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Abstract
In this paper, stabilization is studied for a two-dimensional delta operator system with
time-varying delays and actuator saturation. Both lower and upper bounds of the
time-varying delays are considered. An estimate of the domain of attraction for the
two-dimensional delta operator system is introduced to analyze stability of the
closed-loop system. A state feedback controller is designed via a Lyapunov–Krasovskii
functional approach for the two-dimensional delta operator system with
time-varying delays and actuator saturation. Two numerical examples are given to
illustrate the effectiveness and advantages of the developed techniques.
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1 Introduction
A 2-D system is a dynamic process in which information is transmitted in two indepen-
dent directions. 2-D systems are widely studied due to the fact that many practical sys-
tems are usually modeled as the 2-D systems, such as signal and image processing [1],
thermal processing [2], metal rolling processing [3], and so on. Owing to the fact that 2-D
systems have wide application background, stabilization analysis for the 2-D systems has
become an important problem in control field. Stability, l2-gain, and stabilization analy-
sis have been investigated for 2-D discrete switched systems [4, 5]. Many practical 2-D
systems contain inherent delays which are often sources of poor performances and insta-
bility for the 2-D systems. Therefore, considerable interests have been attracted in sta-
bilization analysis for the 2-D systems with time delays. And stabilizations are studied
mainly by delay-dependent methods for the 2-D systems with time delays, because the
delay-dependent methods are less conservative than the delay-independent ones [6, 7].
An H∞ control problem has been considered for a 2-D T-S fuzzy model with time delays
and missing measurements [8]. A delay-dependent H∞ controller has been designed for
a 2-D switched system with time delays [9]. For 2-D discrete-time systems with interval
time-varying delays, a delay-dependent stability problem has been studied in [10]. Based
on [10], an improved approach has been given in [11]. Besides, a delay-partitioning ap-
proach has been proposed in [12]. Most of the studies are mainly on 2-D discrete-time

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1851-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1851-0&domain=pdf
mailto:dpeng1219@163.com


Peng et al. Advances in Difference Equations        (2018) 2018:437 Page 2 of 19

systems. Hence, there is a lot of space to extend the 2-D systems with time delays into
delta domain, which motivates us to make an effort in this paper.

Discrete-time systems have been widely researched with the rapid development of com-
puter technology. The discrete-time systems are usually expressed as shift operator sys-
tems. Studies on 2-D discrete-time systems are also mainly about 2-D shift operator sys-
tems. However, parameters in the traditional shift operator systems do not tend to the
ones in corresponding continuous-time systems when sampling frequencies are gradu-
ally increased, which usually leads to poor performances and instability for the control
systems [13]. In order to solve the problems, delta operators are proposed to replace the
traditional shift operators in fast sampling cases [14]. After that, a lot of research results
have been shown for delta operator systems. Using a delta operator approach, a fuzzy
fault detection filter and a stability problem have been investigated for uncertain fuzzy
and networked control systems, respectively [15, 16]. Saturation is a common problem in
modern engineering field. It is meaningful to research actuator saturation because most
of actuators do not strictly accord with linearity and many of them subject to saturation in
real physical systems. Recently, considerable interest has been attracted to analyze control
systems subject to actuator saturation, please refer to [17–19] and the references therein.
A convex hull approach has been proposed to deal with systems with actuator satura-
tion [20–22]. Moreover, the domain of attraction is a subset of state space, and all system
trajectories that start from the subset will eventually tend to origin. An estimate of the do-
main of attraction has been investigated for a class of nonlinear systems subject to input
constraints [23, 24]. 2-D models widely exist in modern engineering field, such as a metal
rolling process and a thermal process. However, the 2-D models are rarely considered for
fast sampling cases in the existing results.

In this paper, a 2-D system is considered in delta domain to adapt to a fast sampling rate
and avoid the system instability caused by the fast sampling in this paper. Moreover, both
time-varying delays and actuator saturation, which usually occur in the modern engineer-
ing field, are studied for a 2-D delta operator system. Free weighting matrices, 2-D Jensen
inequalities, and linear matrix inequalities (LMIs) approaches are applied to stabilization
analysis. Furthermore, an estimate of the domain of attraction is proposed for the 2-D delta
operator system. A state feedback controller is designed by Lyapunov–Krasovskii meth-
ods. Two numerical examples are shown to illustrate the effectiveness and advantages of
the developed techniques.

This paper is organized in the following. Section 2 formulates problem formulation on
the 2-D delta operator system with time-varying delays and actuator saturation. The stabi-
lization problem is shown for the 2-D delta operator system with time-varying delays and
actuator saturation in Sect. 3. In Sect. 4, two numerical examples are given to illustrate the
effectiveness and advantages of the proposed methods. The paper is concluded in Sect. 5.

Main novelties of this paper are summarized as follows:
(1) A stabilization problem on a 2-D system is extended to delta domain which is a link

between s-domain and z-domain.
(2) 2-D models widely exist in modern engineering field. However, the 2-D models are

rarely considered for fast sampling cases in the existing results. In this paper, the
2-D model is considered in the case of fast sampling.

(3) An estimate of the domain of attraction is proposed for the 2-D delta operator
system in this paper.
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Notation In the sequel, if not explicitly stated, matrices are assumed to have compati-
ble dimensions. Throughout this paper, Rn denotes the n-dimensional Euclidean space.
For any matrix A, λmax(A) denotes the maximal module of its eigenvalues, AT denotes the
transpose of matrix A, A > 0 and A ≥ 0 denote that matrix A is a positive definite matrix
and a semi-positive definite matrix, respectively. I is the identity matrix of appropriate
dimension. The shorthand diag{M1, M2, . . . , Mr} denotes a block diagonal matrix with di-
agonal blocks being the matrices M1, M2, . . . , Mr . The symmetric terms in a symmetric
matrix are denoted by ∗. ∂x(s,t)

∂s and ∂x(s,t)
∂t denote partial derivatives of function x(s, t) to

variables s and t, respectively.

