hij(x∗) = 0. Therefore the KKT condition is satisfied, and by uniqueness λij = λ∗
ij,

νij = ν∗
ij . Therefore (X,λ, v) = (X∗,λ∗, v∗). The application of the Lasalle invariance princi-

ple in [40] yields that (X∗,λ∗, v∗) of system (4.8a)–(4.8d) is asymptotically stable almost
surely. �

5 Simulation
Consider the optimization problem (3.1) on a network with five agents. The five local cost
functions for five agents are as follows: f1(x1, x2) = 4x2

1 + 2x2, f2(x1, x2) = 2x2, f3(x1, x2) = 4x1,
f4(x1, x2) = 2x2, f5(x1, x2) = 3x1 + x2. Assume that agent 1 has both inequality and equality
constraints with constraint functions g1(x1, x2) = (x1 – 2)2 – x2 + 1 and h1(x1, x2) = 2x1 –
x2. Agent 2 has the inequality constraint g2(x1, x2) = –x1 + x2 – 2, whereas there are no
constraints for agents 3, 4, 5. We can check that all functions mentioned are convex and the
constrained set is nonempty. The true optimal solution and optimal value of this problem
are (x∗

1, x∗
2) = (1, 2) and f̃ (x∗

1, x∗
2) = 23.

In the literature the method of projected gradient descent is widely used to solve this
problem where the projected gradient is hard to compute. For example, if the gradi-
ent projection algorithm in [37] is used here, then we should solve the following itera-
tive problem: xk+1 = �X (xk – rkf ′(xk)), where �X (x) is the projection of a vector x ∈ R

n

onto the convex compact set X ⊂ R
n in the sense of �X (x) = infy∈X ‖y – x‖. In our case,

X = {x ∈R
n | gi(x) � 0, hi(x) = 0, i = 1, . . . , N}. Obviously, computation of �X (xk – rkf ′(xk))

is a heavy job, and additional algorithms such as [11, 41] should be adopted. By contrast,
our algorithm (4.8a)–(4.8d) avoids using projection and thus is easier to carry out.

Now we apply our distributed convex optimization algorithm (4.8a)–(4.8d) by using five
agents that are connected as in Fig. 1 to find the optimal solution. The Laplacian matrix
of this undirect graph is

L =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 –1 0 0 0
–1 2 –1 0 0
0 –1 3 –1 –1
0 0 –1 1 0
0 0 –1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Set the initial values of the five agents states as x1(0) = (–2, 4)T , x2(0) = (–3, 3)T , x3(0) =
(1, –2)T , x4(0) = (–1, 2)T , x5(0) = (4, 2)T , λ1(0) = 3, λ2(0) = 3, ν(0) = 3, respectively. The
time evolution of the states for five agents is illustrated in Fig. 2, where subfigure (a) shows
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Figure 1 The information exchange among five agents

Figure 2 The time evolution of the states for 5 agents: (a) The first component of each state, which
asymptotically converges to 1; (b) The second component of each state which asymptotically converges to 2.
Therefore, each state of the 5 agents converges to the optimal solution (1, 2)

the first component of each state, which asymptotically converges to 1, and subfigure (b)
shows the second component of each state, which asymptotically converges to 2. There-
fore, each state of the five agents asymptotically converges to the optimal solution (1, 2).

Some comparisons of our method with existing algorithm are included here. For exam-
ple, in the spirit of the primal-dual algorithm in [30], the dynamics for the Lagrange mul-
tiplier should be designed as λ̇ = 
P+[–( ∂L

∂λ
)] = 
P+[g(x)] with any positive definite matrix


. To make the value of multiplier corresponding to the inequality constraint stay posi-
tive all the time, the projection P+[g(x)] is also used, and thus the corresponding dynamics
is nonsmooth. This obviously causes difficulties in simulation and convergence analysis.
In contrast, our algorithm uses equations (4.8c)–(4.8d) for the evolution of the Lagrange
multipliers, which are smooth dynamics and easy to simulate.

6 Conclusion
When considering distributed convex optimization using multiagent systems, a con-
sensus-based distributed method is usually adopted. It is well known that, for a distributed
optimization problem, it is a challenging problem if the constraint is taken into account.
One popular method to deal with constraints is based on the projection, which causes the
optimization dynamics to be nonsmooth. To overcome this difficulty, we propose a novel
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distributed convex optimization algorithm utilizing the mirror descent method. Although
there are reported results in the field of the mirror descent for the distributed optimiza-
tion problem, most of them are presented in the discrete-time form. For the results on
continuous-time mirror descent, they work only for unconstrained optimization. Our al-
gorithm is valid for the more challenging case of constrained optimization. The superiority
of our method in comparison with existing results lies in the fact that our method avoids
using gradient projection in the optimization algorithm design. Therefore, it removes the
difficulty of analyzing the resulting nonsmooth optimization dynamics and makes the sim-
ulation easier. By the aid of mirror descent, in our paper, we modify the frequently used
primal-dual algorithm for the optimization problem, giving rise to new primal and dual
dynamics. The modified primal dynamics facilitates more convenient use of Bregman di-
vergence and Frenchel coupling in the stability analysis, and the redesigned dual dynamics
for the evolution of positive Lagrange multiplier does not include projection and therefore
reduces the complexity of convergence analysis.

Note that avoiding projection (and therefore avoiding using nonsmooth optimization
dynamics) is a key in our paper. This forms a sharp contrast to the nonsmooth optimiza-
tion problem as in [9]. A direct connection and adoption of our method to the nonsmooth
case as in [9] however needs further investigation.
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