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Abstract
In this article, we first create a new comparison principle for a nonlinear impulsive
boundary problem involving different deviating arguments. Then we employ the new
result and iterative method to study the existence of the max-minimal solution of a
second-order impulsive functional integro-differential equation. The results achieved
in this paper are more general and complement many previously known results.
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1 Introduction
The comparison principle plays an important role since it is one of the basic tools to
study ODE and PDE. Thus, how to create a new comparison principle is an interesting
and important question. In this paper, we shall create a comparison principle with im-
pulsive effect. By means of the comparison principle and monotone iterative method,
the existence of the max-minimal solution of second-order impulsive functional integro-
differential Eqs. (1.1) is investigated. Also, the iterative sequences of solutions of the sys-
tem are given. The importance of this method does not need to be particularly pointed
out [1–14]. The theorems achieved in this paper are more general and complement many
previously known results.

Impulsive differential equations, arising in the mathematical modeling of complex sys-
tems and processes, have drawn more and more attention of the research community due
to their numerous applications in various fields of science and engineering such as chem-
istry, physics, biology, medicine, mechanics, etc. (see [15–24]). Boundary value problems
(BVP) of differential equations have been investigated for many years. Now, nonlinear
boundary conditions have drawn much attention, there exist many articles dealing with
the problem for different kinds of boundary value conditions such as multi-point, integral
boundary condition, and other conditions (see [25–35]). On the other hand, deviated ar-
guments also play an important role in nonlinear analysis. It should be noticed that such
equations appear often in various fields of science and engineering such as mathematical
physics, economics, mechanics, etc. (see [36–38]). However, the relevant theory of this
type of problem is still at its developing stage, and a great quantity of aspects remain to be
explored. For a detailed description, see [39–43].
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Here, we use the new result we achieved in the article to investigate the existence theo-
rems of max–min solutions for impulsive systems of the following:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′′(t) = ϒ(t, u(t), u(φ(t)), Xu(t), Yu(t), u(ψ(t,μ(t)))), t ∈ J ′,

�u(tk) = Ik(u(tk)), k = 1, 2, . . . , m,

�u′(tk) = I∗
k (u(tk), u′(tk)), k = 1, 2, . . . , m,

χ1(u(0), u(T)) = 0, χ2(u′(0), u′(T)) = 0,

(1.1)

where t ∈ J = [0, T](T > 0), ϒ ∈ C(J × R5, R), Ik ∈ C(R, R), I∗
k ,χi(i = 1, 2) ∈ C(R × R, R),

φ ∈ C(J , J), μ ∈ C(J , R), ψ ∈ C(J × R, J), 0 = t0 < t1 < · · · < tk < · · · < tm < tm+1 = T , J ′ =
J\{t1, t2, . . . , tm}, and

Xu(t) =
∫ t

0
k(t, s)u(s) ds, Yu(t) =

∫ T

0
h(t, s)u(s) ds,

k(t, s) ∈ C(D, R+), h(t, s) ∈ C(J × J , R+), D = {(t, s) ∈ R2|0 ≤ s ≤ t, t ∈ J}, R+ = [0, +∞).
�u(tk) = u(t+

k )–u(t–
k ), where u(t+

k ) and u(t–
k ) denote the right and the left limits of u(t) at t =

tk(k = 1, 2, . . . , m), respectively. �u′(tk) has a similar meaning for u′(t). Let PC(J , R) = {u :
J → R|u(t) is continuous at t 	= tk , left continuous at t = tk and u(t+

k ) exists, k = 1, 2, . . . , m}.
In addition, PC1(J , R) = {u ∈ PC(J , R)|u(t) is continuously differentiable at t 	= tk , u′(t+

k ) and
u′(t–

k ) exist, k = 1, 2, . . . , m}. Obviously, PC(J , R) and PC1(J , R) are Banach spaces with re-
spective norms

‖u‖PC = sup
t∈J

∣
∣u(t)

∣
∣, ‖u‖PC1 = max

{‖u‖PC ,
∥
∥u′∥∥

PC

}
.

2 New comparison principle
Lemma 1 ([16]) Let s ∈ [0, T), ck ≥ 0, φk (k = 1, 2, . . . , m) be constants, and let a, b ∈
PC(J , R), w ∈ PC1(J , R). If

⎧
⎨

⎩

w′(t) ≤ a(t)w(t) + b(t), t ∈ [s, T), t 	= tk ,

w(t+
k ) ≤ ckw(tk) + φk , tk ∈ [s, T),

then for t ∈ [s, T]

w(t) ≤ w
(
s+)

( ∏

s<tk <t
ck

)

exp

(∫ t

s
a(r) dr

)

+
∫ t

s

( ∏

r<tk <t
ck

)

exp

(∫ t

r
a(τ ) dτ

)

b(r) dr

+
∑

s<tk <t

( ∏

tk <ti<t
ck

)

exp

(∫ t

tk

a(τ ) dτ

)

φk .