2 Problem formulation
In this paper, two 2-D delta operators are shown as follows:

δvx(ti, tj) =

⎧
⎨

⎩

∂x(ti, tj)/∂tj, Tv = 0,
x(ti ,tj+Tv)–x(ti ,tj)

Tv
, Tv �= 0

(1)

and

δhx(ti, tj) =

⎧
⎨

⎩

∂x(ti, tj)/∂ti, Th = 0,
x(ti+Th ,tj)–x(ti ,tj)

Th
, Th �= 0

(2)

where δvx(ti, tj) is the delta operator along vertical direction, δhx(ti, tj) is the delta operator
along horizontal direction, Tv is the sampling period along vertical direction, Th is the
sampling period along horizontal direction, j and i are time steps with tj = jTv and ti = iTh,
respectively. A 2-D delta operator system with time-varying delays and actuator saturation
is given as

δx(ti+1, tj+1) = Ā1x(ti+1, tj) + Ā1dx
(
ti+1, tj – d1(tj)

)
+ B̄1 sat

(
u(ti+1, tj)

)

+ Ā2x(ti, tj+1) + Ā2dx
(
ti – d2(ti), tj+1

)
+ B̄2 sat

(
u(ti, tj+1)

)
, (3)

with

δx(ti+1, tj+1) = δvx(ti+1, tj) + δhx(ti, tj+1),

δvx(ti+1, tj) = Ā1x(ti+1, tj) + Ā1dx
(
ti+1, tj – d1(tj)

)
+ B̄1 sat

(
u(ti+1, tj)

)
,

δhx(ti, tj+1) = Ā2x(ti, tj+1) + Ā2dx
(
ti – d2(ti), tj+1

)
+ B̄2 sat

(
u(ti, tj+1)

)
,

Ā1 =
2A1 – I
Tv

, Ā1d =
2A1d

Tv
, B̄1 =

2B1

Tv
,

Ā2 =
2A2 – I
Th

, Ā2d =
2A2d

Th
, B̄2 =

2B2

Th
,

where x(ti, tj) ∈ Rn is the plant state, u(ti, tj) ∈ Rm is the control input, A1, A2, A1d , A2d , B1,
and B2 are parameter matrices with appropriate dimensions. Note that d1(tj) and d2(ti) are
time-varying delays along vertical direction and horizontal direction, respectively. d1(tj)
and d2(ti) are satisfied with

0 < d1m ≤ d1(tj) ≤ d1M, 0 < d2m ≤ d2(ti) ≤ d2M, (4)
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where d1m, d1M , d2m, and d2M are positive real numbers. The function “sat” is the standard
saturation function with appropriate dimension. The saturation function is defined as

sat(u) =
[
sat(u1), sat(u2), . . . , sat(um)

]T ,

where sat(ui) = sgn(ui) min{1, |ui|}.
Initial conditions are given as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(ti, tj) = φv, ∀0 ≤ ti ≤ z1, tj = –d1M, –d1M + 1, . . . , 0,

x(ti, tj) = φh, ∀0 ≤ tj ≤ z2, ti = –d2M, –d2M + 1, . . . , 0,

x(ti, tj) = 0, ∀ti > z1, tj = –d1M, –d1M + 1, . . . , 0,

x(ti, tj) = 0, ∀tj > z2, ti = –d2M, –d2M + 1, . . . , 0,

(5)

where φv and φh are given vectors, z1 and z2 are any large positive integers.
The objective of this paper is to stabilize the 2-D delta operator system (3) under the

following state feedback controller:

u(ti, tj) = Kx(ti, tj). (6)

By controller (6), the 2-D delta operator system (3) is transformed as follows:

δx(ti+1, tj+1) = Ā1x(ti+1, tj) + Ā1dx
(
ti+1, tj – d1(tj)

)
+ B̄1 sat

(
Kx(ti+1, tj)

)

+ Ā2x(ti, tj+1) + Ā2dx
(
ti – d2(ti), tj+1

)
+ B̄2 sat

(
Kx(ti, tj+1)

)
, (7)

where K ∈ Rm×n is a feedback gain matrix.
The following definition on the domain of attraction for the 2-D delta operator system

(3) will be used in this paper.

Definition 1 Denote a solution of system (3) with initial conditions in (5) as ζ (ti, tj,φv,φh).
The domain of attraction for system (3) is given as

T :=
{
φv ∈ C1[–d1M, 0],φh ∈ C2[–d2M, 0] : lim

ti+tj→∞ ζ (ti, tj,φv,φh) = 0
}

,

where φv and φh are initial conditions, C1[–d1M, 0] is a set of the initial conditions φv with
0 ≤ ti ≤ z1, tj = –d1M, –d1M + 1, . . . , 0 and C2[–d2M, 0] is a set of the initial conditions φh

with 0 ≤ tj ≤ z2, ti = –d2M, –d2M + 1, . . . , 0.

Based on Definition 1, an estimate of the domain of attraction is shown as follows:

Y :=
{
φv ∈ C1[–d1M, 0],φh ∈ C2[–d2M, 0] :

max‖φv‖ ≤ η1, max‖φh‖ ≤ η2, max‖δφv‖ ≤ η3, max‖δφh‖ ≤ η4
}

,

where ηl > 0, l = 1, 2, 3, 4, are the maximum positive scalars, ‖ · ‖ denotes the Euclidean
norm.
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For a positive definite matrix P ∈ Rn×n, an ellipsoid �(P) is defined as

�(P) :=
{

x(ti, tj) ∈ Rn : xT (ti, tj)Px(ti, tj) ≤ 1
}

.

