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Abstract
This paper is a continuation of the work (Lastra and Malek in J. Differ. Equ.
259(10):5220–5270, 2015) where singularly perturbed nonlinear PDEs have been
studied from an asymptotic point of view. Here, the partial differential operators are
combined with particular Moebius transforms in the time variable. As a result, the
leading term of the main problem needs to be regularized by means of a singularly
perturbed infinite order formal irregular operator that allows us to construct a set of
genuine solutions in the form of a Laplace transform in time and an inverse Fourier
transform in space. Furthermore, we obtain Gevrey asymptotic expansions for these
solutions of some order K > 1 in the perturbation parameter.
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1 Introduction
In this work, we deal with the study of a family of nonlinear singularly perturbed equations
which combine linear fractional transforms, partial derivatives, and differential operators
of infinite order of the form

Q(∂z)u(t, z, ε) = exp
(
αεktk+1∂t

)
R(∂z)u(t, z, ε) + P

(
t, ε, {mκ ,t,ε}κ∈I , ∂t , ∂z

)
u(t, z, ε)

+ Q1(∂z)u(t, z, ε)Q2(∂z)u(t, z, ε) + f (t, z, ε), (1)

where α, k > 0 are real numbers, Q(X), R(X), Q1(X), Q2(X) stand for polynomials with
complex coefficients and P(t, ε, {Uκ}κ∈I , V1, V2) represents a polynomial in t, V1, V2, of
degree at most one with respect to Uκ , and holomorphic coefficients w.r.t. ε near the origin
in C, where the symbol mκ ,t,ε denotes a Moebius operator acting on the time variable.
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More precisely, we have

mκ ,t,εu(t, z, ε) = u
(

t
1 + κεt

, z, ε
)

,

where κ belongs to some finite subset I of the positive real numbers R∗
+. The forcing term

f (t, z, ε) turns out to be an analytic function in a vicinity of the origin with respect to (t, ε)
and holomorphic w.r.t. z on a horizontal strip of the form Hβ = {z ∈ C/| Im(z)| < β} for
some β > 0.

This work is a continuation of our previous study [15], where the following problem is
considered:

Q(∂z)∂ty(t, z, ε) = H(t, ε, ∂t , ∂z)y(t, z, ε) + Q1(∂z)y(t, z, ε)Q2(∂z)y(t, z, ε) + f (t, z, ε), (2)

for given vanishing initial data y(0, z, ε) ≡ 0, where Q1, Q2, H stand for polynomials and
f (t, z, ε) is of the same nature as above. Under suitable constraints on the components of
(2), we make use of Laplace and inverse Fourier transforms in order to construct a set of
genuine bounded holomorphic solutions yp(t, z, ε), 0 ≤ p ≤ ς – 1, for some integer ς ≥ 2.
Such solutions are defined on domains T × Hβ × Ep for some well-selected bounded sec-
tor T with vertex at 0 and E = {Ep}0≤p≤ς–1 a set of bounded sectors whose union contains
a full neighborhood of 0 in C

∗. Such solutions share a common asymptotic expansion with
respect to the perturbation parameter, say ŷ(t, z, ε) =

∑
n≥0 yn(t, z)εn. The formal power se-

ries ŷ(t, z, ε) presents bounded holomorphic coefficients yn(t, z) on T × Hβ . Furthermore,
this asymptotic expansion turns out to be (at most) of Gevrey order 1/k′ for some integer
k′ ≥ 1 (see Definition 7). The Gevrey asymptotic behavior comes from the highest order
term of the differential operator L, which is of irregular type in the sense of [20] and has
the form

L(t, ε, ∂t , ∂z) = ε(δD–1)k′
t(δD–1)(k′+1)∂

δD
t RD(∂z) (3)

for some integer δD ≥ 2 and a polynomial RD(X). In the case that the aperture of Ep can be
chosen to be larger than π/k′, the function ε �→ yp(t, z, ε) represents the k′-sum of ŷ on Ep

as described in Definition 7.
The purpose of the present contribution is to come up with a comparable statement,

namely the existence of sectorial holomorphic solutions and associated asymptotic ex-
pansions as ε tends to 0 with controlled Gevrey bounds. However, the appearance of the
nonlocal Moebius operator mκ ,t,ε changes drastically the whole picture in comparison with
our previous investigation [15]. More precisely, a leading term of finite order δD ≥ 2 in
time as described in (3) is not satisfactory enough to ensure the construction of actual
holomorphic solutions to our initial problem (1). In contrast, it is substituted by an expo-
nential formal differential operator

exp
(
αεktk+1∂t

)
R(∂z) =

∑

p≥0

(αεk)p

p!
(
tk+1∂t

)(p)R(∂z)

of infinite order w.r.t. t. Here, (tk+1∂t)(p) represents the pth iterate of the irregular differ-
ential operator tk+1∂t. As a result, (1) becomes singularly perturbed of irregular type of
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infinite order in time. The reason for the choice of such a new leading term will be put
into light later on in the introduction.

A similar regularization procedure has been introduced in a different context in the
paper [4] in order to obtain entire solutions in space of hydrodynamical PDEs such as the
3D Navier–Stokes equations

∂tv(t, x) + v(t, x) · ∇v(t, x) = –∇p(t, x) – μ
v(t, x), ∇ · v(t, x) = 0,

for given 2π-periodic initial data v(0, x) = v0(x1, x2, x3) on R3. In that study, the usual
Laplacian 
 =

∑3
j=1 ∂2

xj
is replaced by a (pseudo differential) operator exp(λA1/2), where

λ > 0 and A stands for the differential operator –∇2, whose Fourier symbol is exp(λ|k|) for
k ∈ Z

3 \ {0}. The resulting problem admits a solution v(t, x) that is analytic w.r.t. x in C
3 for

all t > 0, whereas the solutions of the initial problem are expected to exhibit singularities
in space.

Under appropriate restrictions on the shape of equation (1) (see Theorem 1), we prove
the existence of

1. A set E of bounded sectors as mentioned above, which forms a so-called good
covering in C

∗ (see Definition 5);
2. A bounded sector T with bisecting direction d = 0;
3. A set of directions dp ∈ (– π

2 , π
2 ), 0 ≤ p ≤ ς – 1 such that the halflines

Ldp = R+ exp(
√

–1dp) avoid the infinite set of zeros of the map
τ �→ Q(im) – exp(αkτ k)R(im) for all m ∈R,

for which we can construct a family of bounded holomorphic solutions up(t, z, ε) on the
products T × Hβ × Ep. Each solution up can be expressed as a Laplace transform of some
order k and Fourier inverse transform

up(t, z, ε) =
k

(2π )1/2

∫ +∞

–∞

∫

Ldp

wdp (u, m, ε) exp

(
–
(

u
εt

)k)
eizm du

u
dm, (4)

where wdp (u, m, ε) stands for a function with (at most) exponential growth of order k on
a sector containing Ldp w.r.t. u, owning exponential decay w.r.t. m on R and analytic on
ε near 0 (see Theorem 1). Moreover, we show that the functions ε �→ up(t, z, ε) admit
a common asymptotic expansion û(t, z, ε) =

∑
m≥0 hm(t, z)εm on Ep that defines a formal

power series with bounded holomorphic coefficients on T × Hβ . Besides, it turns out that
this asymptotic expansion is (at most) of Gevrey order 1/k and leads to k-summability on
Ep0 provided that one sector Ep0 has opening larger than π/k (see Theorem 2).

Another substantial difference between problems (1) and (2) lies in the fact that the real
number k is asked to be less than 1. The situation k = 1 is not covered by the techniques
developed in this work and is postponed for future inspection. However, the special case
k = 1 has already been considered by the authors at the time of studying some families
of Cauchy problems, giving rise to double scale structures involving 1 and 1+ Gevrey esti-
mates (see [17, 19]). Observe that if one performs the change of variable t = 1/s, then equa-
tion (1) is transformed into a singularly perturbed PDE combined with small shifts. More
precisely, let u(t, z, ε) = X(s, z, ε). Then, small shifts of the form Tκ ,εX(s, z, ε) = X(s +κε, z, ε)
are found for κ ∈ I . This restriction concerning the Gevrey order of formal expansions of
the analytic solutions is rather natural in the context of difference equations as observed
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by Braaksma and Faber in [5]. Namely, if A(x) stands for an invertible matrix of dimension
n ≥ 1 with meromorphic coefficients at ∞, and G(x, y) represents a holomorphic func-
tion in 1/x and y near (∞, 0), then it holds that, under suitable assumptions on the formal
fundamental matrix Ŷ (x) of the linear equation y(x + 1) = A(x)y(x), any formal solution
ŷ(x) ∈C

n[[1/x]] of the nonlinear difference equation

y(x + 1) – A(x)y(x) = G
(
x, y(x)

)

can be decomposed as a sum of formal series ŷ(x) =
∑q

h=1 ŷh(x) where each ŷh(x) turns out
to be kh-summable on suitable sectors for some real numbers 0 < kh ≤ 1 for 1 ≤ h ≤ q.

In order to construct the family of solutions {up}0≤p≤ς–1 mentioned above, we follow
an approach that has been successfully applied by Faber and van der Put in [8], in the
study of formal aspects of differential-difference operators such as the construction of
Newton polygons, factorizations, and the extraction of formal solutions. This consists in
considering the shift x �→ x + κ as a formal differential operator of infinite order via the
Taylor expansion at x, see (25). In our framework, the action of the Moebius transform
T �→ T

1+κT is seen as an irregular operator of infinite order that can be formally written in
the exponential form

exp
(
–κT2∂T

)
=

∑

p≥0

(–1)p κp

p!
(
T2∂T

)(p).

If one seeks for genuine solutions in the form (4), then wdp (τ , m, ε) would have to solve
a related convolution equation (31) that involves infinite order operators exp(–κCk(τ )),
where Ck(τ ) denotes the convolution map given by (28). It turns out that this operator
exp(–κCk(τ )) acts on spaces of analytic functions f (τ ) with (at most) exponential growth of
order k, i.e., bounded by C exp(ν|τ |k) for some C,ν > 0 with type ν depending on κ , k, and ν

as shown in Proposition 2 (48). It is worth mentioning that the use of precise bounds at in-
finity on the so-called Wiman special function Eα,β (z) =

∑
n≥0 zn/�(β + αn), for α,β > 0, is

crucial in the proof, so the order k is preserved under the action of exp(–κCk(τ )). Observe
that this function also played a central role at the moment of proving multisummability
properties of formal solutions in a perturbation parameter to certain families of nonlinear
PDEs as described in our previous work [16]. As a result, the presence of an exponential
type term exp(αkτ k) in front of equation (31), and therefore the infinite order operator
exp(αεktk+1∂t) as a leading term of (1) is well motivated in our problem and seems un-
avoidable to us in order to compensate such exponential growth.

We mention that a similar strategy has been carried out by Ōuchi in [21] who considered
functional equations

u(z) +
m∑

j=2

aju
(
z + zpϕj(z)

)
= f (z),

where p ≥ 1 is an integer, aj ∈ C
∗ and ϕj(z), f (z) stand for holomorphic functions near

z = 0. He established the existence of formal power series solutions û(z) ∈ C[[z]] that are
p-summable in suitable directions. This result is attained by solving an associated convo-
lution equation of infinite order for the Borel transform of order p in analytic functional
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spaces with (at most) exponential growth of order p on convenient unbounded sectors.
More recently, in the work in progress [10], Hirose, Yamazawa, and Tahara are extending
the above statement to more general functional PDEs such as

u(t, x) = a1(t, x)(t∂t)2(u
(
t + t2, x

))
+ a2(t, x)∂xu

(
t + t2, x

)
+ f (t, x)

for analytic coefficients a1, a2, f near 0 ∈ C
2 for which the formal series solutions

û(t, x) =
∑

n≥1

un(x)tn,

which can be built up, are shown to be multisummable following appropriate multidirec-
tions in the sense defined in [2].

In a wider framework, there exists a vast amount of literature dealing with infinite order
PDEs/ODEs both in mathematics and in theoretical physics. We just quote some recent
references somehow related to our research interests. In the paper [1], the authors study
formal solutions and their Borel transform of singularly perturbed differential equations
of infinite order

∑

j≥0

ε jPj(x, ε∂x)ψ(x, ε) = 0,

where Pj(x, ξ ) =
∑

k≥0 aj,k(x)ξ k represent entire functions with appropriate growth fea-
tures. For a nice introduction on the point of view introduced by Sato, the algebraic mi-
crolocal analysis, we refer to [12]. Other important contributions on infinite order ODEs
in this context of algebraic microlocal analysis are [13, 14].

In our work, we apply the classical parameter expanding method. More precisely, our
solutions up(t, z, ε) can be approximated by its power series expansion in the small param-
eter ε:

up(t, z, ε) ∼
∑

n≥0

hm(t, z)εm

as ε tends to 0. However, it should be mentioned that there exist many other powerful
recent alternative analytic asymptotic approaches that can handle singularly perturbed
problems such as the one considered in this paper. For an excellent survey of these tech-
niques (variational iteration methods, homotopy perturbation methods) illustrated by
concrete examples, we refer the reader to the paper by Ji-Huan He [9].

The paper is arranged as follows.
In Sect. 2, we recall the definition of Laplace transform of order k and basic formulas on

the Fourier inverse transform acting on exponentially flat functions.
In Sect. 3, we display our main problem (11) and describe the strategy used to solve it. We

search for the potential candidates for solutions among the Laplace of order k and Fourier
inverse transforms of certain Borel maps w with exponential growth on unbounded sec-
tors and exponential decay on the real line. In the last step, the convolution problem (31)
provides the solution for w.