Lemma 2 (New comparison principle) Assume that u ∈ PC1(J , R) ∩ C2(J ′, R) satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′′(t) ≤ –D1(t)u(t) – D2(t)u(φ(t)) – D3(t)(Xu)(t) – D4(t)(Yu)(t), t ∈ J ′,

�u(tk) ≤ –Lku(tk), k = 1, 2, . . . , m,

�u′(tk) ≤ –L∗
ku′(tk), k = 1, 2, . . . , m,

u(0) ≤ λ1u(T), u′(0) ≤ λ2u′(T),

(2.1)
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where Di ∈ C(J , R+)(i = 1, 2, 3, 4), 0 ≤ Lk < 1, 0 < λ1,λ2, L∗
k < 1, and

λ1

m∏

k=1

(1 – Lk)2
m∏

k=1

(
1 – L∗

k
)
(

1 – λ2

m∏

k=1

(
1 – L∗

k
)
)

≥
∫ T

0
q(t) dt

∫ T

0

∏

s<tk<T

(1 – Lk) ds, (2.2)

here q(t) = D1(t) + D2(t) + D3(t)
∫ t

0 k(t, s) ds + D4(t)
∫ T

0 h(t, s) ds. Then u(t) ≤ 0, t ∈ J .

Proof Suppose the contrary. Then, for some t ∈ J , u(t) > 0, thus there exist two cases:
Case a: For some t ∈ J , u(t) > 0, and u(t) ≥ 0 for t ∈ J .
Case b: For some t∗, t∗ ∈ J such that u(t∗) > 0 and u(t∗) < 0.
In Case a, it follows from (2.1) that u′′(t) ≤ 0 for t 	= tk and u′(t+

k ) ≤ (1 – L∗
k)u′(tk). By

means of Lemma 1, we have u′(t) ≤ u′(0)
∏

0<tk<t(1 – L∗
k). From this, together with (2.1), we

have u′(0) ≤ λ2u′(T) ≤ λ2u′(0)
∏m

k=1(1 – L∗
k), which means u′(0) ≤ 0, thus u′(t) ≤ 0. Mean-

while, u(t+
k ) ≤ (1 – Lk)u(tk) ≤ u(tk). So, u(t) is nonincreasing in J . Then u(0) ≤ λ1u(T) ≤

λ1u(0), which is a contradiction.
For Case b, put inft∈J u(t) = –γ , then γ > 0, and for some i ∈ {1, 2, . . . , m}, there exists

t∗ ∈ (ti, ti+1] such that u(t∗) = –γ or u(t+
i ) = –γ . Only consider u(t∗) = –γ , the proof of the

case u(t+
i ) = –γ is similar.

By (2.1), we have

⎧
⎨

⎩

u′′(t) ≤ γ [D1(t) + D2(t) + D3(t)
∫ t

0 k(t, s) ds + D4(t)
∫ T

0 h(t, s) ds] ≡ γ q(t),

u′(t+
k ) ≤ (1 – L∗

k)u′(tk).

By Lemma 1, we get

u′(t) ≤ u′(0)
∏

0<tk<t

(
1 – L∗

k
)

+
∫ t

0
γ

∏

s<tk<t

(
1 – L∗

k
)
q(s) ds. (2.3)

In (2.3), let t = T , then we have

u′(0) ≤ λ2u′(T)

≤ λ2u′(0)
m∏

k=1

(
1 – L∗

k
)

+ λ2

∫ T

0
γ

∏

s<tk<T

(
1 – L∗

k
)
q(s) ds

≤ λ2u′(0)
m∏

k=1

(
1 – L∗

k
)

+ λ2

∫ T

0
γ q(s) ds,

which implies

u′(0) ≤ λ2

∫ T

0
γ q(s) ds

[

1 – λ2

m∏

k=1

(
1 – L∗

k
)
]–1

. (2.4)
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From (2.3) and (2.4), we have that

u′(t) ≤ λ2

∫ T

0
γ q(s) ds

[

1 – λ2

m∏

k=1

(
1 – L∗

k
)
]–1

∏

0<tk<t

(
1 – L∗

k
)