For a matrix H ∈ Rm×n, a linear region of saturation is given as

L(H) :=
{

x(ti, tj) ∈ Rn :
∣
∣hqx(ti, tj)

∣
∣≤ 1, q = 1, 2, . . . , m

}
,

where hq is the qth row of H .
Let D be a set of m × m diagonal matrices whose diagonal elements are either 1 or 0. In

the set D, each element is labeled as Dp, p = 1, 2, . . . , 2m. Denote D–
p as D–

p = I – Dp. Note
that D–

p is also an element of the set D.
Before ending this section, the following lemmas are given to develop the main results

in this paper.

Lemma 1 ([25]) Let K ∈ Rm×n and H ∈ Rm×n be two given matrices. If x(ti, tj) ∈L(H), then
it is obtained that

sat
(
Kx(ti, tj)

) ∈ co
{(

DpK + D–
p H
)
x(ti, tj) : p ∈ [1, 2m]},

where co{·} stands for a convex hull. Consequently, sat(Kx(ti, tj)) is rewritten as

sat
(
Kx(ti, tj)

)
=

2m
∑

p=1

ηp
(
DpK + D–

p H
)
x(ti, tj),

where 0 ≤ ηp ≤ 1 and
∑2m

p=1 ηp = 1.

Lemma 2 ([11]) For a matrix W ∈ Rm×m and a function ω(ti, tj) ∈ Rm×m, there exist

(l2 – l1 + 1)
l2∑

ti=l1

ωT (ti, tj)Wω(ti, tj) ≥
( l2∑

ti=l1

ω(ti, tj)

)T

W

( l2∑

ti=l1

ω(ti, tj)

)

, (8)

(l2 – l1 + 1)
l2∑

tj=l1

ωT (ti, tj)Wω(ti, tj) ≥
( l2∑

tj=l1

ω(ti, tj)

)T

W

( l2∑

tj=l1

ω(ti, tj)

)

, (9)

where W = W T is a positive define matrix, l1 and l2 are integers satisfying l1 < l2. Inequal-
ities (8) and (9) are called 2-D Jensen inequalities.

Lemma 3 ([26]) Let X, Y , 
 , 
11, 
12, 
21, 
22, Z1 > 0, and Z2 > 0 be given matrices with
appropriate dimensions. The following two inequalities

⎡

⎢
⎣

–Z1 
11 X
∗ 
 
T

12

∗ ∗ –Z1

⎤

⎥
⎦ < 0 (10)
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and

⎡

⎢
⎣

–Z2 
21 Y
∗ 
 
T

22

∗ ∗ –Z2

⎤

⎥
⎦ < 0 (11)

hold if and only if

[

 
11


T
11 –Z1

]

< 0,

[

 
12


T
12 –Z1

]

< 0 (12)

and

[

 
21


T
21 –Z2

]

< 0,

[

 
22


T
22 –Z2

]

< 0, (13)

respectively.

Remark 1 In [15, 16], a delta operator is defined as the following form:

δx(tk) =

⎧
⎨

⎩

dx(t)/dt, T = 0,
x(tk +T)–x(tk )

T , T �= 0.

In this paper, the delta operator is divided into two cases. On the one hand, a delta opera-
tor system is equivalent to a continuous-time system when the sampling period T equals
zero. On the other hand, the delta operator system is equivalent to a discrete-time system
when the sampling period T equals one. The delta operator system is a link between the
continuous-time system and the discrete-time system. In this paper, the delta operator is
extended to a 2-D model and the 2-D delta operators (1)–(2) are given for the 2-D delta
operator system (3).

Remark 2 Compared with traditional shift operators, the 2-D delta operators (1)–(2) have
obvious numerical advantages in fast sampling cases. According to the 2-D delta operators
(1)–(2), a FM second system in delta domain is represented as the 2-D delta operator
system (3). Note that the 2-D delta operator system (3) can be simplified into a common
FM second system when the sampling period T equals one.

3 Main results
3.1 Stability analysis
In the subsection, a sufficient stability condition is provided for the 2-D delta operator
system (3) with zero input.

Theorem 1 For given scalars τ1, τ2, τ3, τ4, τ5, d1m, d2m, d1M , and d2M , the 2-D delta oper-
ator system (3) with u(ti, tj) = 0 is asymptotically stable if there exist matrices X, Y , P > 0,
Q > 0, R1 > 0, R2 > 0, Q1 > 0, Q2 > 0, S1 > 0, S2 > 0, Z1 > 0, Z2 > 0, M11, M12, M21, M22, N11,
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N12, N21, and N22 such that the following LMIs hold:

⎡

⎢
⎢
⎢
⎣

–Z1 
11 X 0
∗ 
1 
T

12 �T

∗ ∗ –Z1 0
∗ ∗ ∗ 
2

⎤

⎥
⎥
⎥
⎦

< 0 (14)

and

⎡

⎢
⎢
⎢
⎣

–Z2 
21 Y 0
∗ 
1 
T

22 �T

∗ ∗ –Z2 0
∗ ∗ ∗ 
2

⎤

⎥
⎥
⎥
⎦

< 0, (15)

where

�T =
[

�T
1 P d2

1m�T
2 S1 d2

12�
T
2 Z1 d2

2m�T
3 S2 d2

21�
T
3 Z2

]
,


11 =
[

0 0 M11 0 M12 0 0 0
]

,


12 =
[

0 0 N11 0 N12 0 0 0
]

,


21 =
[

0 0 0 M21 0 M22 0 0
]

,


22 =
[

0 0 0 N21 0 N22 0 0
]