In Sect. 4, we analyze bounds for linear/nonlinear convolution operators of finite/infinite
orders acting on different spaces of analytic functions on sectors.
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In Sect. 5, we solve the principal convolution problem (31) within the Banach spaces of
functions described in Sects. 3 and 4 by means of a fixed point argument.

In Sect. 6, we provide a set of genuine holomorphic solutions (104) to our initial equation
(11) following the argument described in Sect. 3. Furthermore, we show that the difference
of any two neighboring solutions is of some exponential decay at 0 with respect to the
perturbation parameter.

In Sect. 7, we prove the existence of a common Gevrey asymptotic expansion for the
solutions mentioned above leaning on the estimates reached in Sect. 6. This last result is
obtained by means of the classical Ramis–Sibuya theorem.

2 Laplace, Borel transforms of order k and Fourier inverse maps
We recall the definition of Laplace transform of order k as introduced in [15]. In contrast
to that work, the order k is assumed to be a real number less than 1 and larger than 1/2. If
z ∈ C

∗ = C \ {0}, we set zk = exp(k log(z)), where log(z) stands for the principal branch of
the complex logarithm defined as log(z) = log |z| + i arg(z) with –π < arg(z) < π .

Definition 1 Let 1
2 < k < 1. Let Sd,δ = {τ ∈C

∗ : |d – arg(τ )| < δ} be some unbounded sector
with bisecting direction d ∈R and aperture 2δ > 0.

Consider a holomorphic function w : Sd,δ →C which satisfies there exist C > 0 and K > 0
such that

∣
∣w(τ )

∣
∣ ≤ C|τ |k exp

(
K |τ |k)

for all τ ∈ Sd,δ . We define the Laplace transform of w of order k in the direction d as the
integral transform

Ld
k (w)(T) = k

∫

Lγ

w(u) exp

(
–
(

u
T

)k)du
u

along a half-line Lγ = R+e
√

–1γ ⊂ Sd,δ ∪ {0}, where γ depends on T and is chosen in such
a way that cos(k(γ – arg(T))) ≥ δ1 > 0 for some fixed δ1. The function Ld

k (w)(T) is well-
defined, holomorphic, and bounded on any sector

Sd,θ ,R1/k =
{

T ∈C
∗ : |T | < R1/k ,

∣∣d – arg(T)
∣∣ < θ/2

}
,

where π
k < θ < π

k + 2δ and 0 < R < δ1/K .

We consider the family of Banach spaces introduced in [15].

Definition 2 Let β ,μ ∈R, and E(β ,μ) be the vector space of continuous functions h : R →
C such that

∥
∥h(m)

∥
∥

(β ,μ) = sup
m∈R

(
1 + |m|)μ

exp
(
β|m|)∣∣h(m)

∣
∣

is finite. The space E(β ,μ) endowed with the norm ‖ · ‖(β ,μ) becomes a Banach space.
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Finally, we remind the reader the definition of the inverse Fourier transform acting on
the latter Banach spaces and some of its properties concerning derivation and convolution
product. We refer to [15] for further details.

Definition 3 Let f ∈ E(β ,μ) with β > 0, μ > 1. The inverse Fourier transform of f is given
by

F–1(f )(x) =
1

(2π )1/2

∫ +∞

–∞
f (m) exp(ixm) dm

for all x ∈R. The function F–1(f ) extends to an analytic bounded function on the strip

Hβ ′ =
{

z ∈C/
∣∣Im(z)

∣∣ < β ′} (5)

for all given 0 < β ′ < β .
(a) Let φ be the function defined by m �→ φ(m) = imf (m). It holds that φ ∈ E(β ,μ–1).

Moreover, one has that

∂zF–1(f )(z) = F–1(φ)(z).

(b) Take g ∈ E(β ,μ) and let

ψ(m) =
1

(2π )1/2

∫ +∞

–∞
f (m – m1)g(m1) dm1

be the convolution product of f and g . Then ψ belongs to E(β ,μ), and one has

F–1(f )(z)F–1(g)(z) = F–1(ψ)(z)

for all z ∈ Hβ .

3 Outline of the main initial value problem and related auxiliary problems
Let k ∈ ( 1

2 , 1). Let D ≥ 2 be an integer, αD > 0 be a positive real number, and c12, cf be non-
zero complex numbers. For 1 ≤ l ≤ D – 1, we consider cl ∈ C

∗ and nonnegative integers
dl , δl , 
l together with positive real numbers κl > 0. We assume that

1 = δ1, δl < δl+1 (6)

for all 1 ≤ l ≤ D – 2. We also take for granted that

dl > δl(k + 1), 
l – dl + δl ≥ 0 (7)

whenever 1 ≤ l ≤ D – 1. Let Q(X), Q1(X), Q2(X), Rl(X) ∈ C[X], 1 ≤ l ≤ D, such that

deg(Q) = deg(RD) ≥ deg(Rl), deg(RD) ≥ deg(Q1), deg(RD) ≥ deg(Q2),

Q(im) �= 0, RD(im) �= 0
(8)

for all m ∈R, all 1 ≤ l ≤ D – 1.



Lastra and Malek Advances in Difference Equations        (2018) 2018:386 Page 8 of 40

For all n ≥ 1, we consider a function m �→ Fn(m, ε) that belongs to the Banach space
E(β ,μ) for some β > 0 and μ > max(deg(Q1) + 1, deg(Q2) + 1) and that depends analytically
on ε ∈ D(0, ε0). Here, D(0, ε0) stands for the open disc centered at 0 in C with radius ε0 > 0.
We assume there exist constants K0, T0 > 0 such that

sup
ε∈D(0,ε0)

∥
∥Fn(m, ε)

∥
∥

(β ,μ) ≤ K0

(
1

T0

)n

, n ≥ 1. (9)

We define

F(T , z, ε) =
∑

n≥1

F–1(m �→ Fn(m, ε)
)
(z)Tn,

which represents a convergent series on D(0, T0/2) with holomorphic and bounded co-
efficients on Hβ ′ for any given 0 < β ′ < β . For all 1 ≤ l ≤ D – 1, we set the polynomials
Al(T , ε) =

∑
n∈Il

Al,n(ε)Tn, where Il are finite subsets of N and Al,n(ε) represent bounded
holomorphic functions on the disc D(0, ε0). We put

f (t, z, ε) = F(εt, z, ε), al(t, ε) = Al(εt, ε)

for all 1 ≤ l ≤ D – 1. By construction, f (t, z, ε) (resp. al(t, ε)) defines a bounded holomor-
phic function on D(0, r) × Hβ ′ × D(0, ε0) (resp. D(0, r) × D(0, ε0)) for any given 0 < β ′ < β

and radii r, ε0 > 0 with rε0 ≤ T0/2.
Let us introduce the next differential operator of infinite order which is formally defined

by

exp
(
αDεktk+1∂t

)
=

∑

p≥0

(αDεk)p

p!
(
tk+1∂t

)(p), (10)

where (tk+1∂t)(p) stands for the pth iterate of the differential operator tk+1∂t . We consider
a family of nonlinear singularly perturbed initial value problems involving this latter op-
erator as their leading term and linear fractional transforms:

Q(∂z)u(t, z, ε)

= exp
(
αDεktk+1∂t

)
RD(∂z)u(t, z, ε)

+
D–1∑

l=1

ε
l clal(t, ε)tdl Rl(∂z)∂δl
t

(
u
(

t
1 + κlεt

, z, ε
))

+ c12Q1(∂z)u(t, z, ε)Q2(∂z)u(t, z, ε) + cf f (t, z, ε) (11)

for vanishing initial data u(0, z, ε) = 0.
In this work, we search for time rescaled solutions of (11) of the form

u(t, z, ε) = U(εt, z, ε). (12)
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After the change of variable T = εt, one has that U(T , z, ε) solves the next nonlinear sin-
gular problem involving fractional transforms:

Q(∂z)U(T , z, ε)

= exp
(
αDTk+1∂T

)
RD(∂z)U(T , z, ε)

+
D–1∑

l=1

ε
l–dl+δl clAl(T , ε)Tdl Rl(∂z)∂δl
T

(
U

(
T

1 + κlT
, z, ε

))

+ c12Q1(∂z)U(T , z, ε)Q2(∂z)U(T , z, ε) + cf F(T , z, ε) (13)

for given initial data U(0, z, ε) = 0. According to assumption (7), there exist real numbers
dl,k > 0 with

dl = δl(k + 1) + dl,k (14)

for all 1 ≤ l ≤ D – 1. The application of formula (8.7) from [22] p. 3630 yields

Tδl(k+1)∂
δl
T =

(
Tk+1∂T

)δl +
∑

1≤p≤δl–1

Aδl ,pTk(δl–p)(Tk+1∂T
)p (15)

for some Aδl ,p ∈ R, for 1 ≤ p ≤ δl – 1 and 1 ≤ l ≤ D – 1. Hence, according to (14) together
with (15), equation (13) reads as follows:

Q(∂z)U(T , z, ε)

= exp
(
αDTk+1∂T

)
RD(∂z)U(T , z, ε) +

D–1∑

l=1

ε
l–dl+δl Rl(∂z)clAl(T , ε)

× Tdl,k

((
Tk+1∂T

)δl +
∑

1≤p≤δl–1

Aδl ,pTk(δl–p)(Tk+1∂T
)p

)(
U

(
T

1 + κlT
, z, ε

))

+ c12Q1(∂z)U(T , z, ε)Q2(∂z)U(T , z, ε) + cf F(T , z, ε). (16)

We now provide the definition of a modified version of some Banach spaces introduced
in [15, 16] that takes into account a ramified variable τ k for k fixed above.

Definition 4 Let Sd be an unbounded sector centered at 0 with bisecting direction d ∈R.
Let ν,β ,μ > 0 and ρ > 0 be positive real numbers. Let k ∈ ( 1

2 , 1) defined as above. We write
Fd

(ν,β ,μ,k,ρ) for the vector space of continuous functions (τ , m) �→ h(τ , m) on Sd ×R, which
are holomorphic with respect to τ on Sd such that

(1) For all m ∈R, the function τ �→ h(τ , m) extends analytically on D(0,ρ) \ L–, where
L– denotes the segment (–ρ, 0].

(2) The norm

∥
∥h(τ , m)

∥
∥

(ν,β ,μ,k,ρ) = sup
τ∈Sd∪D(0,ρ)\L–,m∈R

(
1 + |m|)μ 1 + |τ |2k

|τ |k eβ|m|–ν|τ |k ∣∣h(τ , m)
∣
∣

is finite.
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The space Fd
(ν,β ,μ,k,ρ) equipped with the norm ‖ · ‖(ν,β ,μ,k,ρ) forms a Banach space.

Lemma 1 For β , μ given in (9), there exists ν > 0 such that the series

∑

n≥1

Fn(m, ε)
τ n

�( n
k )

defines a function ψ(τ , m, ε) that belongs to the space Fd
(ν,β ,μ,k,ρ) for all ε ∈ D(0, ε0), any

radius ρ > 0, and any sector Sd for d ∈ R.

Proof By Definition of the norm ‖ · ‖(ν,β ,μ,k,ρ), we get

∥
∥ψ(τ , m, ε)

∥
∥

(ν,β ,μ,k,ρ)

≤
∑

n≥1

∥∥Fn(m, ε)
∥∥

(β ,μ)

(
sup

τ∈(D(0,ρ)\L–)∪Sd

1 + |τ |2k

|τ |k exp
(
–ν|τ |k) |τ |n

�( n
k )

)
. (17)

Due to the classical estimates

sup
x≥0

xm1 exp(–m2x) =
(

m1

m2

)m1

e–m1 ,

valid for any m1 ≥ 0, m2 > 0, together with the Stirling formula (see [3], Appendix B.3)

�(n/k) ∼ (2π )1/2(n/k)
n
k – 1

2 e–n/k , n → +∞,

we guarantee the existence of two constants A1 > 0 depending on k, ν and A2 > 0 depend-
ing on k such that

sup
τ∈(D(0,ρ)\L–)∪Sd

1 + |τ |2k

|τ |k exp
(
–ν|τ |k) |τ |n

�( n
k )

≤ sup
x≥0

(
1 + x2)x

n
k –1 e–νx

�( n
k )

≤
(( n

k – 1
ν

) n
k –1

e–( n
k –1) +

( n
k + 1
ν

) n
k +1

e–( n
k +1)

)/
�(n/k)

≤ A1

(
A2

ν1/k

)n

(18)

for n ≥ 1. Therefore, if ν1/k > A2/T0, then we obtain

∥
∥ψ(τ , m, ε)

∥
∥

(ν,β ,μ,k,ρ) ≤ A1K0
∑

n≥1

(
A2

T0ν1/k

)n

=
A1K0A2

T0ν1/k
1

1 – A2
T0ν1/k

(19)

for all ε ∈ D(0, ε0). �

By construction, according to the definition of gamma function, the function F(T , z, ε)
can be represented as a Laplace transform of order k following direction d and Fourier
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inverse transform

F(T , z, ε) =
k

(2π )1/2

∫ +∞

–∞

∫

Lγ

ψ(u, m, ε) exp

(
–
(

u
T

)k)
eizm du

u
dm, (20)

where the integration path Lγ = R+e
√

–1γ stands for a halfline of direction γ ∈R which be-
longs to the set Sd ∪{0}, whenever T belongs to some sector Sd,θ ,� with bisecting direction
d, aperture π

k < θ < π
k + Ap(Sd), and radius �; with Ap(Sd) the aperture of Sd , some � > 0

and z belonging to a strip Hβ ′ for any 0 < β ′ < β together with ε ∈ D(0, ε0).
In the next step, we seek for solutions U(T , z, ε) of (16) defined on the same domains

as above that can be expressed via an integral representation of Laplace of order k and
Fourier inverse transforms

Uγ (T , z, ε) =
k

(2π )1/2

∫ +∞

–∞

∫

Lγ

w(u, m, ε) exp

(
–
(

u
T

)k)
eizm du

u
dm. (21)

We aim to describe a related problem fulfilled by the expression w(τ , m, ε) . This is consid-
ered in the next section. For this purpose, we make use of the Banach spaces introduced
above in Definition 4. Through this section, we assume that the function w(τ , m, ε) belongs
to the Banach space Fd

(ν,β ,μ,k,ρ).
We first display some formulas related to the action of the differential operators of irreg-

ular type and multiplication by monomials. A similar statement has been given in Sect. 3
of [15] for formal series expansions.