+
∫ t

0
γ

∏

s<tk<t

(
1 – L∗

k
)
q(s) ds

≤
∫ T

0
γ q(s) ds

{

λ2
∏

0<tk <t

(
1 – L∗

k
)
[

1 – λ2

m∏

k=1

(
1 – L∗

k
)
]–1

+ 1

}

≤ λ2
∏

0<tk<t

(
1 – L∗

k
)
∫ T

0
γ q(s) ds

×
{[

1 – λ2

m∏

k=1

(
1 – L∗

k
)
]–1

+

[

λ2

m∏

k=1

(
1 – L∗

k
)
]–1}

≤
∫ T

0
γ q(s) ds

[ m∏

k=1

(
1 – L∗

k
)
(

1 – λ2

m∏

k=1

(
1 – L∗

k
)
)]–1

,

which and u(t+
k ) ≤ (1 – Lk)u(tk) imply for t ∈ [t∗, T]

u(t) ≤u(t∗)
∏

t∗<tk <t
(1 – Lk) +

∫ t

t∗

∏

s<tk<t
(1 – Lk)

∫ T

0
γ q(r) dr

×
[ m∏

k=1

(
1 – L∗

k
)
(

1 – λ2

m∏

k=1

(
1 – L∗

k
)
)]–1

ds

= u(t∗)
∏

t∗<tk <t
(1 – Lk) +

∫ T

0
γ q(r) dr

×
[ m∏

k=1

(
1 – L∗

k
)
(

1 – λ2

m∏

k=1

(
1 – L∗

k
)
)]–1

×
∫ t

t∗

∏

s<tk<t
(1 – Lk) ds. (2.5)

If t∗ > t∗, let t = t∗ in (2.5), we have

0 < –γ
∏

t∗<tk <t∗
(1 – Lk)

+ γ

∫ T

0
q(r) dr

[ m∏

k=1

(
1 – L∗

k
)
(

1 – λ2

m∏

k=1

(
1 – L∗

k
)
)]–1

×
∫ t∗

t∗

∏

s<tk<t∗
(1 – Lk) ds,
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so,

∏m
k=1(1 – Lk)

∫ T
0

∏
s<tk<T (1 – Lk) ds

≤
∏

t∗<tk <t∗ (1 – Lk)
∫ t∗

t∗
∏

s<tk<t∗ (1 – Lk) ds

<
∫ T

0
q(r) dr

[ m∏

k=1

(
1 – L∗

k
)
(

1 – λ2

m∏

k=1

(
1 – L∗

k
)
)]–1

,

which contradicts (2.2). Hence, u(t) ≤ 0 on J .
If t∗ < t∗, without loss of generality, let t∗ ∈ (tp–1, tp] and t∗ ∈ (tq, tq+1], 0 ≤ q ≤ p – 1,

p, q ∈ {1, 2, . . . , m}. By Lemma 1, we have

u
(
t∗) ≤ u(0)

∏

0<tk <t∗
(1 – Lk) +

∫ T

0
γ q(r) dr

[ m∏

k=1

(
1 – L∗

k
)
(

1 – λ2

m∏

k=1

(
1 – L∗

k
)
)]–1

×
∫ t∗

0

∏

s<tk <t∗
(1 – Lk) ds

= u(0)
q∏

k=1

(1 – Lk) +
∫ T

0
γ q(r) dr

[ m∏

k=1

(
1 – L∗

k
)

×
(

1 – λ2

m∏

k=1

(
1 – L∗

k
)
)]–1 ∫ t∗

0

∏

s<tk<t∗
(1 – Lk) ds. (2.6)

On the other hand,

u(0) ≤ λ1u(T) ≤ λ1u(t∗)
∏

t∗<tk <T

(1 – Lk) + λ1

∫ T

0
γ q(r) dr

×
[ m∏

k=1

(
1 – L∗

k
)
(

1 – λ2

m∏

k=1

(
1 – L∗

k
)
)]–1 ∫ T

t∗

∏

s<tk<T

(1 – Lk) ds

= –λ1γ

m∏

k=p

(1 – Lk) + λ1

∫ T

0
γ q(r) dr

×
[ m∏

k=1

(
1 – L∗

k
)
(

1 – λ2

m∏

k=1

(
1 – L∗

k
)
)]–1 ∫ T

t∗

∏

s<tk<T

(1 – Lk) ds. (2.7)

From (2.6) and (2.7), we get that

λ1

m∏

k=p

(1 – Lk)
q∏

j=1

(1 – Lj)