,


1 =

⎡

⎢
⎢
⎢
⎣

–Q̄ + R + Q̂ – S̄ 0 S̄ 0
∗ –Q̃ + M̄1 + M̄1

T – N̄1 – N̄1
T N̄1 + M̄2

T – N̄2
T –M̄1

∗ ∗ –S̄ + N̄2 + N̄2
T –M̄2

∗ ∗ ∗ –R

⎤

⎥
⎥
⎥
⎦

,


2 = diag
{

–P, –d2
1mS1, –d2

12Z1, –d2
2mS2, –d2

21Z2
}

,

Q̄ = diag{Q, P – Q}, R = diag{R1, R2},
�1 =

[
1
2 (TvĀ1 + I) 1

2 (ThĀ2 + I) 1
2TvĀ1d

1
2ThĀ2d 0 0 0 0

]
,

Q̃ = diag{TvQ1,ThQ2},
�2 =

[
1
2 (TvĀ1 – I) 1

2 (ThĀ2 + I) 1
2TvĀ1d

1
2ThĀ2d 0 0 0 0

]
,

S̄ = diag
{
T2

vS1,T2
hS2
}

,

�3 =
[

1
2 (TvĀ1 + I) 1

2 (ThĀ2 – I) 1
2TvĀ1d

1
2ThĀ2d 0 0 0 0

]
,

S1 = τ1P, S2 = τ2P,

Z1 = τ3P, M̄2 = diag{TvM12,ThM22},
N̄1 = diag{TvN11,ThN21}, N̄2 = diag{TvN12,ThN22}, Z2 = τ4P,

Q = τ5P, Q̂ = diag
{

(d12 + Tv)Q1, (d21 + Th)Q2
}

, M̄1 = diag{TvM11,ThM21}.
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Proof Denote a Lyapunov–Krasovskii functional of the 2-D delta operator system (3) as

V
(
x(ti, tj)

)
= V1

(
x(ti, tj)

)
+ V2

(
x(ti, tj)

)
,

with

V1
(
x(ti, tj)

)
= TvxT (ti+1, tj+1)Qx(ti+1, tj+1)

+ Tv

n1M∑

α=1

xT(ti+1, tj – (α – 1)Tv
)
R1x

(
ti+1, tj – (α – 1)Tv

)

+ T2
v

n1M∑

β=n1m

β∑

α=1

xT(ti+1, tj – (α – 1)Tv
)
Q1x

(
ti+1, tj – (α – 1)Tv

)

+ T2
vd1m

n1m∑

β=1

β∑

α=1

ȳT(ti+1, tj – (α – 1)Tv
)
S1ȳ
(
ti+1, tj – (α – 1)Tv

)

+ T2
vd12

n1M∑

β=n1m+1

β∑

α=1

ȳT(ti+1, tj – (α – 1)Tv
)
Z1ȳ

(
ti+1, tj – (α – 1)Tv

)
,

V2
(
x(ti, tj)

)
= ThxT (ti+1, tj+1)(P – Q)x(ti+1, tj+1)

+ Th

n2M∑

α=1

xT(ti – (α – 1)Th, tj+1
)
R2x

(
ti – (α – 1)Th, tj+1

)

+ T2
h

n2M∑

β=n2m

β∑

α=1

xT(ti – (α – 1)Th, tj+1
)
Q2x

(
ti – (α – 1)Th, tj+1

)

+ T2
hd2m

n2m∑

β=1

β∑

α=1

ȳT(ti – (α – 1)Th, tj+1
)
S2ȳ
(
ti – (α – 1)Th, tj+1

)

+ T2
hd21

n2M∑

β=n2m+1

β∑

α=1

ȳT(ti – (α – 1)Th, tj+1
)
Z2ȳ

(
ti – (α – 1)Th, tj+1

)
,

where

ȳ(ti+1, tj – αTv) = x
(
ti+1, tj – (α – 1)Tv

)
– x(ti+1, tj – αTv),

ȳ(ti – αTh, tj+1) = x
(
ti – (α – 1)Th, tj+1

)
– x(ti – αTh, tj+1).

Taking the delta operator manipulation of V (x(ti, tj)), it is obtained that

δV
(
x(ti, tj)

)
= δvV1

(
x(ti, tj)

)
+ δhV2

(
x(ti, tj)

)
, (16)

where

δvV1
(
x(ti, tj)

)

= ξT
1 �T

1 Q�1ξ1 – xT (ti+1, tj)Qx(ti+1, tj)

+ xT (ti+1, tj)R1x(ti+1, tj) – xT (ti+1, tj – d1M)R1x(ti+1, tj – d1M)
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+ (d12 + Tv)xT (ti+1, tj)Q1x(ti+1, tj) – Tv

n1M∑

α=n1m

xT (ti+1, tj – αTv)Q1x(ti+1, tj – αTv)

+ d2
1mȳT (ti+1, tj)S1ȳ(ti+1, tj) – Tvd1m

n1m∑

α=1

ȳT (ti+1, tj – αTv)S1ȳ(ti+1, tj – αTv)

+ d2
12ȳT (ti+1, tj)Z1ȳ(ti+1, tj) – Tvd12

n1M∑

β=n1m+1

ȳT (ti+1, tj – βTv)Z1ȳ(ti+1, tj – βTv),

δhV2
(
x(ti, tj)

)

= ξT
1 �T

1 (P – Q)�1ξ1 – xT (ti, tj+1)(P – Q)x(ti, tj+1)

+ xT (ti, tj+1)R2x(ti, tj+1) – xT (ti – d2M, tj+1)R2x(ti – d2M, tj+1)

+ (d21 + Th)xT (ti, tj+1)Q2x(ti, tj+1) – Th

n2M∑

α=n2m

xT (ti – αTh, tj+1)Q2x(ti – αTh, tj+1)

+ d2
2mȳT (ti, tj+1)S2ȳ(ti, tj+1) – Thd2m

n2m∑

α=1

ȳT (ti – αTh, tj+1)S2ȳ(ti – αTh, tj+1)

+ d2
21ȳT (ti, tj+1)Z2ȳ(ti, tj+1) – Thd21

n2M∑

β=n2m+1

ȳT (ti – βTh, tj+1)Z2ȳ(ti – βTh, tj+1),

with

ξ1 =
[

xT xT
d xT

dm xT
dM

]T
,

x =
[

xT (ti+1, tj) xT (ti, tj+1)
]T

,

xd =
[

xT (ti+1, tj – d1(tj)) xT (ti – d2(ti), tj+1)
]T

,

xdm =
[

xT (ti+1, tj – d1m) xT (ti – d2m, tj+1)
]T

,

xdM =
[

xT (ti+1, tj – d1M) xT (ti – d2M, tj+1)
]T

,

n1MTv = d1M, n2MTh = d2M, n1mTv = d1m,

n2mTh = d2m, d12 = d1M – d1m, d21 = d2M – d2m.