Lemma 2
(1) The action of the differential operator Tk+1∂T on Uγ is given by

Tk+1∂T Uγ (T , z, ε)

=
k

(2π )1/2

∫ +∞

–∞

∫

Lγ

kukw(u, m, ε) exp

(
–
(

u
T

)k)
eizm du

u
dm. (22)

(2) Let m′ > 0 be a real number. The action of the multiplication by Tm′ on Uγ is
described by

Tm′
Uγ (T , z, ε) =

k
(2π )1/2

∫ +∞

–∞

∫

Lγ

(
uk

�( m′
k )

∫ uk

0

(
uk – s

) m′
k –1w

(
s1/k , m, ε

)ds
s

)

× exp

(
–
(

u
T

)k)
eizm du

u
dm. (23)

(3) The action of polynomial differential operators and multiplication can be described
by

Q1(∂z)Uγ (T , z, ε)Q2(∂z)Uγ (T , z, ε)

=
k

(2π )1/2

∫ +∞

–∞

∫

Lγ

(
1

(2π )1/2

∫ +∞

–∞
uk
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×
∫ uk

0
Q1

(
i(m – m1)

)
w

((
uk – s

)1/k , m – m1, ε
)
Q2(im1)w

(
s1/k , m1, ε

)

× 1
(uk – s)s

ds dm1

)
exp

(
–
(

u
T

)k)
eizm du

u
dm. (24)

Proof We present direct analytic proofs which avoid the use of summability arguments
through Watson’s lemma. The first point (1) is obtained by a mere derivation under the
integral symbol. We turn to the second point (2). By the application of Fubini’s theorem,
we get that

A =
∫

Lγ

uk–1
∫ uk

0

(
uk – s

) m′
k –1w

(
s1/k , m, ε

)ds
s

exp

(
–
(

u
T

)k)
du

=
∫

Lγ ′

(∫

Ls1/k ,γ

uk–1(uk – s
) m′

k –1
exp

(
–
(

u
T

)k)
du

)
w

(
s1/k , m, ε

)ds
s

,

where γ ′ = kγ and Ls1/k ,γ = [|s|1/k , +∞)e
√

–1γ . On the other hand, by successive path defor-
mations uk = v and v – s = v′, we get that

∫

Ls1/k ,γ

uk–1(uk – s
) m′

k –1
exp

(
–
(

u
T

)k)
du =

∫

Ls,γ ′
(v – s)

m′
k –1 exp

(
–

v
Tk

)
1
k

dv,

where Ls,γ ′ = [|s|, +∞)e
√

–1γ ′ and

∫

Ls,γ ′
(v – s)

m′
k –1 exp

(
–

v
Tk

)
1
k

dv =
∫

Lγ ′

(
v′) m′

k –1
exp

(
–

v′

Tk

)
1
k

dv′ exp

(
–

s
Tk

)
.

The definition of gamma function together with a path deformation yields

∫

Lγ ′

(
v′) m′

k –1
exp

(
–

v′

Tk

)
dv′ = �

(
m′

k

)
Tm′ .

As a result, according to the path deformation s = uk , we finally get

A =
∫

Lγ ′

�( m′
k )

k
Tm′

w
(
s1/k , m, ε

)
exp

(
–

s
Tk

)
ds
s

=
∫

Lγ

w(u, m, ε) exp

(
–
(

u
T

)k)du
u

�

(
m′

k

)
Tm′

,

which implies identity (23).
We aim our attention to point (3). Again, Fubini’s theorem yields

B =
∫ +∞

–∞

∫ +∞

–∞

∫

Lγ

∫ uk

0
uk–1Q1

(
i(m – m1)

)
w

((
uk – s

)1/k , m – m1, ε
)

× Q2(im1)w
(
s1/k , m1, ε

) 1
(uk – s)s

exp

(
–
(

u
T

)k)
eizm ds du dm1 dm
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=
∫ +∞

–∞

∫ +∞

–∞

∫

Lγ ′

∫

Ls1/k ,γ

uk–1Q1
(
i(m – m1)

)
w

((
uk – s

)1/k , m – m1, ε
)

× Q2(im1)w
(
s1/k , m1, ε

) 1
(uk – s)s

exp

(
–
(

u
T

)k)
eizm du ds dm dm1,

where γ ′ = kγ and Ls1/k ,γ = [|s|1/k , +∞)e
√

–1γ . By the path deformation v = uk , and then
v – s = v′, we have

C =
∫

Ls1/k ,γ

uk–1w
((

uk – s
)1/k , m – m1, ε

) 1
(uk – s)

exp

(
–
(

u
T

)k)
du

=
∫

Ls,γ ′

1
k

w
(
(v – s)1/k , m – m1, ε

) 1
v – s

exp

(
–

v
Tk

)
dv

×
∫

Lγ ′

1
k

w
((

v′)1/k , m – m1, ε
) 1

v′ exp

(
–

v′

Tk

)
dv′ exp

(
–

s
Tk

)
.

Therefore, we obtain

B =
∫ +∞

–∞

∫ +∞

–∞

∫

Lγ ′

∫

Lγ ′
Q1

(
i(m – m1)

)1
k

w
((

v′)1/k , m – m1, ε
)

× 1
v′ exp

(
–

v′

Tk

)
exp

(
–

s
Tk

)
Q2(im1)w

(
s1/k , m1, ε

)1
s

eizm dv′ ds dm dm1.

Besides, by the change of variable, m – m1 = m′ yields

∫ +∞

–∞
Q1

(
i(m – m1)

)
w

((
v′)1/k , m – m1, ε

)
eizm dm

=
∫ +∞

–∞
Q1

(
im′)w

((
v′)1/k , m′, ε

)
eizm′

dm′eizm1 .

As a result,

B =
1
k

∫ +∞

–∞

∫

Lγ ′
Q1

(
im′)w

((
v′)1/k , m′, ε

) 1
v′ exp

(
–

v′

Tk

)
eizm′

dv′ dm′

×
∫ +∞

–∞

∫

Lγ ′
Q2(im1)w

(
s1/k , m1, ε

)1
s

exp

(
–

s
Tk

)
eizm1 ds dm1,

and according to the paths deformations s = uk and v′ = uk , we finally arrive at

B = k
∫ +∞

–∞

∫

Lγ

Q1
(
im′)w

(
u, m′, ε

)
exp

(
–
(

u
T

)k)
eizm′ du

u
dm′

×
∫ +∞

–∞

∫

Lγ

Q2(im1)w(u, m1, ε) exp

(
–
(

u
T

)k)
eizm1

du
u

dm1,

from which identity (24) follows. �

At the next level, we describe the action of the Moebius transform T �→ T
1+κlT

on Uγ .
We need some preliminaries before this consideration.
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We depart, as in the work of Faber and van der Put [8], describing the shift x �→ x +
κl as a differential operator of infinite order through Taylor expansions. Namely, for any
holomorphic function f : U �→ C defined on an open convex set U ⊂ C containing x and
x + κl , the following Taylor formula holds:

f (x + κl) =
∑

p≥0

f (p)(x)
p!

κ
p
l , (25)

where f (p)(x) denotes the derivative of order p ≥ 0 of f (where by convention f (0)(x) = f (x)).
If one performs the change of variable f (x) = U(1/x), one obtains a corresponding formula
for U(T):

U
(

T
1 + κlT

)
=

∑

p≥0

(–1)p(T2∂T )(p)

p!
κ

p
l U(T), (26)

where (T2∂T )(p) represents the pth iterate of the irregular operator T2∂T .
According to our hypothesis k ∈ (1/2, 1), we can apply Lemma 2 in order to write

T2∂T Uγ (T , z, ε)

= T1–kTk+1∂T Uγ (T , z, ε)

=
k

(2π )1/2

∫ +∞

–∞

∫

Lγ

(
uk

�( 1
k – 1)

∫ uk

0

(
uk – s

) 1
k –2kw

(
s1/k , m, ε

)
ds

)

× exp

(
–
(

u
T

)k)
eizm du

u
dm. (27)

As a result, if one denotes Ck the operator defined as

Ck
(
w(τ , m, ε)

)
:=

τ k

�( 1
k – 1)

∫ τk

0

(
τ k – s

) 1
k –2kw

(
s1/k , m, ε

)
ds, (28)

then the expression Uγ ( T
1+κlT

, z, ε) can be written as a Laplace transform of order k in
direction d and the Fourier inverse transform

Uγ

(
T

1 + κlT
, z, ε

)

=
k

(2π )1/2

∫ +∞

–∞

∫

Lγ

(
exp(–κlCk)w

)
(u, m, ε) exp

(
–
(

u
T

)k)
eizm du

u
dm, (29)

where the integrant is formally presented as a series of operators

(
exp(–κlCk)w

)
(τ , m, ε) :=

∑

p≥0

(–1)pκ
p
l

p!
C(p)

k w(τ , m, ε) (30)

and C(p)
k stands for the kth order iterate of the operator Ck described above.

In virtue of the identities (22), (23), and (24) in Lemma 2, and according to the integral
representation for the Moebius map acting on Uγ as described above in (29), we are now
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in a position to state the main equation satisfied by w(τ , m, ε), provided that Uγ (T , z, ε)
solves the equation in prepared form (16). More precisely, we consider

Q(im)w(τ , m, ε)

= exp
(
αDkτ k)RD(im)w(τ , z, ε)

+
D–1∑

l=1

ε
l–dl+δl Rl(im)cl
∑

n∈Il

Al,n(ε)

×
(

τ k

�( n+dl,k
k )

∫ τk

0

(
τ k – s

) n+dl,k
k –1kδl sδl

(
exp(–κlCk)w

)(
s1/k , m, ε

)ds
s

+
∑

1≤p≤δl–1

Aδl ,p
τ k

�( n+dl,k
k + δl – p)

×
∫ τk

0

(
τ k – s

) n+dl,k
k +δl–p–1kpsp(exp(–κlCk)w

)(
s1/k , m, ε

)ds
s

)

+ c12
τ k

(2π )1/2

∫ τk

0

∫ +∞

–∞
Q1

(
i(m – m1)

)
w

((
τ k – s

)1/k , m – m1, ε
)

× Q2(im1)w
(
s1/k , m1, ε

) 1
(τ k – s)s

ds dm1 + cf ψ(τ , m, ε). (31)

4 Action of convolution operators on certain spaces of functions
The principal goal of this section is to present bounds for convolution maps acting on
spaces of functions that are analytic on sectors in C and continuous on R. In the whole
section, Sd denotes an unbounded sector centered at 0 with bisecting direction d in R and
D(0,ρ) \ L– stands for a cut disc centered at 0 where L– = (–ρ, 0].

Proposition 1 Let k ∈ ( 1
2 , 1) be a real number. We fix real numbers γ2, γ3 satisfying that

γ2 > –1, γ3 ≥ 0, k(γ2 + γ3 + 2) ∈N. (32)

Let (τ , m) �→ f (τ , m) be a continuous function on Sd × R, holomorphic w.r.t. τ on Sd , for
which there exist a constant C1 > 0, a positive integer N ∈ N

∗, and real numbers σ > 0,
μ > 1, β > 0 with

∣∣f (τ , m)
∣∣ ≤ C1|τ |kN exp

(
σ |τ |k)(1 + |m|)–μ

exp
(
–β|m|) (33)

for all τ ∈ Sd , all m ∈R. Assume, moreover, that for all m ∈R, the map τ �→ f (τ , m) extends
analytically on the cut disc D(0,ρ)\L– and for which one can choose a constant C′

1 > 0 such
that

∣∣f (τ , m)
∣∣ ≤ C′

1|τ |k(1 + |m|)–μe–β|m| (34)

whenever τ ∈ D(0,ρ) \ L– and m ∈R.
We set

Ck,γ2,γ3 (f )(τ , m) = τ k
∫ τk

0

(
τ k – s

)γ2 sγ3 f
(
s1/k , m

)
ds. (35)
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Then
(1) The map (τ , m) �→ Ck,γ2,γ3 (f )(τ , m) is a continuous function on Sd ×R, holomorphic

w.r.t. τ on Sd such that a constant K1 > 0 (depending on γ2, σ ) exists, and

∣∣Ck,γ2,γ3 (f )(τ , m)
∣∣ ≤ C1K1|τ |k(N+1)|τ |kγ3 exp

(
σ |τ |k)(1 + |m|)–μe–β|m| (36)

for all τ ∈ Sd , all m ∈R.
(2) For all m ∈ R, the function τ �→ Ck,γ2,γ3 (f )(τ , m) extends analytically on D(0,ρ) \ L–.

Furthermore, it holds that

∣
∣Ck,γ2,γ3 (f )(τ , m)

∣
∣ ≤ C′

1
�(γ2 + 1)�(γ3 + 2)

�(γ2 + γ3 + 3)
ρk(γ2+γ3+2)|τ |k(1 + |m|)–μe–β|m| (37)

for all τ ∈ D(0,ρ) \ L–, and m ∈R.