<
∫ T

0
q(r) dr

[ m∏

k=1

(
1 – L∗

k
)
(

1 – λ2

m∏

k=1

(
1 – L∗

k
)
)]–1

×
[

λ1

q∏

j=1

(1 – Lj)
∫ T

t∗

∏

s<tk<T

(1 – Lk) ds +
∫ t∗

0

∏

s<tk<t∗
(1 – Lk) ds

]

.
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By
∏m

j=q+1(1 – Lj) times the above inequality, then

λ1

m∏

k=p

(1 – Lk)
m∏

j=1

(1 – Lj)

<
∫ T

0
q(r) dr

[ m∏

k=1

(
1 – L∗

k
)
(

1 – λ2

m∏

k=1

(
1 – L∗

k
)
)]–1

×
[

λ1

m∏

j=1

(1 – Lj)
∫ T

t∗

∏

s<tk<T

(1 – Lk) ds +
m∏

j=q+1

(1 – Lj)
∫ t∗

0

∏

s<tk<t∗
(1 – Lk) ds

]

≤
∫ T

0
q(r) dr

[ m∏

k=1

(
1 – L∗

k
)
(

1 – λ2

m∏

k=1

(
1 – L∗

k
)
)]–1

×
[∫ T

t∗

∏

s<tk<T

(1 – Lk) ds +
∫ t∗

0

∏

s<tk<T

(1 – Lk) ds
]

≤
∫ T

0
q(r) dr

[ m∏

k=1

(
1 – L∗

k
)
(

1 – λ2

m∏

k=1

(
1 – L∗

k
)
)]–1

×
∫ T

0

∏

s<tk<T

(1 – Lk) ds.

So, λ1
∏m

k=1(1 – Lk)2 <
∫ T

0 q(r) dr[
∏m

k=1(1 – L∗
k)(1 – λ2

∏m
k=1(1 – L∗

k))]–1 ∫ T
0

∏
s<tk <T (1 –

Lk) ds, which contradicts (2.2). Hence, u(t) ≤ 0 on J .
Consider the problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′′(t) = σ (t) – D1(t)u(t) – D2(t)u(φ(t)) – D3(t)(Xu)(t) – D4(t)(Yu)(t), t ∈ J ′,

�u(tk) = ψk – Lku(tk), k = 1, 2, . . . , m,

�u′(tk) = νk – L∗
ku′(tk), k = 1, 2, . . . , m,

u(0) = λ1u(T) + m1, u′(0) = λ2u′(T) + m2,

(2.8)

where σ ∈ PC(J , R), ψk ,νk , m1, m2 ∈ R. �

Lemma 3 u(t) ∈ PC1(J , R) ∩ C2(J ′, R) is a solution of the impulsive differential system (2.8)
iff u(t) ∈ PC1(J , R) is a solution of the impulsive integral system

u(t) = G1 + tG2

+
∫ t

0
(t – s)

[
σ (s) – D1(s)u(s) – D2(s)u

(
φ(s)

)
– D3(s)(Xu)(s) – D4(s)(Yu)(s)

]
ds

+
∑

0<tk<t

{[
ψk – Lku(tk)

]
+ (t – tk)

[
νk – L∗

ku′(tk)
]}

, (2.9)
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where

G1 =
λ1

1 – λ1

{∫ T

0
(T – s)

[
σ (s) – D1(s)u(s) – D2(s)u

(
φ(s)

)
– D3(s)(Xu)(s)

– D4(s)(Yu)(s)
]

ds +
∑

0<tk<T

{[
ψk – Lku(tk)

]
+ (T – tk)

[
νk – L∗

ku′(tk)
]}

+ TG2 + m1

}

+ m1,

G2 =
λ2

1 – λ2

{∫ T

0

[
σ (s) – D1(s)u(s) – D2(s)u

(
φ(s)

)
– D3(s)(Xu)(s)

– D4(s)(Yu)(s)
]

ds +
∑

0<tk<T

[
νk – L∗

ku′(tk)
]

+ m2

}

+ m2.

Lemma 3 is easy, so we omit its proof.

Lemma 4 For σ ∈ PC(J , R), ψk ,νk , m1, m2 ∈ R, 0 ≤ Lk < 1, 0 < λ1,λ2, L∗
k < 1 and functions

M, K , N , L ∈ C(J , R+). If

⎧
⎪⎪⎨

⎪⎪⎩

1
1–λ1

{∫ T
0 (T – s)p(s) ds +

∑m
k=1[Lk + (T – tk)L∗

k]}
+ λ2T

(1–λ1)(1–λ2) [
∫ T

0 p(s) ds +
∑m

k=1 L∗
k] < 1,

1
1–λ2

[
∫ T

0 p(s) ds +
∑m

k=1 L∗
k] < 1,

(2.10)

where p(t) = D1(t) + D2(t) + D3(t)
∫ t

0 k(t, s) ds + D4(t)
∫ T

0 h(t, s) ds. (2.8) has a unique solution
u(t) ∈ PC1(J , R) ∩ C2(J ′, R).