For matrices M1, M2, N1, and N2, one has that

0 = 2Tvξ
(1)T
2 M1

[

x
(
ti+1, tj – d1(tj)

)
– x(ti+1, tj – d1M) –

n1M∑

β=
d1(tj)
Tv +1

ȳT (ti+1, tj – βTv)

]

, (17)

0 = 2Thξ
(2)T
2 M2

[

x
(
ti – d2(ti), tj+1

)
– x(ti – d2M, tj+1) –

n2M∑

β=
d2(tj)
Th

+1

ȳT (ti – βTh, tj+1)

]

, (18)

0 = 2Tvξ
(1)T
2 N1

[

x(ti+1, tj – d1m) – x
(
ti+1, tj – d1(tj)

)
–

d1(tj)
Tv∑

β=n1m+1

ȳT (ti+1, tj – βTv)

]

, (19)
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0 = 2Thξ
(2)T
2 N2

[

x(ti – d2m, tj+1) – x
(
ti – d2(ti), tj+1

)
–

d2(tj)
Th∑

β=n2m+1

ȳT (ti – βTh, tj+1)

]

, (20)

where

ξ
(1)
2 =

[

xT (ti+1, tj – d1(tj)) xT (ti+1, tj – d1m)
]T

,

ξ
(2)
2 =

[

xT (ti – d2(ti), tj+1) xT (ti – d2m, tj+1)
]T

,

M1 =
[

MT
11 MT

12

]T
, M2 =

[

MT
21 MT

22

]T
,

N1 =
[

NT
11 NT

12

]T
, N2 =

[

NT
21 NT

22

]T
.

Using equalities (16)–(20), the following inequality is given:

δV
(
x(ti, tj)

)

≤ Tv

d12

n1M∑

β=
d1(tj)
Tv +1

[
ξ1

–d12ȳ(ti+1, tj – βTv)

]T [

 
11


T
11 –Z1

][
ξ1

–d12ȳ(ti+1, tj – βTv)

]

+
Tv

d12

d1(tj)
Tv∑

β=n1m+1

[
ξ1

–d12ȳ(ti+1, tj – βTv)

]T [

 
12


T
12 –Z1

][
ξ1

–d12ȳ(ti+1, tj – βTv)

]

+
Th

d21

n2M∑

β=
d2(tj)
Th

+1

[
ξ1

–d21ȳ(ti – βTh, tj+1)

]T [

 
21


T
21 –Z2

][
ξ1

–d21ȳ(ti – βTh, tj+1)

]

+
Th

d21

d2(tj)
Th∑

β=n2m+1

[
ξ1

–d21ȳ(ti – βTh, tj+1)

]T [

 
22


T
22 –Z2

][
ξ1

–d21ȳ(ti – βTh, tj+1)

]

, (21)

where


 = 
1 + �T
1 P�1 + �T

2
(
d2

1mS1 + d2
12Z1

)
�2 + �T

3
(
d2

2mS2 + d2
21Z2

)
�3.

Moreover, sufficient conditions for δV (x(ti, tj)) < 0 are given as follows:

[

 
11


T
11 –Z1

]

< 0,

[

 
12


T
12 –Z1

]

< 0,

[

 
21


T
21 –Z2

]

< 0,

[

 
22


T
22 –Z2

]

< 0.

(22)

Using inequalities in (22) and Lemma 3, inequalities (10) and (11) are obtained. Using
Schur’s complements, inequalities (10) and (11) are converted to inequalities (14) and (15),
respectively. If inequalities (14) and (15) hold, then one has that δV (x(ti, tj)) < 0, which
implies that the 2-D delta operator system (3) with u(ti, tj) = 0 is asymptotically stable.
The proof is completed. �
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3.2 Stabilization
In the subsection, a sufficient stabilization condition is provided for the 2-D delta operator
systems (7) with time-varying delays and actuator saturation.

Theorem 2 For given scalars τ1, τ2, τ3, τ4, τ5, d1m, d2m, d1M , and d2M , the 2-D delta op-
erator system (7) is asymptotically stable if there exist matrices X̃, Ỹ , P̃ > 0, Q̃ > 0, R̃1 > 0,
R̃2 > 0, Q̃1 > 0, Q̃2 > 0, S̃1 > 0, S̃2 > 0, Z̃1 > 0, Z̃2 > 0, M̃11, M̃12, M̃21, M̃22, Ñ11, Ñ12, Ñ21, Ñ22,
V1, and V2 such that the following LMIs hold:

⎡

⎢
⎢
⎢
⎣

–Z̃1 
̃11 X̃ 0
∗ 
̃1 
̃T

12 �̃T

∗ ∗ –Z̃1 0
∗ ∗ ∗ 
̃2

⎤

⎥
⎥
⎥
⎦

< 0, (23)