Proof We first investigate the global behavior of the convolution operator Ck,γ2,γ3 w.r.t. τ

on the unbounded sector Sd . Owing to the bounds (33), we get

∣∣Ck,γ2,γ3 (f )(τ , m)
∣∣ ≤ C1|τ |k

∫ |τ |k

0

(|τ |k – h
)γ2 hγ3 hN exp(σh) dh

(
1 + |m|)–μe–β|m|. (38)

In the next part of the proof, we need to attain sharp upper bounds for the function

G(x) =
∫ x

0
exp(σh)hγ3+N (x – h)γ2 dh.

It is worth mentioning that the proof is a sharp adaptation of that of Proposition 1 in [16].
In accordance with the uniform expansion eσh =

∑
n≥0(σh)n/n! on every compact interval

[0, x], x ≥ 0, we can write

G(x) =
∑

n≥0

σ n

n!

∫ x

0
hn+N+γ3 (x – h)γ2 dh.

According to a beta integral formula (see Appendix B in [3]), we recall that

∫ x

0
(x – h)α–1hβ–1 dh = xα+β–1 �(α)�(β)

�(α + β)
(39)

holds for any real numbers x ≥ 0 and α > 0, β > 0. Therefore, since N + γ3 ≥ 1 and γ2 > –1,
we can rewrite

G(x) =
∑

n≥0

σ n

n!
�(γ2 + 1)�(n + N + 1 + γ3)

�(n + N + 2 + γ2 + γ3)
xn+1+γ2+γ3+N

for all x ≥ 0. On the other hand, as a consequence of Stirling formula �(x) ∼ (2π )1/2xxe–x ×
x–1/2 as x → +∞, given a > 0, there exist two constants K1.1, K1.2 > 0 (depending on a) such
that

K1.1

xa ≤ �(x)
�(x + a)

≤ K1.2

xa (40)
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for all x ≥ 1. As a result, there exists a constant K1.2 > 0 (depending on γ2) for which

�(n + N + 1 + γ3)
�(n + N + 1 + γ3 + γ2 + 1)

≤ K1.2

(n + N + 1 + γ3)γ2+1 ≤ K1.2

(n + 1)γ2+1

for all n ≥ 0. Hence, we guarantee the existence of a constant K1.3 > 0 (depending on γ2)
such that

G(x) ≤ K1.3x1+γ2+γ3+N
∑

n≥0

1
(n + 1)γ2+1n!

(σx)n

for all x ≥ 0. The second application of (40) shows the existence of a constant K1.1 > 0
(depending in γ2) for which

1
(n + 1)γ2+1 ≤ �(n + 1)

K1.1�(n + γ2 + 2)

for all n ≥ 0. Subsequently, a constant K1.4 > 0 (depending on γ2) exists such that

G(x) ≤ K1.4x1+γ2+γ3+N
∑

n≥0

(σx)n

�(n + γ2 + 2)

for all x ≥ 0.
Owing to the asymptotic property at infinity of the Wiman function Eα,β(z) =

∑
n≥0 zn/

�(β + αn), for given α,β > 0 (see [7] p. 210), we get a constant K1.5 > 0 (depending on γ2,
σ ) with

G(x) ≤ K1.5xγ3+N eσx (41)

for all x ≥ 0. In accordance with this last inequality, we obtain the expected bounds stated
in inequality (36), namely

∣
∣Ck,γ2,γ3 (f )(τ , m)

∣
∣ ≤ C1K1.5|τ |k(N+1)|τ |kγ3 exp

(
σ |τ |k)(1 + |m|)–μe–β|m| (42)

for all τ ∈ Sd , all m ∈R.
In the second part of the proof, we study local properties near the origin w.r.t. τ . First,

we rewrite Ck,γ2,γ3 by means of the parametrization s = τ ku for 0 ≤ u ≤ 1 in the form

Ck,γ2,γ3 (f )(τ , m) = τ k(γ2+γ3+2)
∫ 1

0
(1 – u)γ2 uγ3 f

(
τu1/k , m

)
du (43)

for all τ ∈ D(0,ρ) \ L– whenever m ∈ R. The last assumption in (32) and in view of the
construction of f (τ , m), representation (43) induces that, for all m ∈ R, the function τ �→
Ck,γ2,γ3 (f )(τ , m) extends analytically on D(0,ρ) \ L–. Furthermore, one may apply (34) in
order to deduce the bounds

∣
∣Ck,γ2,γ3 (f )(τ , m)

∣
∣ ≤ C′

1|τ |k
∫ |τ |k

0

(|τ |k – h
)γ2 hγ3+1 dh

(
1 + |m|)–μe–β|m|
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valid for all τ ∈ D(0,ρ) \ L–, all m ∈R. With the help of (39), we deduce that

∣∣Ck,γ2,γ3 (f )(τ , m)
∣∣ ≤ C′

1|τ |k �(γ2 + 1)�(γ3 + 2)
�(γ2 + γ3 + 3)

|τ |k(γ2+γ3+2)(1 + |m|)–μe–β|m|

≤ C′
1
�(γ2 + 1)�(γ3 + 2)

�(γ2 + γ3 + 3)
ρk(γ2+γ3+2)|τ |k(1 + |m|)–μe–β|m|, (44)

when τ ∈ D(0,ρ) \ L–, all m ∈R which entails (37). �

Proposition 2 Let k ∈ ( 1
2 , 1). Let (τ , m) �→ f (τ , m) be a continuous function on Sd × R,

holomorphic w.r.t. τ on Sd , for which there exist constants C2 > 0, ν > 0 and μ > 1, β > 0
fulfilling

∣∣f (τ , m)
∣∣ ≤ C2|τ |k exp

(
ν|τ |k)(1 + |m|)–μe–β|m| (45)

for all τ ∈ Sd , all m ∈R. Take for granted that, for all m ∈R, the map τ �→ f (τ , m) extends
analytically on the cut disc D(0,ρ) \ L– under the next bounds : there exists a constant
C′

2 > 0 with

∣
∣f (τ , m)

∣
∣ ≤ C′

2|τ |k(1 + |m|)–μe–β|m| (46)

for all τ ∈ D(0,ρ) \ L–, all m ∈R.
Let κl > 0. We consider the operator

(
exp(–κlCk)f

)
(τ , m) :=

∑

p≥0

(–1)pκ
p
l

p!
C(p)

k (f )(τ , m), (47)

where C(p)
k denotes the iterate of order p ≥ 0 of the operator Ck defined by

Ck(f )(τ , m) =
kτ k

�( 1
k – 1)

∫ τk

0

(
τ k – s

) 1
k –2f

(
s1/k , m

)
ds

=
k

�( 1
k – 1)

Ck, 1
k –2,0(f )(τ , m)

with the convention that C(0)
k (f )(τ , m) = f (τ , m). Then

(1) The map (τ , m) �→ (exp(–κlCk)f )(τ , m) represents a continuous function on Sd ×R,
holomorphic w.r.t. τ on Sd , for which a constant K1 > 0 (depending on k, ν) exists such
that

∣
∣(exp(–κlCk)f

)
(τ , m)

∣
∣

≤ C2|τ |k exp

(
κlK1

k
�( 1

k – 1)
|τ |k

)
exp

(
ν|τ |k)(1 + |m|)–μe–β|m| (48)

for all τ ∈ Sd , all m ∈R.
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(2) For all m ∈ R, the function τ �→ (exp(–κlCk)f )(τ , m) extends analytically on
D(0,ρ) \ L–. Furthermore,

∣∣(exp(–κlCk)f
)
(τ , m)

∣∣ ≤ exp

(
κlkρ

�( 1
k + 1)

)
C′

2|τ |k(1 + |m|)–μe–β|m| (49)

for all τ ∈ D(0,ρ) \ L–, all m ∈R.

Proof Let us provide estimates for each iterate C(N)
k (f )(τ , m), N ≥ 1. We first consider such

bounds on the unbounded sector Sd . By induction on N ≥ 0, with the help of the estimates
(33) and (36) for γ2 = 1

k – 2 and γ3 = 0, we obtain a constant K1 > 0 (depending on k, ν)
with

∣
∣C(N)

k (f )(τ , m)
∣
∣ ≤ C2

(
k

�( 1
k – 1)

)N

KN
1 |τ |k(N+1) exp

(
ν|τ |k)(1 + |m|)–μe–β|m| (50)

for all τ ∈ Sd , all m ∈R, all N ≥ 0. Similarly, owing to (34) and (37), and for the same choice
γ2 = 1

k – 2 and γ3 = 0, we get that

∣∣C(N)
k (f )(τ , m)

∣∣ ≤ C′
2kN

(
�(2)

�( 1
k + 1)

)N

ρN |τ |k(1 + |m|)–μe–β|m| (51)

for all τ ∈ D(0,ρ) \ L–, all m ∈R, all N ≥ 0.
Finally, by summing up inequalities (50) (resp. (51)) over N ≥ 0, we get the forecast

bounds (48) (resp. (49)). �

Proposition 3 Let Q1(X), Q2(X), R(X) ∈C[X] such that

deg(R) ≥ deg(Q1), deg(R) ≥ deg(Q2), R(im) �= 0 (52)

for all m ∈ R. Take for granted that μ > max(deg(Q1) + 1, deg(Q2) + 1). Then there exists a
constant C3 > 0 (depending on Q1, Q2, R, μ, k, ν) for which

∥
∥∥
∥

1
R(im)

τ k
∫ τk

0

∫ +∞

–∞
Q1

(
i(m – m1)

)
f
((

τ k – s
)1/k , m – m1

)

× Q2(im1)g
(
s1/k , m1

) 1
(τ k – s)s

ds dm1

∥∥
∥∥

(ν,β ,μ,k,ρ)

≤ C3
∥∥f (τ , m)

∥∥
(ν,β ,μ,k,ρ)

∥∥g(τ , m)
∥∥

(ν,β ,μ,k,ρ) (53)

for all f (τ , m), g(τ , m) ∈ Fd
(ν,β ,μ,k,ρ).

Proof We proceed as in the proof of Proposition 3 of [15]. Namely, according to Defini-
tion 4, we rewrite

B :=
∥∥
∥∥

1
R(im)

τ k
∫ τk

0

∫ +∞

–∞
Q1

(
i(m – m1)

)
f
((

τ k – s
)1/k , m – m1

)

× Q2(im1)g
(
s1/k , m1

) 1
(τ k – s)s

ds dm1

∥
∥∥
∥

(ν,β ,μ,k,ρ)
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= sup
τ∈(D(0,ρ)\L–)∪Sd ,m∈R

(
1 + |m|)μeβ|m| 1 + |τ |2k

|τ |k

× exp
(
–ν|τ |k)

×
∣∣
∣∣τ

k
∫ τk

0

∫ +∞

–∞

{(
1 + |m – m1|

)μeβ|m–m1| 1 + |τ k – s|2
|τ k – s| exp

(
–ν

∣
∣τ k – s

∣
∣)

× f
((

τ k – s
)1/k , m – m1

)} ×
{(

1 + |m1|
)μeβ|m1| 1 + |s|2

|s| exp
(
–ν|s|)g

(
s1/k , m1

)}

×B(τ , s, m, m1) ds dm1

∣
∣∣
∣ (54)

with

B(τ , s, m, m1)

=
e–β|m–m1|e–β|m1|

(1 + |m – m1|)μ(1 + |m1|)μ
Q1(i(m – m1))Q2(im1)

R(im)
|s||τ k – s|

(1 + |τ k – s|2)(1 + |s|2)

× exp
(
ν
∣
∣τ k – s

∣
∣) exp

(
ν|s|) 1

(τ k – s)s
.

According to the triangular inequality |m| ≤ |m – m1| + |m1| and bearing in mind the
definition of the norms of f and g , we deduce

B ≤ C3.1
∥∥f (τ , m)

∥∥
(ν,β ,μ,k,ρ)

∥∥g(τ , m)
∥∥

(ν,β ,μ,k,ρ), (55)

where

C3.1 = sup
τ∈(D(0,ρ)\L–)∪Sd ,m∈R

(
1 + |m|)μ 1 + |τ |2k

|τ |k exp
(
–ν|τ |k)|τ |k

×
∫ |τ |k

0

∫ +∞

–∞
|Q1(i(m – m1))||Q2(im1)|

R(im)(1 + |m – m1|)μ(1 + |m1|)μ

× exp(ν(|τ |k – h)) exp(νh)
(1 + (|τ |k – h)2)(1 + h2)

dh dm1. (56)

Now, we get bounds from above for C3.1 via the splitting C3.1 = C3.2C3.3, where

C3.2 = sup
m∈R

(
1 + |m|)μ 1

|R(im)|
∫ +∞

–∞
|Q1(i(m – m1))||Q2(im1)|

(1 + |m – m1|)μ(1 + |m1|)μ dm1

and

C3.3 = sup
τ∈(D(0,ρ)\L–)∪Sd

(
1 + |τ |2k)

∫ |τ |k

0

1
(1 + (|τ |k – h)2)(1 + h2)

dh.