A similar proof can be found in [22] (see Lemma 2.3), so we omit it.

3 Main results
Theorem 1 Assume that condition (2.10) holds. In addition, assume that

(H1) There exist u0(t) ≤ v0(t) ∈ PC1(J , R) ∩ C2(J ′, R) such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u′′
0(t) ≤ ϒ(t, u0(t), u0(φ(t)), Xu0(t), Yu0(t), u0(ψ(t,μ(t)))),

�u0(tk) ≤ Ik(u0(tk)), k = 1, 2, . . . , m,

�u′
0(tk) ≤ I∗

k (u0(tk), u′
0(tk)), k = 1, 2, . . . , m,

χ1(u0(0), u0(T)) ≤ 0, χ2(u′
0(0), u′

0(T)) ≤ 0,

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v′′
0(t) ≥ ϒ(t, v0(t), v0(φ(t)), Xv0(t), Yv0(t), v0(ψ(t,μ(t)))),

�v0(tk) ≥ Ik(v0(tk)), k = 1, 2, . . . , m,

�v′
0(tk) ≥ I∗

k (v0(tk), v′
0(tk)), k = 1, 2, . . . , m,

χ1(v0(0), v0(T)) ≥ 0, χ2(v′
0(0), v′

0(T)) ≥ 0.
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(H2) Functions Di ∈ C(J , R+)(i = 1, 2, 3, 4), which satisfy (2.2) such that

ϒ(t, u, v, w, z, ξ ) – ϒ(t, u, v, w, z, ξ ) ≥ –D1(t)(u – u) – D2(t)(v – v)

– D3(t)(w – w) – D4(t)(z – z),

where u0(t) ≤ u ≤ u ≤ v0(t), u0(φ(t)) ≤ v ≤ v ≤ v0(φ(t)), Xu0(t) ≤ w ≤ w ≤ Xv0(t), Yu0(t) ≤
z ≤ z ≤ Yv0(t), u0(ψ(t,μ(t))) ≤ ξ ≤ ξ ≤ v0(ψ(t,μ(t))), ∀t ∈ J .

(H3) There exist constants 0 ≤ Lk < 1, 0 < L∗
k < 1 (k = 1, 2, . . . , m), and 0 < b1 < a1, 0 < b2 <

a2 such that

Ik(u) – Ik(u) ≥ –Lk(u – u),

I∗
k
(
u, u′) – I∗

k
(
u, u′) ≥ –L∗

k
(
u′ – u′),

χ1(u, v) – χ1(u, v) ≤ a1(u – u) – b1(v – v),

χ2
(
u′, v′) – χ2

(
u′, v′) ≤ a2

(
u′ – u′) – b2

(
v′ – v′),

where u0(tk) ≤ u ≤ u ≤ v0(tk) (k = 1, 2, . . . , m), u0(0) ≤ u ≤ u ≤ v0(0), u0(T) ≤ v ≤ v ≤
v0(T).

Then the impulsive system (1.1) has the min-maximal solutions u∗, v∗ in [u0, v0], respec-
tively. Moreover, there exist monotone iterative sequences {un(t)}, {vn(t)} ⊂ [u0, v0] such that
un → u∗, vn → v∗(n → ∞) uniformly on t ∈ J , where {un(t)}, {vn(t)} satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′
n(t) = ϒ(t, un–1(t), un–1(φ(t)), Xun–1(t), Yun–1(t), un–1(ψ(t,μ(t))))

– D1(t)(un – un–1)(t) – D2(t)(un – un–1)(φ(t)) – D3(t)X(un – un–1)(t)

– D4(t)Y (un – un–1)(t), t ∈ J ′,

�un(tk) = Ik(un–1(tk)) – Lk(un – un–1)(tk), k = 1, 2, . . . , m,

�u′
n(tk) = I∗

k (un–1(tk), u′
n–1(tk)) – L∗

k(u′
n – u′

n–1)(tk), k = 1, 2, . . . , m,

un(0) = un–1(0) + λ1[un(T) – un–1(T)] – 1
a1

χ1(un–1(0), un–1(T)), n = 1, 2, . . . ,

u′
n(0) = u′

n–1(0) + λ2[u′
n(T) – u′

n–1(T)] – 1
a2

χ2(u′
n–1(0), u′

n–1(T)), n = 1, 2, . . . ,

(3.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v′′
n(t) = ϒ(t, vn–1(t), vn–1(φ(t)), Xvn–1(t), Yvn–1(t), vn–1(ψ(t,μ(t))))