⎡

⎢
⎢
⎢
⎣

–Z̃2 
̃21 Ỹ 0
∗ 
̃1 
̃T

22 �̃T

∗ ∗ –Z̃2 0
∗ ∗ ∗ 
̃2

⎤

⎥
⎥
⎥
⎦

< 0, (24)

and

�(P) ⊂L(H), (25)

where

�̃T =
[

�̃T
1 τ1d2

1m�̃T
2 τ3d2

12�̃
T
2 τ2d2

2m�̃T
3 τ4d2

21�̃
T
3

]
,


̃11 =
[

0 0 M̃11 0 M̃12 0 0 0
]

,


̃12 =
[

0 0 Ñ11 0 Ñ12 0 0 0
]

,


̃21 =
[

0 0 0 M̃21 0 M̃22 0 0
]

,


̃22 =
[

0 0 0 Ñ21 0 Ñ22 0 0
]

,


̃1 =

⎡

⎢
⎢
⎢
⎣

–Q̄1 + R̃ + Q̂1 – S̃ 0 S̃ 0
∗ –Q̃3 + M̂1 + M̂T

1 – N̂1 – N̂T
1 N̂1 + M̂T

2 – N̂T
2 –M̂1

∗ ∗ –̃S + N̂2 + N̂T
2 –M̂2

∗ ∗ ∗ –R̃

⎤

⎥
⎥
⎥
⎦

,


̃2 = diag
{

–P̃, –τ1d2
1mP̃, –τ3d2

12P̃, –τ2d2
2mP̃, –τ4d2

21P̃
}

, Q̃3 = diag{TvQ̃1,ThQ̃2},
Q̂1 = diag

{
(d12 + Tv)Q̃1, (d21 + Th)Q̃2

}
, Q̄1 = diag{Q̃, P̃ – Q̃}, R̃ = diag{̃R1, R̃2},

�̃1 =
[

1
2 (TvĀ1 + I )̃P + 1

2TvB̄1(DpV1 + D–
p V2) 1

2 (ThĀ2 + I )̃P + 1
2ThB̄2(DpV1 + D–

p V2)

1
2TvĀ1dP̃ 1

2ThĀ2dP̃ 0 0 0 0
]

,

�̃2 =
[

1
2 (TvĀ1 – I )̃P + 1

2TvB̄1(DpV1 + D–
p V2) 1

2 (ThĀ2 + I )̃P + 1
2ThB̄2(DpV1 + D–

p V2)

1
2TvĀ1dP̃ 1

2ThĀ2dP̃ 0 0 0 0
]

,
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�̃3 =
[

1
2 (TvĀ1 + I )̃P + 1

2TvB̄1(DpV1 + D–
p V2) 1

2 (ThĀ2 – I )̃P + 1
2ThB̄2(DpV1 + D–

p V2)

1
2TvĀ1dP̃ 1

2ThĀ2dP̃ 0 0 0 0
]

,

S̃ = diag
{
T2

v S̃1,T2
hS̃2
}

, S1 = τ1P, S2 = τ2P,

M̃1 =
[

M̃T
11 M̃T

12

]T
, M̃2 =

[

M̃T
21 M̃T

22

]T
,

Ñ1 =
[

ÑT
11 ÑT

12

]T
, Z1 = τ3P, Z2 = τ4P, Ñ2 =

[

ÑT
21 ÑT

22

]T
,

N̂1 = diag{TvÑ11,ThÑ21}, N̂2 = diag{TvÑ12,ThÑ22}, Q = τ5P,

M̂1 = diag{TvM̃11,ThM̃21}, M̂2 = diag{TvM̃12,ThM̃22}, p = 1, 2, . . . , 2m.

Furthermore, an estimate of the domain of attraction for system (7) is given as �(η1,η2,
η3,η4) ≤ 1, where

�(η1,η2,η3,η4)

= η2
1

(

λmax(Q) + d1Mλmax(R1) +
d2

1M – d2
1m + Tv(d1M + d1m)

2
λmax(Q1)

)

+ η2
3

(
d2

1m(Tv + d1m)
2

λmax(S1) + Tv(d1M – d1m)2λmax(Z1)
)

+ η2
2

(

λmax(P – Q) + d2Mλmax(R2) +
d2

2M – d2
2m + Th(d2M + d2m)

2
λmax(Q2)

)

+ η2
4

(
d2

2m(Th + d2m)
2

λmax(S2) + Th(d2M – d2m)2λmax(Z2)
)

.

Note that matrices K and H are given as follows:

K = V1P̃–1, H = V2P̃–1.

Proof Using Lemma 1, the 2-D delta operator system (7) is rewritten as

δx(ti+1, tj+1) = Ā1x(ti+1, tj) + Ā2x(ti, tj+1) + Ā1dx
(
ti+1, tj – d1(tj)

)
+ Ā2dx

(
ti – d2(ti), tj+1

)

+ B̄1

2m
∑

p=1

ηp
(
DpK + D–

p H
)
x(ti+1, tj) + B̄2

2m
∑

p=1

ηp
(
DpK + D–

p H
)
x(ti, tj+1)

=
2m
∑

p=1

ηp
(
Ā1 + B̄1

(
DpK + D–

p H
))

x(ti+1, tj) + Ā1dx
(
ti+1, tj – d1(tj)

)

+
2m
∑

p=1

ηp
(
Ā2 + B̄2

(
DpK + D–

p H
))

x(ti, tj+1) + Ā2dx
(
ti – d2(ti), tj+1

)
. (26)

In Theorem 1, parameters Ā1 and Ā2 are replaced by

2m
∑

p=1

ηp
(
Ā1 + B̄1

(
DpK + D–

p H
))
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and

2m
∑

p=1

ηp
(
Ā2 + B̄2

(
DpK + D–

p H
))