In the last step of the proof, we show that C3.2 and C3.3 are finite. By construction, there
exist positive constants Q1, Q2, and R such that

∣∣Q1
(
i(m – m1)

)∣∣ ≤ Q1
(
1 + |m – m1|

)deg(Q1),
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∣∣Q2(im1)
∣∣ ≤ Q2

(
1 + |m1|

)deg(Q2),
∣∣R(im)

∣∣ ≥ R
(
1 + |m|)deg(R)

for all m, m1 ∈ R. Hence,

C3.2 ≤ Q1Q2

R
sup
m∈R

(
1 + |m|)μ–deg(R)

×
∫ +∞

–∞
1

(1 + |m – m1|)μ–deg(Q1)(1 + |m1|)μ–deg(Q2) dm1 (57)

that is finite owing to μ > max(deg(Q1) + 1, deg(Q2) + 1) submitted to constraints (52) as
shown in Lemma 4 in [18]. On the other hand,

C3.3 ≤ sup
x≥0

(
1 + x2)

∫ x

0

1
(1 + (x – h)2)(1 + h2)

dh

= sup
x≥0

(
1 + x2)2

log(1 + x2) + x arctan(x)
x(x2 + 4)

, (58)

which is also finite. �

5 Solutions of an auxiliary integral equation depending on a complex
parameter

The main objective of this section is the construction of a unique solution of equation (31)
for vanishing initial data within the Banach spaces given in Definition 4.

We first describe further analytic assumptions on the leading polynomials Q(X) and
RD(X) in order to be able to transform our problem (31) into a fixed point equation as
stated below, see (101).

Namely, we take for granted that there exists a bounded sectorial annulus

SQ,RD =
{

z ∈C/rQ,RD ,1 ≤ |z| ≤ rQ,RD ,2,
∣
∣arg(z) – dQ,RD

∣
∣ ≤ ηQ,RD

}

with direction dQ,RD ∈ [–π ,π ), small aperture ηQ,RD > 0 for some radii rQ,RD ,2 > rQ,RD ,1 > 1
such that

Q(im)
RD(im)

∈ SQ,RD (59)

for all m ∈R. For any integer l ∈ Z, we set

al(m) = log

∣∣
∣∣

Q(im)
RD(im)

∣∣
∣∣ +

√
–1 arg

(
Q(im)
RD(im)

)
+ 2lπ

√
–1. (60)

Figure 1 illustrates a configuration of the points al(m), l ∈ Z, and the set SQ,RD related to
their definition.

By construction, we see that

Q(im) – eal(m)RD(im) = 0 (61)
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Figure 1 Configuration of al(m) (left) related to SQ,RD (right)

for all m ∈R. Furthermore, for each l ∈ Z, the equation

αDkτ k = al(m) (62)

possesses one solution given by

τl =
∣∣
∣∣
al(m)
αDk

∣∣
∣∣

1/k

exp

(√
–1

1
k

arg
(
al(m)

))
. (63)

Indeed, by construction of τ k = exp(k log(τ )), this equation is equivalent to

|τ | =
∣
∣∣∣
al(m)
αDk

∣
∣∣∣

1/k

, arg(τ ) =
arg(al(m))

k
+

2hπ

k
(64)

for some h ∈ Z. According to the hypothesis rQ,RD ,1 > 1, we have | arg(al(m))| < π/2, and
hence

∣∣
∣∣
arg(al(m))

k

∣∣
∣∣ <

π

2k
< π (65)

since we assume that 1
2 < k < 1. Owing to the fact that arg(τ ) belongs to (–π ,π ), we have

h = 0 and hence arg(τ ) = arg(al(m))/k.
We consider the set

�Q,RD =
{

arg(al(m))
k

/m ∈R, l ∈ Z

}

of the so-called forbidden directions. We choose the aperture ηQ,RD > 0 small enough in a
way that, for all directions d ∈ (–π/2,π/2) \ �Q,RD , we can find some unbounded sector
Sd centered at 0 with small aperture δSd > 0 and bisecting direction d such that τl /∈ Sd ∪
D(0,ρ) for some fixed ρ > 0 small enough and for all l ∈ Z.
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For all τ ∈C \R–, all m ∈R, we consider the function

H(τ , m) = Q(im) – exp
(
αDkτ k)RD(im). (66)

Let d ∈ (–π/2,π/2) \ �Q,RD and fix a sector Sd and a disc D(0,ρ) as above.
(1) Our first goal is to provide lower bounds for the function |H(τ , m)| when τ ∈ Sd and

m ∈R. Let τ ∈ Sd . Then we can write

τ = τlre
√

–1θ (67)

for some well-chosen l ∈ Z, where r ≥ 0 and θ belongs to some small interval ISd which is
close to 0 but such that 0 /∈ ISd . In particular, we choose ISd in a way that arg(τl) + θ belongs
to (–π ,π ) for all θ ∈ ISd .

Hence, owing to the fact that τl solves (62), we can rewrite

αDkτ k – al(m) = αDkτ k
l rke

√
–1kθ – al(m) = al(m)

(
rke

√
–1kθ – 1

)
.

In particular, if the radius rQ,RD ,2 is chosen close enough to rQ,RD ,1, we get a constant η1,l > 0
(depending on l) for which

∣∣αDkτ k – al(m) –
√

–1h2π
∣∣ ≥ η1,l (68)

for all h ∈ Z, all τ ∈ Sd , all m ∈R. More precisely, for each m ∈R, the set

Ll,m =
{

al(m)
(
xe

√
–1kθ – 1

)
/x ≥ 0

}

represents a halfline passing through the point –al(m) and close to the origin in C. Con-
sequently, it avoids the set of points {√–1h2π/h ∈ Z}.

Figure 2 illustrates a configuration of some of the halflines described in the construction.
Now, owing to equality (61), we can rewrite

H(τ , m) = Q(im) – exp
(
αDkτ k – al(m)

)
exp

(
al(m)

)
RD(im)

= Q(im)
(
1 – exp

(
αDkτ k – al(m)

))
. (69)

According to (68), we obtain a constant η2,l > 0 (depending on l) for which

∣
∣H(τ , m)

∣
∣ ≥ ∣

∣Q(im)
∣
∣η2,l (70)

for all τ ∈ Sd , all m ∈R.
In the second step, we aim attention at lower bounds for large values of |τ | on Sd . We

first carry out some preliminary computations. For this purpose, we expand

Re
(
al(m)

(
rke

√
–1kθ – 1

))

= rk
(

log

∣
∣∣
∣

Q(im)
RD(im)

∣
∣∣
∣ cos(kθ ) –

(
arg

(
Q(im)
RD(im)

)
+ 2lπ

)
sin(kθ )

)
– log

∣
∣∣
∣

Q(im)
RD(im)

∣
∣∣
∣. (71)
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Figure 2 Some of the halflines Ll,m

We assume that the segment ISd is close enough to 0 in such a way that a constant 
1 > 0
exists submitted to the next inequality

log

∣∣
∣∣

Q(im)
RD(im)

∣∣
∣∣ cos(kθ ) –

(
arg

(
Q(im)
RD(im)

)
+ 2lπ

)
sin(kθ ) ≥ 
1 (72)

for all m ∈R, all θ ∈ ISd . Besides, according to (59), we notice that

0 < log(rQ,RD ,1) ≤ log

∣∣
∣∣

Q(im)
RD(im)

∣∣
∣∣ ≤ log(rQ,RD ,2) (73)

for all m ∈R. As a result, collecting (71), (72), and (73), we arrive at the lower bounds

Re
(
al(m)

(
rke

√
–1kθ – 1

)) ≥ 
1rk – log(rQ,RD ,2) (74)

for all r ≥ 0, all θ ∈ ISd , all m ∈R.
Departing from factorization (69), we get the next estimates from below

∣
∣H(τ , m)

∣
∣ ≥ ∣

∣Q(im)
∣
∣
∣
∣1 –

∣
∣exp

(
al(m)

(
rke

√
–1kθ – 1

))∣∣
∣
∣

=
∣∣Q(im)

∣∣∣∣1 – exp
(
Re

(
al(m)

(
rke

√
–1kθ – 1

)))∣∣

=
∣∣Q(im)

∣∣ exp
(
Re

(
al(m)

(
rke

√
–1kθ – 1

)))

× ∣
∣1 – exp

(
– Re

(
al(m)

(
rke

√
–1kθ – 1

)))∣∣ (75)

for all r ≥ 0, all θ ∈ ISd , all m ∈R. We select a real number r1 > 0 large enough such that

exp
(
–
(

1rk – log(rQ,RD ,2)

)) ≤ 1/2 (76)
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for all r ≥ r1. Under (76), we deduce from (74) and (75) that

∣
∣H(τ , m)

∣
∣ ≥ 1

2
∣
∣Q(im)

∣
∣ exp

(

1rk – log(rQ,RD ,2)

)

for all r ≥ r1, all θ ∈ ISd , all m ∈ R. Now, in view of decomposition (67), we get in particular
that |τ | = r|τl|. Consequently, we see that

∣
∣H(τ , m)

∣
∣ ≥ 1

2
∣
∣Q(im)

∣
∣ exp

(

1

|τl|k |τ |k – log(rQ,RD ,2)
)

(77)

for all τ ∈ Sd with |τ | ≥ r1|τl|.
As a result, gathering (70) and (77), together with the shape of al(m) and τl given in (60),

(63), we obtain two constants AH,d, BH,d > 0 (depending on k, SQ,RD , Sd) for which

∣
∣H(τ , m)

∣
∣ ≥ AH,d

∣
∣Q(im)

∣
∣ exp

(
BH,dαD|τ |k) (78)

for all τ ∈ Sd , all m ∈R.
(2) In the second step, we display lower bounds when τ belongs to the cut disc D(0,ρ) \

L–, where L– = (–ρ, 0]. Let τ = re
√

–1θ for some θ ∈ (–π ,π ) and 0 < r < ρ . Let l ∈ Z. We first
compute the real part

Re
(
αDkrke

√
–1kθ – al(m)

)
= αDkrk cos(kθ ) – log

∣
∣∣
∣

Q(im)
RD(im)

∣
∣∣
∣

for all m ∈R. Therefore, owing to (73), we may select rQ,RD ,1 > 0 large enough such that

exp
(
Re

(
αDkrke

√
–1kθ – al(m)

)) ≤ exp
(
αDkρk – log(rQ,RD ,1)

) ≤ 1
2

(79)

for all θ ∈ (–π ,π ), 0 < r < ρ and m ∈ Z. Hence, in view of factorization (69), it follows that

∣
∣H(τ , m)

∣
∣ ≥ ∣

∣Q(im)
∣
∣
∣
∣1 –

∣
∣exp

(
αDkτ k – al(m)

)∣∣
∣
∣

=
∣∣Q(im)

∣∣∣∣1 – exp
(
Re

(
αDkrke

√
–1kθ – al(m)

))∣∣

≥ 1
2
∣∣Q(im)

∣∣ (80)

for all τ ∈ D(0,ρ) \ L–, all m ∈R.
In the next proposition we provide sufficient conditions for which equation (31) pos-

sesses a solution wd(τ , m, ε) within the Banach space Fd
(ν,β ,μ,k,ρ).

Proposition 4 We make an additional assumption that

BH,dαD > κlK1
k

�( 1
k – 1)

(81)

for all 1 ≤ l ≤ D – 1, where K1 is the constant defined in Proposition 2(1) and BH,d is in
(78). Under the condition that the moduli |c12|, |cf |, and |cl| for 1 ≤ l ≤ D – 1 are chosen
small enough, we can find a constant � > 0 for which equation (31) has a unique solution
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wd(τ , m, ε) in Fd
(ν,β ,μ,k,ρ), with ‖wd(τ , m, ε)‖(ν,β ,μ,k,ρ) ≤ � for all ε ∈ D(0, ε0), where β ,μ > 0

are chosen as in (9), ν > 1 is taken as in Lemma 1, the sector Sd and the disc D(0,ρ) are
suitably selected in a way that τl /∈ Sd ∪ D(0,ρ) for all l ∈ Z and where τl is described in
(63).

Proof We initiate the proof with the lemma that introduces a map related to (31) and
describes some of its properties that allow us to apply a fixed point theorem.

Lemma 3 One can sort the moduli |c12|, |cf |, and |cl| for 1 ≤ l ≤ D – 1 in such a way that
a constant � > 0 can be chosen so that the map Hε defined as

Hε

(
w(τ , m)

)

:=
D–1∑

l=1

ε
l–dl+δl Rl(im)cl
∑

n∈Il

Al,n(ε)

×
(

τ k

H(τ , m)�( n+dl,k
k )

∫ τk

0

(
τ k – s

) n+dl,k
k –1kδl sδl

(
exp(–κlCk)w

)(
s1/k , m

)ds
s

+
∑

1≤p≤δl–1

Aδl ,p
τ k

H(τ , m)�( n+dl,k
k + δl – p)

∫ τk

0

(
τ k – s

) n+dl,k
k +δl–p–1

× kpsp(exp(–κlCk)w
)(

s1/k , m
)ds

s

)

+ c12
τ k

(2π )1/2H(τ , m)

∫ τk

0

∫ +∞

–∞
Q1

(
i(m – m1)

)
w

((
τ k – s

)1/k , m – m1
)

× Q2(im1)w
(
s1/k , m1

) 1
(τ k – s)s

ds dm1 + cf
ψ(τ , m, ε)
H(τ , m)

(82)

fulfills the following statements:
(1) The inclusion

Hε

(
B̄(0,� )

) ⊂ B̄(0,� ) (83)

holds where B̄(0,� ) represents the closed ball of radius � > 0 centered at 0 in
Fd

(ν,β ,μ,k,ρ) for all ε ∈ D(0, ε0).
(2) The shrinking condition

∥
∥Hε(w2) – Hε(w1)

∥
∥

(ν,β ,μ,k,ρ) ≤ 1
2
‖w2 – w1‖(ν,β ,μ,k,ρ) (84)

occurs whenever w1, w2 ∈ B̄(0,� ) for all ε ∈ D(0, ε0).