– D1(t)(vn – vn–1)(t) – D2(t)(vn – vn–1)(φ(t)) – D3(t)X(vn – vn–1)(t)

– D4(t)Y (vn – vn–1)(t), t ∈ J ′,

�vn(tk) = Ik(vn–1(tk)) – Lk(vn – vn–1)(tk), k = 1, 2, . . . , m,

�v′
n(tk) = I∗

k (vn–1(tk), v′
n–1(tk)) – L∗

k(v′
n – v′

n–1)(tk), k = 1, 2, . . . , m,

vn(0) = vn–1(0) + λ1[vn(T) – vn–1(T)] – 1
a1

χ1(vn–1(0), vn–1(T)), n = 1, 2, . . . ,

v′
n(0) = v′

n–1(0) + λ2[v′
n(T) – v′

n–1(T)] – 1
a2

χ2(v′
n–1(0), v′

n–1(T)), n = 1, 2, . . . ,

(3.2)

and

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ u∗ ≤ v∗ ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0, (3.3)

here λi = bi/ai(i = 1, 2).
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Proof For any un–1, vn–1 ∈ PC1(J , R)∩C2(J ′, R), it follows from Lemma 4 that (3.1) and (3.2)
have unique solutions un and vn in PC1(J , R) ∩ C2(J ′, R), respectively.

Now, we verify that

un–1 ≤ un ≤ vn ≤ vn–1, n = 1, 2, . . . . (3.4)

Let p(t) = u0(t) – u1(t), q(t) = v1(t) – v0(t), w(t) = u1(t) – v1(t), by (3.1), (3.2) and (H1) –
(H4), we have that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p′′(t) ≤ –D1(t)p(t) – D2(t)p(φ(t)) – D3(t)(Xp)(t) – D4(t)(Yp)(t), t ∈ J ′,

�p(tk) ≤ –Lkp(tk), k = 1, 2, . . . , m,

�p′(tk) ≤ –L∗
kp′(tk), k = 1, 2, . . . , m,

p(0) ≤ λ1p(T), p′(0) ≤ λ2p′(T),
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q′′(t) ≤ –D1(t)q(t) – D2(t)q(φ(t)) – D3(t)(Xq)(t) – D4(t)(Yq)(t), t ∈ J ′,

�q(tk) ≤ –Lkq(tk), k = 1, 2, . . . , m,

�q′(tk) ≤ –L∗
kq′(tk), k = 1, 2, . . . , m,

q(0) ≤ λ1q(T), q′(0) ≤ λ2q′(T),
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w′′(t) = ϒ(t, u0(t), u0(φ(t)), Xu0(t), Yu0(t), u0(ψ(t,μ(t)))) – D1(t)(u1 – u0)(t)

– D2(t)(u1 – u0)(φ(t)) – D3(t)X(u1 – u0)(t) – D4(t)Y (u1 – u0)(t)

– ϒ(t, v0(t), v0(φ(t)), Xv0(t), Yv0(t), v0(ψ(t,μ(t)))) + D1(t)(v1 – v0)(t)

+ D2(t)(v1 – v0)(φ(t)) + D3(t)X(v1 – v0)(t) + D4(t)Y (v1 – v0)(t)

≤ –D1(t)w(t) – D2(t)w(φ(t)) – D3(t)(Xw)(t) – D4(t)(Yw)(t), t ∈ J ′,

�w(tk) = Ik(u0(tk)) – Ik(v0(tk)) – Lk(u1 – u0)(tk) + Lk(v1 – v0)(tk)

≤ –Lkw(tk), k = 1, 2, . . . , m,

�w′(tk) = I∗
k (u0(tk), u′

0(tk)) – I∗
k (v0(tk), v′

0(tk)) – L∗
k(u′

1 – u′
0)(tk) + L∗

k(v′
1 – v′

0)(tk)

≤ –L∗
kw′(tk), k = 1, 2, . . . , m,

w(0) = u0(0) – v0(0) + λ1[u1(T) – u0(T)] – λ1[v1(T) – v0(T)]

– 1
a1

χ1(u0(0), u0(T)) + 1
a1

χ1(v0(0), v0(T))

≤ u0(0) – v0(0) + λ1w(T) – λ1[u0(T) – v0(T)]

+ [v0(0) – u0(0)] – λ1[v0(T) – u0(T)]

≤ λ1w(T),

w′(0) ≤ λ2w′(T).