,

respectively. Pre-multiplying and post-multiplying inequalities with input saturation by a
diagonal matrix

diag{̃P, P̃, P̃, P̃, P̃, P̃, P̃, P̃, P̃, P̃, P̃, P̃, P̃, P̃, P̃, P̃}

and letting

P̃ = P–1, Q̃ = P̃QP̃, R̃1 = P̃R1P̃, R̃2 = P̃R2P̃, Q̃1 = P̃Q1P̃,

Q̃2 = P̃Q2P̃, S̃2 = P̃S2P̃, Z̃1 = P̃Z1P̃, Z̃2 = P̃Z2P̃, M̃11 = P̃M11P̃,

M̃12 = P̃M12P̃, S̃1 = P̃S1P̃, M̃21 = P̃M21P̃, M̃22 = P̃M22P̃,

Ñ11 = P̃N11P̃, Ñ12 = P̃N12P̃, Ñ21 = P̃N21P̃, Ñ22 = P̃N22P̃,

X̃ = P̃XP̃, Ỹ = P̃Y P̃, V1 = KP̃, V2 = HP̃,

inequalities (23) and (24) are obtained.
For δV (x(ti, tj)) < 0, one has that

xT (ti+1, tj+1)Px(ti+1, tj+1)

≤ V
(
x(ti, tj)

)≤ V (x0,0)

≤ max
θ1∈[–d1M ,0]

∥
∥φv(θ1)

∥
∥2

×
(

λmax(Q) + d1Mλmax(R1) +
d2

1M – d2
1m + Tv(d1M + d1m)

2
λmax(Q1)

)

+ max
θ1∈[–d1M ,0]

∥
∥δφv(θ1)

∥
∥2
(

d2
1m(Tv + d1m)

2
λmax(S1) + Tv(d1M – d1m)2λmax(Z1)

)

+ max
θ2∈[–d2M ,0]

∥
∥φh(θ2)

∥
∥2

×
(

λmax(P – Q) + d2Mλmax(R2) +
d2

2M – d2
2m + Th(d2M + d2m)

2
λmax(Q2)

)

+ max
θ2∈[–d2M ,0]

∥
∥δφh(θ2)

∥
∥2
(

d2
2m(Th + d2m)

2
λmax(S2) + Th(d2M – d2m)2λmax(Z2)

)

= �(η1,η2,η3,η4) ≤ 1.

It is obtained that xT (ti+1, tj+1)Px(ti+1, tj+1) ≤ 1 and all system trajectories that start from
�(φ1,φ2, δφ1, δφ2) ≤ 1 will remain within xT (ti+1, tj+1)Px(ti+1, tj+1) ≤ 1. The proof is com-
pleted. �

In order to obtain a maximal estimate of the domain of attraction, letting η1 = 1
ε1

η2 =
1
ε2

η3 = 1
ε3

η4 and denoting XR to be an ellipsoid, one has that XR := {x(ti, tj) ∈ Rn :
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xT (ti, tj)Rx(ti, tj) ≤ 1}. An optimization problem is formulated as follows:

max
P̃,Q̃,̃R1,̃R2,Q̃1,Q̃2,̃S1,̃S2,̃Z1,̃Z2,X̃,Ỹ ,K ,H

η1

s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(i) η1XR ⊂ �(P),

(ii) Inequality (23),

(iii) Inequality (24),

(iv) �(P) ⊂L(H).

(27)

In the optimization problem (27), condition (iv) is translated into

xT (ti, tj)hT
q hqx(ti, tj) ≤ xT (ti, tj)Px(ti, tj), ∀x(ti, tj) �= 0. (28)

Inequality (28) is equivalent to

hT
q hq – P ≤ 0.

Using Schur’s complements, it is obtained that
[

–P hT
q

∗ –1

]

≤ 0. (29)

Pre-multiplying and post-multiplying inequality (29) by a diagonal matrix diag{̃P, 1}, one
has that

[
–P̃ Z
∗ –1

]

≤ 0,

where Z = P̃hT
q .

The optimization problem (27) is transformed into the following optimization problem:

min
P̃,Q̃,̃R1,̃R2,Q̃1,Q̃2,̃S1,̃S2,̃Z1,̃Z2,X̃,Ỹ

r

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) Inequality (23),

(ii) Inequality (24),

(iii)
[ –P̃ Z

∗ –1

]≤ 0,

(iv) ω1I – Q̃ ≥ 0,

(v) ω2I – (̃P – Q̃) ≥ 0,

(vi) ω3I – R̃1 ≥ 0,

(vii) ω4I – R̃2 ≥ 0,

(viii) ω5I – Q̃1 ≥ 0,

(ix) ω6I – Q̃2 ≥ 0,

(x) ω7I – S̃1 ≥ 0,

(xi) ω8I – S̃2 ≥ 0,

(xii) ω9I – Z̃1 ≥ 0,

(xiii) ω10I – Z̃2 ≥ 0,

(30)
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where

r = ω1 + d1Mω3 +
d2

1M – d2
1m + Tv(d1M + d1m)

2
ω5 +

d2
1m(Tv + d1m)

2
ω7

+ Tv(d1M – d1m)2ω9 + ω2 + d2Mω4 +
d2

2M – d2
2m + Th(d2M + d2m)

2
ω6

+
d2

2m(Th + d2m)
2

ω8 + Th(d2M – d2m)2ω10.

Furthermore, a maximal estimate of the domain of attraction is obtained by η1max = 1√
�

,
where

� = λmax(Q) + d1Mλmax(R1) +
d2

1M – d2
1m + Tv(d1M + d1m)

2
λmax(Q1)

+ ε2

(
d2

1m(Tv + d1m)
2

λmax(S1) + Tv(d1M – d1m)2λmax(Z1) + λmax(P – Q)
)

+ ε1

(

d2Mλmax(R2) +
d2

2M – d2
2m + Th(d2M + d2m)

2
λmax(Q2)

)

+ ε3

(
d2

2m(Th + d2m)
2

λmax(S2) + Th(d2M – d2m)2λmax(Z2)
)

. (31)

4 Numerical examples
In this section, two numerical examples are provided to illustrate the effectiveness of the
developed techniques.