Proof We focus on the first property (83). Let w(τ , m) ∈ Fd
(ν,β ,μ,k,ρ). We take ε ∈ D(0, ε0)

and set � > 0 such that ‖w(τ , m)‖(ν,β ,μ,k,ρ) ≤ � . In particular, we notice that the estimate

∣∣w(τ , m)
∣∣ ≤ � |τ |keν|τ |k e–β|m|(1 + |m|)–μ (85)
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holds for each τ ∈ Sd ∪ (D(0,ρ) \ L–). As a consequence of Proposition 2, we get that
(τ , m) �→ (exp(–κlCk)w)(τ , m) defines a continuous function on Sd ×R, holomorphic w.r.t.
τ on Sd . A constant K1 > 0 (depending on k, ν) can be found such that

∣∣(exp(–κlCk)w
)
(τ , m)

∣∣

≤ � |τ |k exp

(
κlK1

k
�( 1

k – 1)
|τ |k

)
exp

(
ν|τ |k)(1 + |m|)–μe–β|m| (86)

for all τ ∈ Sd , all m ∈ R. Furthermore, the application of Proposition 1 for γ2 = n+dl,k
k – 1,

γ3 = δl – 1 with n ∈ Il guarantees the existence of a constant C4 > 0 (depending on Il , k, κl ,
dl , δl ,ν) with

∣∣
∣∣τ

k
∫ τk

0

(
τ k – s

) n+dl,k
k –1sδl

(
exp(–κlCk)w

)(
s1/k , m

)ds
s

∣∣
∣∣

≤ �C4|τ |2k+k(δl–1) exp

(
κlK1

k
�( 1

k – 1)
|τ |k

)
exp

(
ν|τ |k)(1 + |m|)–μe–β|m|,

provided that τ ∈ Sd , m ∈R. From the lower bounds (78) and (81) we get

∣
∣∣
∣
Rl(im)τ k

H(τ , m)

∫ τk

0

(
τ k – s

) n+dl,k
k –1sδl

(
exp(–κlCk)w

)(
s1/k , m

)ds
s

∣
∣∣
∣

≤ �
C4

AH,d

∣∣∣
∣
Rl(im)
Q(im)

∣∣∣
∣|τ |k(δl+1) exp

((
κlK1

k
�( 1

k – 1)
– BH,dαD

)
|τ |k

)

× exp
(
ν|τ |k)(1 + |m|)–μe–β|m|

≤ �
C4

AH,d
sup
m∈R

∣
∣∣
∣
Rl(im)
Q(im)

∣
∣∣
∣

(
sup
|τ |≥0

|τ |kδl
(
1 + |τ |2k)

× exp

((
κlK1

k
�( 1

k – 1)
– BH,dαD

)
|τ |k

))

× |τ |k
1 + |τ |2k exp

(
ν|τ |k)(1 + |m|)–μ

exp
(
–β|m|) (87)

whenever τ ∈ Sd , m ∈R.
On the other hand, Proposition 2 guarantees that, for all m ∈ R, the function τ �→

(exp(–κlCk)w)(τ , m) extends analytically on D(0,ρ) \ L–, with

∣
∣(exp(–κlCk)w

)
(τ , m)

∣
∣ ≤ exp

(
κlkρ

�( 1
k + 1)

)
� exp

(
νρk)|τ |k(1 + |m|)–μe–β|m| (88)

for all τ ∈ D(0,ρ) \ L–, all m ∈ R. As a consequence, Proposition 1 specialized for γ2 =
n+dl,k

k – 1, γ3 = δl – 1 with n ∈ Il gives rise to a constant C′
4 > 0 (depending on Il , k, κl , dl , δl ,

ν , ρ) for which

∣∣
∣∣τ

k
∫ τk

0

(
τ k – s

) n+dl,k
k –1sδl

(
exp(–κlCk)w

)(
s1/k , m

)ds
s

∣∣
∣∣ ≤ �C′

4|τ |k(1 + |m|)–μe–β|m|
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provided that τ ∈ D(0,ρ) \ L–, m ∈R. Regarding (80) we notice that

∣
∣∣
∣
Rl(im)τ k

H(τ , m)

∫ τk

0

(
τ k – s

) n+dl,k
k –1sδl

(
exp(–κlCk)w

)(
s1/k , m

)ds
s

∣
∣∣
∣

≤ 2�C′
4

∣∣
∣∣
Rl(im)
Q(im)

∣∣
∣∣|τ |k(1 + |m|)–μe–β|m|

≤ 2�C′
4 sup

m∈R

∣∣
∣∣
Rl(im)
Q(im)

∣∣
∣∣
(
1 + ρ2k) |τ |k

1 + |τ |2k exp
(
ν|τ |k)

× (
1 + |m|)–μ

exp
(
–β|m|) (89)

for all τ ∈ D(0,ρ) \ L–, all m ∈R.
By clustering (87) and (89), we conclude there exists a constant C5 > 0 (depending on Il ,

k, κl , dl , δl , ν , ρ , SQ,RD , Sd , Rl , Q) with

∥∥∥
∥

Rl(im)τ k

H(τ , m)

∫ τk

0

(
τ k – s

) n+dl,k
k –1sδl

(
exp(–κlCk)w

)(
s1/k , m

)ds
s

∥∥∥
∥

(ν,β ,μ,k,ρ)
≤ C5� . (90)

In view of bounds (86), the application of Proposition 1 for

γ2 =
n + dl,k

k
+ δl – p – 1, γ3 = p – 1,

where n ∈ Il with 1 ≤ p ≤ δl – 1, yields the existence of a constant C6 > 0 (depending on Il ,
k, κl , dl , δl , ν) with

∣∣∣
∣τ

k
∫ τk

0

(
τ k – s

) n+dl,k
k +δl–p–1sp(exp(–κlCk)w

)(
s1/k , m

)ds
s

∣∣∣
∣

≤ �C6|τ |2k+k(p–1) exp

(
κlK1

k
�( 1

k – 1)
|τ |k

)
exp

(
ν|τ |k)(1 + |m|)–μe–β|m|

for all τ ∈ Sd , m ∈R, and 1 ≤ p ≤ δl – 1.
Owing to the lower bounds (78) under restriction (81), we deduce that

∣∣
∣∣
Rl(im)τ k

H(τ , m)

∫ τk

0

(
τ k – s

) n+dl,k
k +δl–p–1sp(exp(–κlCk)w

)(
s1/k , m

)ds
s

∣∣
∣∣

≤ �
C6

AH,d

∣
∣∣
∣
Rl(im)
Q(im)

∣
∣∣
∣|τ |k(p+1) exp

((
κlK1

k
�( 1

k – 1)
– BH,dαD

)
|τ |k

)

× exp
(
ν|τ |k)(1 + |m|)–μe–β|m|

≤ �
C6

AH,d
sup
m∈R

∣
∣∣∣
Rl(im)
Q(im)

∣
∣∣∣

(
sup
|τ |≥0

|τ |kp(1 + |τ |2k)

× exp

((
κlK1

k
�( 1

k – 1)
– BH,dαD

)
|τ |k

))

× |τ |k
1 + |τ |2k exp

(
ν|τ |k)(1 + |m|)–μ

exp
(
–β|m|) (91)

whenever τ ∈ Sd , m ∈R with 1 ≤ p ≤ δl – 1.
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Using bounds (88) and from Proposition 1 applied to

γ2 =
n + dl,k

k
+ δl – p – 1, γ3 = p – 1,

where n ∈ Il with 1 ≤ p ≤ δl – 1, we obtain a constant C′
6 > 0 (depending on Il , k, κl , dl , δl ,

ν , ρ) for which

∣∣
∣∣τ

k
∫ τk

0

(
τ k – s

) n+dl,k
k +δl–p–1sp(exp(–κlCk)w

)(
s1/k , m

)ds
s

∣∣
∣∣ ≤ �C′

6|τ |k(1 + |m|)–μe–β|m|

for τ ∈ D(0,ρ) \ L–, m ∈R. With the help of the lower bounds (80), we deduce

∣
∣∣
∣
Rl(im)τ k

H(τ , m)

∫ τk

0

(
τ k – s

) n+dl,k
k +δl–p–1sp(exp(–κlCk)w

)(
s1/k , m

)ds
s

∣
∣∣
∣

≤ 2�C′
6

∣∣
∣∣
Rl(im)
Q(im)

∣∣
∣∣|τ |k(1 + |m|)–μe–β|m|

≤ 2�C′
6 sup

m∈R

∣∣
∣∣
Rl(im)
Q(im)

∣∣
∣∣
(
1 + ρ2k) |τ |k

1 + |τ |2k exp
(
ν|τ |k)

× (
1 + |m|)–μ

exp
(
–β|m|) (92)

provided that τ ∈ D(0,ρ) \ L– and m ∈R.
By means of (91) and (92), we deduce the existence of a constant C7 > 0 (depending on

Il , k, κl , dl , δl , ν , ρ , SQ,RD , Sd , Rl , Q) with

∥∥
∥∥

Rl(im)τ k

H(τ , m)

∫ τk

0

(
τ k – s

) n+dl,k
k +δl–p–1sp(exp(–κlCk)w

)(
s1/k , m

)ds
s

∥∥
∥∥

(ν,β ,μ,k,ρ)
≤ C7� . (93)

On the other hand, taking into account assumption (8) and the lower bounds (70) to-
gether with (80), the application of Proposition 3 induces a constant C3 > 0 (depending on
Q1, Q2, Q, μ, k, ν) and a constant η2 > 0 (equals to η2,l from (70)) for which

∥
∥∥
∥

τ k

H(τ , m)

∫ τk

0

∫ +∞

–∞
Q1

(
i(m – m1)

)
w

((
τ k – s

)1/k , m – m1
)

× Q2(im1)w
(
s1/k , m1

) 1
(τ k – s)s

ds dm1

∥∥∥
∥

(ν,β ,μ,k,ρ)

≤ sup
τ∈Sd∪(D(0,ρ)\L–),m∈R

∣
∣∣
∣

Q(im)
H(τ , m)

∣
∣∣
∣

×
∥∥
∥∥

τ k

Q(im)

∫ τk

0

∫ +∞

–∞
Q1

(
i(m – m1)

)
w

((
τ k – s

)1/k , m – m1
)

× Q2(im1)w
(
s1/k , m1

) 1
(τ k – s)s

ds dm1

∥
∥∥
∥

(ν,β ,μ,k,ρ)

≤ C3

min(η2, 1/2)
∥∥w(τ , m)

∥∥2
(ν,β ,μ,k,ρ)

≤ C3�
2

min(η2, 1/2)
. (94)
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Furthermore, owing to Lemma 1 and in view of the lower estimates (70), (80), we obtain
a constant Kf > 0 (depending on k, ν and K0, T0 from (9)) and η2 > 0 such that

∥∥
∥∥
ψ(τ , m, ε)
H(τ , m)

∥∥
∥∥

(ν,β ,μ,k,ρ)
≤ Kf

min(η2, 1/2) minm∈R |Q(im)| (95)

for all ε ∈ D(0, ε0).
Now, we select |c12|, |cf | with |cl|, 1 ≤ l ≤ D – 1 such that the existence of a constant

� > 0 is guaranteed such that

D–1∑

l=1

ε

l–dl+δl
0 |cl|

∑

n∈Il

sup
ε∈D(0,ε0)

∣
∣Al,n(ε)

∣
∣
(

C5�kδl

�( n+dl,k
k )

+
∑

1≤p≤δl–1

|Aδl ,p|
C7�kp

�( n+dl,k
k + δl – p)

)

+ |c12| C3�
2

(2π )1/2 min(η2, 1/2)
+ |cf | Kf

min(η2, 1/2) minm∈R |Q(im)| ≤ � . (96)

Finally, by collecting the norm estimates (90), (93) together with (94) and (95) under re-
striction (96), one gets (83).