Thus, by means of Lemma 2, we have p(t) ≤ 0, q(t) ≤ 0, w(t) ≤ 0, ∀t ∈ J , i.e., u0 ≤ u1 ≤
v1 ≤ v0.

Assume that uk–1 ≤ uk ≤ vk ≤ vk–1 for some k ≥ 1. Thus, employing the same technique
once again, by Lemma 2, one can get uk ≤ uk+1 ≤ vk+1 ≤ vk . Thus, one can easily show that

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0, n = 1, 2, . . . . (3.5)
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Employing the standard arguments, we have

lim
n→∞ un(t) = u∗(t),

lim
n→∞ vn(t) = v∗(t)

uniformly on t ∈ J , and the limit functions u∗, v∗ satisfy (1.1). Moreover, u∗, v∗ ∈ [u0, v0].
Next, we prove that u∗, v∗ are the min-maximal solutions of impulsive differential system

(1.1) in [u0, v0]. If w ∈ [u0, v0] is any solution of (1.1). Let un–1(t) ≤ w(t) ≤ vn–1(t),∀t ∈ J ,
for some positive integer n. Put p = un – w. Then

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p′′(t) = ϒ(t, un–1(t), un–1(φ(t)), Xun–1(t), Yun–1(t), un–1(ψ(t,μ(t))))

– D1(t)(un – un–1)(t) – D2(t)(un – un–1)(φ(t))

– D3(t)X(un – un–1)(t) – D4(t)Y (un – un–1)(t)

– ϒ(t, w(t), w(φ(t)), Xw(t), Yw(t), w(ψ(t,μ(t))))

≤ D1(t)(w – un–1)(t) + D2(t)(w – un–1)(φ(t)) + D3(t)X(w – un–1)(t)

+ D4(t)Y (w – un–1)(t) – D1(t)(un – un–1)(t) – D2(t)(un – un–1)(φ(t))

– D3(t)X(un – un–1)(t) – D4(t)Y (un – un–1)(t)

= –D1(t)p(t) – D2(t)p(φ(t)) – D3(t)(Xp)(t) – D4(t)(Yp)(t), t ∈ J ′,

�p(tk) = Ik(un–1(tk)) – Ik(w(tk)) – Lk(un – un–1)(tk)

≤ –Lkp(tk), k = 1, 2, . . . , m,

�p′(tk) = I∗
k (un–1(tk), u′

n–1(tk)) – I∗
k (w(tk), w′(tk)) – L∗

k(u′
n – u′

n–1)(tk)

≤ –L∗
kp′(tk), k = 1, 2, . . . , m,

p(0) = un–1(0) + λ1[un(T) – un–1(T)] – 1
a1

χ1(un–1(0), un–1(T))

+ 1
a1

χ1(w(0), w(T)) – w(0)

≤ un–1(0) + λ1[un(T) – un–1(T)] + [w(0) – un–1(0)]

– λ1[w(T) – un–1(T)] – w(0)

= λ1p(T),

p′(0) = u′
n–1(0) + λ2[u′

n(T) – u′
n–1(T)] – 1

a2
χ2(u′

n–1(0), u′
n–1(T))

+ 1
a2

χ2(w(0), w(T)) – w(0)

≤ λ2p′(T).

By Lemma 2, we have un(t) ≤ w(t),∀t ∈ J . By the same way as above, we can show w(t) ≤
vn(t),∀t ∈ J . That is, un(t) ≤ w(t) ≤ vn(t), ∀t ∈ J .

Now, if n → ∞, then

u0(t) ≤ u∗(t) ≤ w(t) ≤ v∗(t) ≤ v0(t), ∀t ∈ J .