Example 1 A thermal process is expressed into a 2-D discrete-time FM second model
with time delays in [2]. In the 2-D discrete-time FM second model, parameters are given
as follows:

A1 =

[
0 1
0 0

]

, A2 =

[
0 0

0.25 0.65

]

, A1d =

[
0 0
0 0

]

, A2d =

[
0 0
0 –0.12

]

.

In this example, a 2-D delta operator system with u(ti, tj) = 0 is given as

δx(ti+1, tj+1) = Ā1x(ti+1, tj) + Ā1dx
(
ti+1, tj – d1(tj)

)

+ Ā2x(ti, tj+1) + Ā2dx
(
ti – d2(ti), tj+1

)
, (32)

where

Ā1 =
2A1 – I
Tv

, Ā1d =
2A1d

Tv
, Ā2 =

2A2 – I
Th

, Ā2d =
2A2d

Th
.

Sampling periods of system (32) are chosen as Tv = 0.1 and Th = 0.02. Trajectories of two
state variables for the 2-D delta operator system (32) with a time-delay upper bound d1M =
24 are shown in Fig. 1. It is seen clearly from Fig. 1 that state responses converge to origin,
which means that system (32) with a time-delay upper bound d1M = 24 is asymptotically
stable.
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Figure 1 State trajectories of system (32) with a time-delay upper bound d1M = 24

Table 1 Allowable time-delay upper bounds d1M

d1m d1M d2m d2M

[2] 1 13 1 11
[10] 1 20 1 11
[12] 1 20 1 11
Theorem 1 1 24 1 11

In this example, the 2-D delta operator system (32) with 1 < d1(tj) < 24 is asymptotically
stable. However, systems in [2, 10], and [12] are asymptotically stable for 1 < d1(tj) < 13,
1 < d1(tj) < 20, and 1 < d1(tj) < 20, respectively. Time-delay upper bounds d1M given in [2,
10, 12], and Theorem 1 in this paper are compared in Table 1. Obviously, the time-delay
upper bound d1M provided in this paper is larger than the ones obtained in [2, 10], and
[12].

Moreover, it is worth noting that the total number of decision variables in [2] and [10] are
16n2 +6n and 26n2 +10n, respectively, while in Theorem 1 of this paper, they are 15n2 +5n.
It is obtained that a lower number of decision variables are needed in this paper than [2]
and [10] for the asymptotic stability of the 2-D delta operator system (32). Therefore, the
approach in this paper reduces the burden of numerical computation.

Example 2 A 2-D delta operator system with time-varying delays and actuator saturation
is given as

δx(ti+1, tj+1) = Ā1x(ti+1, tj) + Ā1dx
(
ti+1, tj – d1(tj)

)
+ B̄1 sat

(
u(ti+1, tj)

)

+ Ā2x(ti, tj+1) + Ā2dx
(
ti – d2(ti), tj+1

)
+ B̄2 sat

(
u(ti, tj+1)

)
, (33)

where

Ā1 =
2A1 – I
Tv

, Ā1d =
2A1d

Tv
, B̄1 =

2B1

Tv
,

Ā2 =
2A2 – I
Th

, Ā2d =
2A2d

Th
, B̄2 =

2B2

Th
,
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Figure 2 State trajectories of system (33) with a feedback gain matrix K

with

A1 =

[
0.5 –0.6
0.1 0.2

]

, A1d =

[
0.1 0
0 0.2

]

, B1 =

[
–1.5 0
–1.1 0

]

,

A2 =

[
0.2 0
0.5 0.1

]

, A2d =

[
0 0
0 –0.01

]

, B2 =

[
1.4 0.3
0.7 0

]

.

Time-varying delays of system (33) are satisfied with 1 < d1(tj) < 24 and 1 < d2(ti) < 11.
Sampling periods of system (33) are chosen as Tv = 0.1 and Th = 0.02. Letting parameters
τ1 = 0.01, τ2 = 0.02, τ3 = 0.03, τ4 = 0.03, and τ5 = 0.95. By solving the optimization problem
(30), matrices K and H are obtained as

K =

[
–0.0956 –0.2842
–0.4515 1.2239

]

, H =

[
–0.0958 –0.2818
–0.4481 1.2158

]

. (34)

Trajectories of two state variables for the 2-D delta operator system (33) are shown in
Fig. 2. It is seen clearly from Fig. 2 that state responses converge to origin which means
that system (33) is asymptotically stable with a feedback gain matrix K given in equality
(34).

Moreover, an estimate of the domain of attraction is shown in Fig. 3. The domain of
attraction is a subset of state space and all system trajectories that start from the subset
will eventually tend to origin. In Fig. 3, an estimate of the domain of attraction is shown
for 2-D delta operator systems with time-varying delays and actuator saturation.

5 Conclusion
In this paper, the stabilization problem has been shown for the 2-D delta operator system
with time-varying delays and actuator saturation. Free weighting matrices, 2-D Jensen
inequalities, and LMIs approaches have been applied for stabilization analysis. Further-
more, the estimate of the domain of attraction has been proposed for the 2-D delta opera-
tor system. The state feedback controller has been designed by the Lyapunov–Krasovskii
methods. Two numerical examples have been shown to illustrate the effectiveness and
advantages of the developed techniques. Delay and fractional models are two different
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Figure 3 An estimate of the domain of attraction

memory models, fractional calculus has memory effects to depict the long-term behav-
ior [27–29]. Fractional models can provide powerful tools to describe the hereditary and
memory properties of different substances [30]. Meanwhile, time-delay optimal control
problems have attracted wide attention in recent years [31, 32]. All these will contribute
to our research for 2-D delta operator systems in the future.
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