In the next part of the proof, we focus on statement (84). Namely, let w1(τ , m), w2(τ , m)
belonging to B̄(0,� ) ⊆ Fd

(ν,β ,μ,k,ρ). We get in particular that the next bound

∣
∣w2(τ , m) – w1(τ , m)

∣
∣ ≤ ∥

∥w2(τ , m) – w1(τ , m)
∥
∥

(ν,β ,μ,k,ρ)|τ |k exp
(
ν|τ |k)e–β|m|(1 + |m|)–μ

holds for all τ ∈ Sd ∪ (D(0,ρ) \ L–). Following analogous steps as for the sequence of in-
equalities (85), (86), (87), (88), (89), and (90), we observe that

∥∥
∥∥

Rl(im)τ k

H(τ , m)

∫ τk

0

(
τ k – s

) n+dl,k
k –1sδl

(
exp(–κlC)(w2 – w1)

)(
s1/k , m

)ds
s

∥∥
∥∥

(ν,β ,μ,k,ρ)

≤ C5
∥∥w2(τ , m) – w1(τ , m)

∥∥
(ν,β ,μ,k,ρ) (97)

for the constant C5 > 0 appearing in (90).
Similarly, tracking the progression (85), (86), (88), (91), (92), and (93) yields the next

upper bound

∥∥
∥∥

Rl(im)τ k

H(τ , m)

∫ τk

0

(
τ k – s

) n+dl,k
k +δl–p–1sp(exp(–κlCk)(w2 – w1)

)(
s1/k , m

)ds
s

∥∥
∥∥

(ν,β ,μ,k,ρ)

≤ C7
∥∥w2(τ , m) – w1(τ , m)

∥∥
(ν,β ,μ,k,ρ) (98)

for all 1 ≤ p ≤ δl – 1, where the constant C7 > 0 is given in (93).
In order to handle the nonlinear term, we write

Q1
(
i(m – m1)

)
w2

((
τ k – s

)1/k , m – m1
)
Q2(im1)w2

(
s1/k , m1

)

– Q1
(
i(m – m1)

)
w1

((
τ k – s

)1/k , m – m1
)
Q2(im1)w1

(
s1/k , m1

)

= Q1
(
i(m – m1)

)(
w2

((
τ k – s

)1/k , m – m1
)

– w1
((

τ k – s
)1/k , m – m1

))
Q2(im1)w2

(
s1/k , m1

)
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+ Q1
(
i(m – m1)

)
w1

((
τ k – s

)1/k , m – m1
)
Q2(im1)

(
w2

(
s1/k , m1

)
– w1

(
s1/k , m1

))

for all τ ∈ Sd ∪ (D(0,ρ) \ L–), all m, m1 ∈R.
Then, in view of assumption (8) and the lower bounds (70), (80), Proposition 3 gives rise

to constants C3 > 0 and η2 > 0 for which

∥
∥∥∥

τ k

H(τ , m)

∫ τk

0

∫ +∞

–∞

{
Q1

(
i(m – m1)

)
w2

((
τ k – s

)1/k , m – m1
)
Q2(im)w2

(
s1/k , m1

)

– Q1
(
i(m – m1)

)
w1

((
τ k – s

)1/k , m – m1
)
Q2(im1)w1

(
s1/k , m1

)}

× 1
(τ k – s)s

ds dm1

∥∥∥
∥

(ν,β ,μ,k,ρ)

≤ C3

min(η2, 1/2)
(∥∥w2(τ , m)

∥
∥

(ν,β ,μ,k,ρ)

+
∥∥w1(τ , m)

∥∥
(ν,β ,μ,k,ρ)

)∥∥w2(τ , m) – w1(τ , m)
∥∥

(ν,β ,μ,k,ρ)

≤ 2�C3

min(η2, 1/2)
∥∥w2(τ , m) – w1(τ , m)

∥∥
(ν,β ,μ,k,ρ). (99)

Now, we consider that |c12| and |cl|, 1 ≤ l ≤ D – 1, are such that

D–1∑

l=1

ε

l–dl+δl
0 |cl|

∑

n∈Il

sup
ε∈D(0,ε0)

∣
∣Al,n(ε)

∣
∣
(

C5kδl

�( n+dl,k
k )

+
∑

1≤p≤δl–1

|Aδl ,p|
C7kp

�( n+dl,k
k + δl – p)

)

+ |c12| 2�C3

(2π )1/2 min(η2, 1/2)
≤ 1

2
. (100)

Submitting estimates (97), (98) with (99) to constraints (100), one achieves (84).
Finally, we select |c12|, |cf |, and |cl|, 1 ≤ l ≤ D – 1, small enough in a way that (96) and

(100) are simultaneously fulfilled. �

We turn back again to the proof of Proposition 4. For � > 0 chosen as in Lemma 3,
we set the closed ball B̄(0,� ) ⊂ Fd

(ν,β ,μ,k,ρ) which turns out to be a complete metric space
for the distance d(x, y) = ‖x – y‖(ν,β ,μ,k,ρ). Owing to the previous lemma, we observe that
Hε induces a contractive application from (B̄(0,� ), d) into itself. Then, according to the
classical contractive mapping theorem, the map Hε possesses a unique fixed point that we
denote by wd(τ , m, ε), i.e.,

Hε

(
wd(τ , m, ε)

)
= wd(τ , m, ε) (101)

that belongs to the ball B̄(0,� ) for all ε ∈ D(0, ε0). Besides, the function wd(τ , m, ε) de-
pends holomorphically on ε in D(0, ε0). Direct transformations on (31) turn such expres-
sion into (101). As a result, the unique fixed point wd(τ , m, ε) of Hε obtained solves equa-
tion (31). �

6 Analytic solutions on sectors of the main initial value problem
We turn back to the formal constructions obtained in Sect. 3 by taking into considera-
tion the solution of the related problem (31) built up in Sect. 5 within the Banach spaces
described in Definition 4.
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We first recall the definition of a good covering in C
∗, and we disclose a modified version

of the so-called associated sets of sectors as proposed in our previous work [15].

Definition 5 Let ς ≥ 2 be an integer. For all 0 ≤ p ≤ ς – 1, we fix an open sector Ep,
centered at 0, with radius ε0 > 0 such that Ep ∩ Ep+1 �= ∅ for all 0 ≤ p ≤ ς – 1 (with the
convention that Eς = E0). Furthermore, we take for granted that the intersection of any
three different elements of {Ep}0≤p≤ς–1 is empty and that

⋃ς–1
p=0 Ep = U \{0}, whereU stands

for some neighborhood of 0 in C. A family of sectors {Ep}0≤p≤ς–1 with the above properties
is called a good covering in C

∗.

Definition 6 We consider a good covering E = {Ep}0≤p≤ς–1 in C
∗. We fix a real number

ρ > 0 and an open sector T centered at 0 with bisecting direction d = 0 and radius rT > 0,
and we set a family of open sectors

Sdp ,θ ,ε0rT =
{

T ∈C
∗/|T | < ε0rT ,

∣
∣dp – arg(T)

∣
∣ < θ/2

}

with aperture θ > π/k and dp ∈ [–π ,π ), 0 ≤ p ≤ ς – 1. We say that the set
{{Sdp ,θ ,ε0rT }0≤p≤ς–1,T ,ρ} is associated to E if the next two constraints hold:

(1) There exists a set of unbounded sectors Sdp , 0 ≤ p ≤ ς – 1 centered at 0 with suitably
chosen bisecting direction dp ∈ (–π/2,π/2) and small aperture satisfying that

τl /∈ Sdp ∪ D(0,ρ)

for some ρ > 0 and all l ∈ Z where τl stand for the complex numbers defined in (63).
(2) For all ε ∈ Ep, all t ∈ T ,

εt ∈ Sdp ,θ ,ε0rT (102)

for all 0 ≤ p ≤ ς – 1.

Figure 3 shows a configuration of a good covering of three sectors, one of them of open-
ing larger than π/k for some k close to 1. We illustrate in Fig. 4 a configuration of associated
sectors.

Figure 3 Good covering in C�
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Figure 4 A configuration associated to the good covering in Fig. 3

In the following first principal result of the work, we build up a set of actual holomorphic
solutions to the main initial value problem (11) defined on the sectors Ep w.r.t. ε. We also
provide an upper control for the difference between any two neighboring solutions on
Ep ∩ Ep+1 that turn out to be at most exponentially flat of order k.

Theorem 1 Let us assume that constraints (6), (7), (8), (9), and (59) hold. We consider a
good covering E = {Ep}0≤p≤ς–1 for which a set of data {{Sdp ,θ ,ε0rT }0≤p≤ς–1,T ,ρ} associated
to E can be singled out. We take for granted that the constants αD and κl , 1 ≤ l ≤ D – 1,
appearing in problem (11) are submitted to the inequality

BH,dpαD > κlK1
k

�( 1
k – 1)

(103)

for all 0 ≤ p ≤ ς – 1, where BH,dp is framed in construction (78) and depends on k, SQ,RD ,
Sdp and K1 > 0 is a constant relying on k, ν defined in Proposition 2(1).

Then, whenever the moduli |c12|, |cf |, and |cl|, 1 ≤ l ≤ D – 1, are taken sufficiently
small, a family {up(t, z, ε)}0≤p≤ς–1 of genuine solutions of (11) can be established. More
precisely, each function up(t, z, ε) defines a bounded holomorphic function on the product
(T ∩ D(0,σ )) × Hβ ′ × Ep for any given 0 < β ′ < β and suitably tiny σ > 0 (where β comes
out in (9)) and can be expressed as a Laplace transform of order k and Fourier inverse
transform

up(t, z, ε) =
k

(2π )1/2

∫ +∞

–∞

∫

Lγp

wdp (u, m, ε) exp

(
–
(

u
εt

)k)
eizm du

u
dm (104)
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along a halfline Lγp = R+e
√

–1γp ⊂ Sdp ∪ {0} and where wdp (τ , m, ε) stands for a function
that belongs to the Banach space Fdp

(ν,β ,μ,k,ρ) for all ε ∈ D(0, ε0). Furthermore, one can choose
constants Kp, Mp > 0 and 0 < σ ′ < σ (independent of ε) with

sup
t∈T ∩D(0,σ ′),z∈Hβ′

∣∣up+1(t, z, ε) – up(t, z, ε)
∣∣ ≤ Kp exp

(
–

Mp

|ε|k
)

(105)

for all ε ∈ Ep+1 ∩ Ep, all 0 ≤ p ≤ ς – 1 (with uς = u0).

Proof We select a good covering {Ep}0≤p≤ς–1 in C∗ with associated set {{Sdp ,θ ,ε0rT }0≤p≤ς–1,
T ,ρ}. According to Proposition 4, under the assumptions stated in Theorem 1, for suitable
|c12|, |cf |, and |cl|, 1 ≤ l ≤ D – 1, we observe that for each direction dp, one can build a
solution wdp (τ , m, ε) satisfying (31) within the space Fdp

(ν,β ,μ,k,ρ)

∣∣wdp (τ , m, ε)
∣∣ ≤ �dp

(
1 + |m|)–μe–β|m| |τ |k

1 + |τ |2k exp
(
ν|τ |k) (106)

for all τ ∈ Sdp ∪ (D(0,ρ) \ L–), all m ∈ R, all ε ∈ D(0, ε0), for an adequate �dp > 0. In par-
ticular, wdp (τ , m, ε) conform the analytic continuation w.r.t. τ of a common holomorphic
function that we call τ �→ w(τ , m, ε) whenever τ ∈ D(0,ρ) \ L– which satisfies likewise the
bounds above (106) provided that m ∈R, ε ∈ D(0, ε0).

As a consequence, the Laplace transform of order k and the Fourier inverse transform

Uγp (T , z, ε) =
k

(2π )1/2

∫ +∞

–∞

∫

Lγp

wdp (u, m, ε) exp

(
–
(

u
T

)k)
eizm du

u
dm

along a halfline Lγp ⊂ Sdp ∪ {0} represent
(1) A holomorphic bounded function w.r.t. T on a sector Sdp ,θ ,� with bisecting direction

dp, aperture π
k < θ < π

k + Ap(Sdp ), radius �, where Ap(Sdp ) stands for the aperture of
Sdp , for some real number � > 0.

(2) A holomorphic bounded application w.r.t. z on Hβ ′ for any given 0 < β ′ < β .
(3) A holomorphic bounded map w.r.t. ε on D(0, ε0).
Furthermore, the integral representation (29) and bounds (48), (49) show that Uγp ( T

1+κlT
,

z, ε) defines a holomorphic bounded function w.r.t. T on a sector Sdp ,θ ,�1 for some 0 < �1 <
� and the same θ as above in (1). Besides, a direct computation yields that

exp
(
αDTk+1∂T

)
Uγp (T , z, ε)

=
k

(2π )1/2

∫ +∞

–∞

∫

Lγp

exp
(
αDkuk)wdp (u, m, ε) exp

(
–
(

u
T

)k)
eizm du

u
dm (107)

defines a holomorphic bounded function w.r.t. T on a sector Sdp ,θ ,�2 for some 0 < �2 < �.
Finally, by combining these integral representations (29), (107) together with (22),

(23), and (24) displayed in Lemma 2, from the fact that wdp solves (31), we obtain that
Uγp (T , z, ε) solves equation (16) and hence (13), whenever T belongs to some sector Sdp ,θ ,�3

where 0 < �3 < �, if z lies within Hβ ′ and ε ∈ D(0, ε0).
As a result, the function

up(t, z, ε) = Uγp (εt, z, ε)
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defines a bounded holomorphic function w.r.t. t on T ∩ D(0,σ ) for some σ > 0, ε ∈
Ep, z ∈ Hβ ′ for any given 0 < β ′ < β , owing to the fact that the sectors Ep and T ful-
fill (102). Moreover, up(t, z, ε) solves the main initial value problem (11) on the domain
(T ∩ D(0,σ )) × Hβ ′ × Ep for all 0 ≤ p ≤ ς – 1.

In the final part of the proof, we are concerned with bounds (105). The steps of verifica-
tion are comparable to the arguments displayed in Theorem 1 of [15], but we still decide
to present the details for the sake of clarity.

By construction, the map u �→ w(u, m, ε) exp(–( u
εt )k)/u represents a holomorphic func-

tion on D(0,ρ) \ L– for all (m, ε) ∈R× D(0, ε0). Therefore, its integral along the union of a
segment joining 0 to (ρ/2)e

√
–1γp+1 followed by an arc of circle with radius ρ/2 which relies

on (ρ/2)e
√

–1γp+1 and (ρ/2)e
√

–1γp and ending with a segment starting from (ρ/2)e
√

–1γp to 0
vanishes. The Cauchy formula allows us to write the difference up+1 – up as a sum of three
integrals:

up+1(t, z, ε) – up(t, z, ε) =
k

(2π )1/2

∫ +∞

–∞

∫

Lρ/2,γp+1

wdp+1 (u, m, ε)e–( u
εt )k

eizm du
u

dm

–
k

(2π )1/2

∫ +∞

–∞

∫

Lρ/2,γp

wdp (u, m, ε)e–( u
εt )k

eizm du
u

dm

+
k

(2π )1/2

∫ +∞

–∞

∫

Cρ/2,γp ,γp+1

w(u, m, ε)e–( u
εt )k

eizm du
u

dm, (108)

where Lρ/2,γp+1 = [ρ/2, +∞)e
√

–1γp+1 , Lρ/2,γp = [ρ/2, +∞)e
√

–1γp , and Cρ/2,γp ,γp+1 stands for an
arc of circle with radius connecting (ρ/2)e

√
–1γp and (ρ/2)e

√
–1γp+1 with a well-chosen ori-

entation.
We first provide bounds for the first term in decomposition (108), namely

I1 =
∣
∣∣
∣

k
(2π )1/2

∫ +∞

–∞

∫

Lρ/2,γp+1

wdp+1 (u, m, ε)e–( u
εt )k

eizm du
u

dm
∣
∣∣
∣.