That is, u∗, v∗ are the min-maximal solutions of (1.1) in [u0, v0]. �
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4 Example
Consider

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′(t) = 1
100 t3[t – u(t)] + 1

300 t3[t – u(t2)]3 + 1
500 t[t3 –

∫ t
0 tsu(s) ds]5

+ 1
700 t2[t2 –

∫ 1
0 t2su(s) ds]7 – 1

100 t4e–u( 1
2 t3+ 1

2 t2e–t ), t ∈ [0, 1], t 	= 1
2 ,

�u( 1
2 ) = – 1

4 u( 1
2 ),

�u′( 1
2 ) = bu( 1

2 ) – 3
8 u′( 1

2 ),

χ1(u(0), u(1)) = u2(0) – 1
2 u(1) = 0,

χ2(u′(0), u′(1)) = u′(0) – 1
3 u′(1) = 0,

(4.1)

where 0 ≤ b ≤ 1
26 , m = 1, t1 = 1

2 , φ(t) = t2, ψ(t,μ(t)) = 1
2 t3 + 1

2 t2e–t , ∀t ∈ J .
Take

u0(t) = 0, ∀t ∈ J , v0(t) =

⎧
⎨

⎩

1 + t + 1
2 t2, t ∈ [0, 1

2 ],

1 + t2, t ∈ ( 1
2 , 1].

(4.2)

Then

u0(t) ≤ v0(t), u′
0(t) = 0, v′

0(t) =

⎧
⎨

⎩

1 + t, t ∈ [0, 1
2 ],

2t, t ∈ ( 1
2 , 1],

(4.3)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′
0(t) = 0 ≤ 1

100 t4 + 1
300 t6 + 1

500 t16 + 1
700 t16 – 1

100 t4

= ϒ(t, u0(t), u0(φ(t)), Xu0(t), Yu0(t), u0(ψ(t,μ(t)))),

�u0( 1
2 ) = 0 = I1(u0( 1

2 )),

�u′
0( 1

2 ) = 0 = I∗
1 (u0( 1

2 ), u′
0( 1

2 )),

χ1(u0(0), u0(1)) = u2
0(0) – 1

2 u0(1) = 0,

χ2(u′
0(0), u′

0(1)) = u′
0(0) – 1

3 u′
0(1) = 0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v′′
0(t) ≥ 1 > 1

100 + 1
300 + 1

500 + 1
700

≥ ϒ(t, v0(t), v0(φ(t)), Xv0(t), Yv0(t), v0(ψ(t,μ(t)))),

�v0( 1
2 ) = – 3

8 ≥ – 13
32 = I1(v0( 1

2 )),

�v′
0( 1

2 ) = – 1
2 ≥ 13b

8 – 9
16 = I∗

1 (v0( 1
2 ), v′

0( 1
2 )),

χ1(v0(0), v0(1)) = v2
0(0) – 1

2 v0(1) = 0,

χ2(v′
0(0), v′

0(1)) = v′
0(0) – 1

3 v′
0(1) = 1

3 > 0.

Consequently, u0, v0 satisfy (H1). Let

ϒ(t, u, v, w, z, ξ ) =
1

100
t3(t – u) +

1
300

t3(t – v)3 +
1

500
t
(
t3 – w

)5

+
1

700
t2(t2 – z

)7 –
1

100
t4e–ξ ,
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we have

ϒ(t, u, v, w, z, ξ ) – ϒ(t, u, v, w, z, ξ )

=
1

100
t3[(t – u) – (t – u)

]
+

1
300

t3[(t – v)3 – (t – v)3] +
1

500
t
[(

t3 – w
)5 –

(
t3 – w

)5]

+
1

700
t2[(t2 – z

)7 –
(
t2 – z

)7] –
1

100
t4(e–ξ – e–ξ

)

≥ –
1

100
t3(u – u) –

1
25

t3(v – v) –
1

100
t13(w – w) –

1
100

t14(z – z),

where u0(t) ≤ u ≤ u ≤ v0(t), u0(φ(t)) ≤ v ≤ v ≤ v0(φ(t)), Xu0(t) ≤ w ≤ w ≤ Xv0(t), Yu0(t) ≤
z ≤ z ≤ Yv0(t), u0(ψ(t,μ(t))) ≤ ξ ≤ ξ ≤ v0(ψ(t,μ(t))), ∀t ∈ J . For L1 = 1

4 , L∗
1 = 3

8 , a1 = 2,
b1 = 1

2 , a2 = 1, b2 = 1
3 , obviously, (H3) and (H4) hold. On the other hand, put D1(t) = 1

100 t3,
D2(t) = 1

25 t3, D3(t) = 1
100 t13, D4(t) = 1

100 t14, λ1 = 1
4 , λ2 = 1

3 , L1 = 1
4 , L∗

1 = 3
8 , it is easy to see

that conditions (2.2) and (2.10) hold. So, (H2) also holds.
Thus, Theorem 1 is satisfied. Therefore, our conclusions come from Theorem 1 that

(4.1) has the min-maximal solution u∗, v∗ ∈ [u0, v0].
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