By construction, γp+1 (which may depend on εt) is chosen in such a way that cos(k(γp+1 –
arg(εt))) ≥ δ1 for all ε ∈ Ep ∩Ep+1, all t ∈ T ∩ D(0,σ ), for some fixed δ1 > 0. From estimates
(106), we get that

I1 ≤ k
(2π )1/2

∫ +∞

–∞

∫ +∞

ρ/2
�dp+1

(
1 + |m|)–μe–β|m| rk

1 + r2k

× exp
(
νrk) exp

(
–

cos(k(γp+1 – arg(εt)))
|εt|k rk

)
e–m Im(z) dr

r
dm

≤ k�dp+1

(2π )1/2

∫ +∞

–∞
e–(β–β ′)|m| dm

∫ +∞

ρ/2
rk–1 exp

(
–
(

δ1

|t|k – ν|ε|k
)(

r
|ε|

)k)
dr

≤ 2k�dp+1

(2π )1/2

∫ +∞

0
e–(β–β ′)m dm

∫ +∞

ρ/2

|ε|k
( δ1
|t|k – ν|ε|k)k

×
{ ( δ1

|t|k – ν|ε|k)

|ε|k krk–1 exp

(
–
(

δ1

|t|k – ν|ε|k
)(

r
|ε|

)k)}
dr

≤ 2k�dp+1

(2π )1/2
|ε|k

(β – β ′)( δ1
|t|k – ν|ε|k)k
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× exp

(
–
(

δ1

|t|k – ν|ε|k
)(

ρ/2
|ε|

)k)

≤ 2k�dp+1

(2π )1/2
|ε|k

(β – β ′)δ2k
exp

(
–δ2

(
ρ/2
|ε|

)k)
(109)

for all t ∈ T ∩ D(0,σ ) and z ∈ Hβ ′ with |t| < ( δ1
δ2+νεk

0
)1/k , for some δ2 > 0, whenever ε ∈

Ep ∩ Ep+1.
The estimates for the second term in the sum of (108) are obtained in the same manner:

I2 =
∣∣
∣∣

k
(2π )1/2

∫ +∞

–∞

∫

Lρ/2,γp

wdp (u, m, ε)e–( u
εt )k

eizm du
u

dm
∣∣
∣∣.

As above, the direction γp (which relies on εt) is taken in a way that cos(k(γp –arg(εt))) ≥ δ1

for all ε ∈ Ep ∩Ep+1, all t ∈ T ∩ D(0,σ ), for some fixed δ1 > 0. Again, according to (106), we
obtain

I2 ≤ 2k�dp

(2π )1/2
|ε|k

(β – β ′)δ2k
exp

(
–δ2

(ρ/2)k

|ε|k
)

(110)

for all t ∈ T ∩ D(0,σ ) and z ∈ Hβ ′ with |t| < ( δ1
δ2+νεk

0
)1/k , for some δ2 > 0, for all ε ∈ Ep ∩Ep+1.

Lastly, we deal with the remaining term in the sum (108), that is,

I3 =
∣
∣∣∣

k
(2π )1/2

∫ +∞

–∞

∫

Cρ/2,γp ,γp+1

w(u, m, ε)e–( u
εt )k

eizm du
u

dm
∣
∣∣∣.

By construction, the arc of circle Cρ/2,γp ,γp+1 is chosen in order that cos(k(θ – arg(εt))) ≥ δ1

for all θ ∈ [γp,γp+1] (if γp < γp+1), θ ∈ [γp+1,γp] (if γp+1 < γp), for all t ∈ T , all ε ∈ Ep ∩ Ep+1,
for some fixed δ1 > 0.

Owing to (106) we notice that

I3 ≤ k
(2π )1/2

∫ +∞

–∞

∣
∣∣
∣

∫ γp+1

γp

max
0≤p≤ς–1

�dp

(
1 + |m|)–μe–β|m| (ρ/2)k

1 + (ρ/2)2k exp
(
ν(ρ/2)k)

× exp

(
–

cos(k(θ – arg(εt)))
|εt|k

(
ρ

2

)k)
e–m Im(z) dθ

∣
∣∣
∣dm

≤ k max0≤p≤ς–1 �dp

(2π )1/2

∫ +∞

–∞
e–(β–β ′)|m| dm

× |γp – γp+1|(ρ/2)k exp

(
–
(

δ1

|t|k – ν|ε|k
)(

ρ/2
|ε|

)k)

≤ 2k max0≤p≤ς–1 �dp

(2π )1/2
|γp – γp+1|(ρ/2)k

β – β ′ exp

(
–δ2

(ρ/2)k

|ε|k
)

(111)

for all t ∈ T ∩ D(0,σ ) and z ∈ Hβ ′ whenever |t| < ( δ1
δ2+νεk

0
)1/k , for some δ2 > 0, for all ε ∈

Ep ∩ Ep+1.
By collecting (109), (110), and (111), we derive

∣∣up+1(t, z, ε) – up(t, z, ε)
∣∣
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≤
(2k(�dp + �dp+1 )

(2π )1/2
|ε|k

(β – β ′)δ2k
+

2k max0≤p≤ς–1 �dp

(2π )1/2
|γp – γp+1|(ρ/2)k

β – β ′

)

× exp

(
–δ2

(ρ/2)k

|ε|k
)

for all t ∈ T ∩ D(0,σ ) and z ∈ Hβ ′ with |t| < ( δ1
δ2+νεk

0
)1/k , for some δ2 > 0, for all ε ∈ Ep ∩Ep+1.

The result follows directly from here. �

7 Parametric Gevrey asymptotic expansions of order 1/k of the solutions
7.1 Gevrey asymptotic expansions of order 1/k and k-summable formal series
We first remind the reader the concept of k-summability of formal series with coefficients
in a Banach space as defined in classical textbooks such as [2].

Definition 7 Let (F,‖ · ‖F) be a complex Banach space. Let k ∈ ( 1
2 , 1). A formal series

â(ε) =
∞∑

j=0

ajε
j ∈ F[[ε]]

with coefficients belonging to (F,‖ · ‖F) is said to be k-summable with respect to ε in the
direction d ∈ R if

(i) A positive number ρ ∈R+ exists in such a way that the formal series, called formal
Borel transform of order k of â,

Bk(â)(τ ) =
∞∑

j=0

ajτ
j

�(1 + j
k )

∈ F[[τ ]]

converges absolutely for |τ | < ρ .
(ii) One can find an aperture 2δ > 0 such that the series Bk(â)(τ ) can be analytically

continued with respect to τ on the unbounded sector
Sd,δ = {τ ∈ C

∗ : |d – arg(τ )| < δ}. Moreover, there exist C > 0 and K > 0 with

∥∥Bk(â)(τ )
∥∥
F

≤ CeK |τ |k

for all τ ∈ Sd,δ .

If the conditions above are fulfilled, the vector-valued Laplace transform of order k of
Bk(â)(τ ) in the direction d is defined by

Ld
k
(
Bk(â)

)
(ε) = ε–k

∫

Lγ

Bk(â)(u)e–(u/ε)k
kuk–1 du

along a half-line Lγ = R+e
√

–1γ ⊂ Sd,δ ∪ {0}, where γ depends on ε and is chosen in such a
way that cos(k(γ – arg(ε))) ≥ δ1 > 0 for some fixed δ1, for all ε in a sector

Sd,θ ,R1/k =
{
ε ∈ C

∗ : |ε| < R1/k ,
∣∣d – arg(ε)

∣∣ < θ/2
}

,

where the angle θ and radius R satisfy that π
k < θ < π

k + 2δ and 0 < R < δ1/K .



Lastra and Malek Advances in Difference Equations        (2018) 2018:386 Page 38 of 40

Notice that this version of Laplace transform of order k slightly differs from the one
introduced in Definition 1 which turns out to be more suitable for the problems under
study in this work.

The function Ld
k (Bk(â))(ε) is called the k-sum of the formal series â(ε) in the direction d.

It represents a bounded and holomorphic function on the sector Sd,θ ,R1/k and is the unique
such function that admits the formal series â(ε) as Gevrey asymptotic expansion of order
1/k with respect to ε on Sd,θ ,R1/k . This means that, for all π

k < θ1 < θ , there exist C, M > 0
such that

∥
∥∥
∥∥

Ld
k
(
Bk(â)

)
(ε) –

n–1∑

p=0

apε
p

∥
∥∥
∥∥
F

≤ CMn�

(
1 +

n
k

)
|ε|n

for all n ≥ 1, all ε ∈ Sd,θ1,R1/k .
In the sequel, we present a cohomological criterion for the existence of Gevrey asymp-

totics of order 1/k for suitable families of sectorial holomorphic functions and k-
summability of formal series with coefficients in Banach spaces (see [3], p. 121 or [11],
Lemma XI-2-6) which is known as a Ramis–Sibuya theorem in the literature. This result
is an essential tool in the proof of our second main statement (Theorem 2).

Theorem (RS) Let (F,‖ · ‖F) be a Banach space over C and {Ep}0≤p≤ς–1 be a good covering
in C

∗. For all 0 ≤ p ≤ ς – 1, let Gp be a holomorphic function from Ep into the Banach space
(F,‖ · ‖F), and let the cocycle �p(ε) = Gp+1(ε) – Gp(ε) be a holomorphic function from the
sector Zp = Ep+1 ∩ Ep into E (with the convention that Eς = E0 and Gς = G0). We make the
following assumptions:

(1) The functions Gp(ε) are bounded as ε ∈ Ep tends to the origin in C for all
0 ≤ p ≤ ς – 1.

(2) The functions �p(ε) are exponentially flat of order k on Zp for all 0 ≤ p ≤ ς – 1. This
means that there exist constants Cp, Ap > 0 such that

∥
∥�p(ε)

∥
∥
F

≤ Cpe–Ap/|ε|k

for all ε ∈ Zp, all 0 ≤ p ≤ ς – 1.
Then, for all 0 ≤ p ≤ ς – 1, the functions Gp(ε) admit a common formal power series Ĝ(ε) ∈
F[[ε]] as Gevrey asymptotic expansion of order 1/k on Ep. Moreover, if the aperture of one
sector Ep0 is slightly larger than π/k, then Gp0 (ε) represents the k-sum of Ĝ(ε) on Ep0 .

7.2 Gevrey asymptotic expansion in the complex parameter for the analytic
solutions to the initial value problem

In this subsection, we show the second central result of our work, namely we establish
the existence of a formal power series in the parameter ε whose coefficients are bounded
holomorphic functions on the product of a sector T with small radius centered at 0 and a
strip Hβ ′ in C2, which represent the common Gevrey asymptotic expansion of order 1/k
of the actual solutions up(t, z, ε) of (11) constructed in Theorem 1.

The second main result of this work can be stated as follows.

Theorem 2 We set F as the Banach space of complex valued bounded holomorphic func-
tions on the product (T ∩ D(0,σ ′)) × Hβ ′ endowed with the supremum norm where the sec-
tor T , radius σ ′ > 0, and width β ′ > 0 are determined in Theorem 1. For all 0 ≤ p ≤ ς – 1,
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the holomorphic and bounded functions ε �→ up(t, z, ε) from Ep intoF built up in Theorem 1
admit a formal power series

û(t, z, ε) =
∑

m≥0

hm(t, z)εm ∈ F[[ε]]

as Gevrey asymptotic expansion of order 1/k. More precisely, for all 0 ≤ p ≤ ς – 1, we can
pick up two constants Cp, Mp > 0 with

sup
t∈T ∩D(0,σ ′),z∈Hβ′

∣
∣∣
∣∣
up(t, z, ε) –

n–1∑

m=0

hm(t, z)εm

∣
∣∣
∣∣
≤ CpMn

p�

(
1 +

n
k

)
|ε|n

for all n ≥ 1, whenever ε ∈ Ep. Furthermore, if the aperture of one sector Ep0 can be taken
slightly larger than π/k, then the map ε �→ up0 (t, z, ε) is the k-sum of û(t, z, ε) on Ep0 .

Proof We focus on the family of functions up(t, z, ε), 0 ≤ p ≤ ς – 1 constructed in The-
orem 1. For all 0 ≤ p ≤ ς – 1, we define Gp(ε) := (t, z) �→ up(t, z, ε), which represents a
holomorphic and bounded function from Ep into the Banach space F of bounded holo-
morphic functions on (T ∩ D(0,σ ′)) × Hβ ′ equipped with the supremum norm, where T
is a bounded sector selected in Theorem 1, the radius σ ′ > 0 is taken small enough, and
Hβ ′ is a horizontal strip of width 0 < β ′ < β . In accordance with (105), we deduce that the
cocycle �p(ε) = Gp+1(ε) – Gp(ε) is exponentially flat of order k on Zp = Ep ∩ Ep+1 for any
0 ≤ p ≤ ς – 1.

Owing to Theorem (RS), we obtain a formal power series Ĝ(ε) ∈ F[[ε]] which represents
the Gevrey asymptotic expansion of order 1/k of each Gp(ε) on Ep for 0 ≤ p ≤ ς – 1. Be-
sides, when the aperture of one sector Ep0 is slightly larger than π/k, the function Gp0 (ε)
defines the k-sum of Ĝ(ε) on Ep0 as described in Definition 7. �
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