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Abstract
In the process of rumor spreading, controlling and killing rumor problem is of great
importance on social networks. In this paper, we present a new SEIR
(susceptible-exposed-infected-removed) rumor spreading model with hesitating
mechanism. By using mean-field theory, the equilibrium of the model and the basic
reproduction number R0 are obtained. The global stability of the rumor-free
equilibrium and the permanence are proved in detail, and the global attractivity of
the rumor-prevailing equilibrium is proved by using a monotone iterative technique.
Furthermore, the modified model with feedback mechanism on social networks is
introduced. The feedback mechanism cannot change the basic reproductive number
but it can reduce the continuous level and the spread of rumor. Numerical
simulations confirm the analytical results.
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1 Introduction
Rumors are usually defined as unconfirmed elaborations or annotations of public things,
events, or issues that are fabricated and propagated through various means [1, 2], which
can cause unnecessary public anxiety and economic loss to affected countries [3–5].
What’s worse, with the development of network communications, rumor has propagated
more quickly and widely [6–8]. Therefore, the study of rumor spreading model is of dra-
matic importance, which plays a significant role in managing and controlling the spread
of rumor.

Rumor spreading in complex social networks has recently attracted an increasing
amount of attention from researchers [9–12]. They describe the dynamics of the mod-
els by deriving corresponding mean-field equations to formulate the characteristics and
analyze the critical threshold of rumor spreading in the complex networks. In 1965, Da-
ley and Kendall put forward the first classical DK rumor spreading model [13]. Some re-
searchers applied a mathematical model to study the rumors and developed another clas-
sical model [14–17]. Early classical representations of rumor spreading dynamics assumed
that all individuals have the homogeneous probability of connection [18–20]. Obviously,
these simple models can not completely reflect the realistic feature of the spread of ru-
mor, which is subsequently extended in ways to make them more realistic in recent years.
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Such extensions are combining with spreading mode that the online networks platform
could affect the topology of rumor spreading network. Another direction to research ru-
mor spreading model is to focus on the complex topology of social interactions. In the
field of social network, the scale-free property is the fundamental characteristic, and the
nodes stand for individuals and the edges stand for various interactions of people. There-
fore, it makes more sense to study spreading dynamics on scale-free networks [21–26].
For further understanding of the rumor spreading dynamic in the real world, the counter-
attack and self-resistance mechanisms, trust mechanism, latent mechanism, rumor-killer
mechanism, and information pushing mechanism [27–33] have been taken into account.
These models more accurately reflect the spread of rumors and also give a lot of control
strategies for rumors.

Undeniably, the influences of hesitating mechanisms also play an important role in the
process of rumor spreading. Recently, in order to investigate the influence of heterogene-
ity of the underlying complex networks and hesitating mechanisms on rumor spreading,
Liu et al. proposed a SEIR rumor propagation model on the heterogeneous networks
[34]. They found that the spreading threshold significantly depends on the topology of
the complex networks and analyzed globally dynamic behaviors of the rumor. Wan et al.
presented a SEIR rumor spreading model with demographics on scale-free networks [35].
They proved the global asymptotic stability of rumor-free equilibrium and the perma-
nence of the rumor, but the simulation of the experiment was not given, and the direct
immunization of rumor spreading was not considered. However, in real life, some wise
people or functional departments which realize the information is rumor will take appro-
priate measures to prevent its continued spreading in the early days when rumors begin
to spread, i.e., direct immunization [36]. Furthermore, the initiative response of individ-
ual is not considered when rumors spreading prevail, i.e., feedback mechanism. In fact,
once people know the harm of rumor, they will question and further verify the rumor,
and thus reduce the trust and the spread of rumor. Obviously, the feedback mechanism
can change the network topology structure [37, 38]. In this paper, considering the direct
immunization, we focus on a SEIR rumor model in social networks, we comprehensively
prove the permanence of the rumor spreading in detail. Meanwhile, the modified model
with feedback mechanism in social networks is introduced.

The rest of the paper is organized as follows: in Sect. 2, we present a new SEIR model in
social networks. In Sect. 3, the dynamical behaviors of rumor spreading are analyzed in
detail. Section 4 gives theoretical analysis to the stability of the equilibrium. In Sect. 5, the
modified model feedback mechanism in social networks is introduced. In Sect. 6, numer-
ical simulations are given to illustrate the main results. Finally, the conclusions are given
in Sect. 7.

2 Model formulation
In this paper, we consider the whole population Nk(t) to be located in a relevant social
network. Users can be regarded as nodes and direct relationships between users can be
considered as edges. Our model is based on dividing the whole population into four states:
S, E, I , and R. At each time step, each individual adopts one of four states S, E, I , or R,
which respectively stand for the people who have never contacted with rumor (suscepti-
ble), the people who have been infected, the people who have been in hesitate state and do
not spread rumor (exposed), the people who are actively spreading it (infected), and the
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Figure 1 Transfer diagram for rumor spreading
model

people who have known the rumor but never believed and spread it (removed). Taking the
heterogeneity induced by the presence of nodes with different connectivities into account,
we let Sk(t), Ek(t), Ik(t), and Rk(t) be the relative densities of susceptible, infected, and re-
covered nodes of degree k at time t, respectively. The process of SEIR rumor spreading is
shown in Fig. 1.

In the process of rumor spreading, the spreading among these four states is governed by
the following rules: we assume that λ(k) > 0 is the degree-dependent infected rate, and it
denotes the acceptability of k degree nodes for rumors. The susceptible nodes know the
rumor but do not trust at rate γ if it connects to an infected one, the exposed node is
infected with probability β , h represents the attractiveness of rumor itself on the complex
social network, and the corresponding repellant of rumor is 1 – h. The fuzziness of ru-
mor is m (0 ≤ m ≤ 1) and the corresponding clarity of rumor is 1 – m. The forgetting rate
is δ. Due to trust and interest in the rumor, the exposed node becomes an infected node
with probability βh, and with probability β(1 – h), it becomes a recover node. Because of
the fuzziness of the rumor, the parameters δm and δ(1 – m) represent that the infected
node has become susceptible and removed, respectively. The degree-dependent param-
eter b(k) > 0 represents the number of newly immigrated individuals with degree k per
unit time, and each newly immigrated individual is susceptible, the reconnection of these
nodes follows the above propagation rules. This type of rewiring preserves the network
mean degree (the total number of links remains constant) but changes the mean degree of
susceptible and infected nodes [39–41]. The emigration is proportional to the node size
with probability μ. The parameters are all nonnegative. The model can be described by
the following system of ordinary differential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dSk (t)
dt = b(k) – λ(k)Θ(t)Sk(t) – γ kΘ(t)Sk(t) – μSk(t) + δmIk(t),

dEk (t)
dt = λ(k)Θ(t)Sk(t) – μEk(t) – βEk(t),

dIk (t)
dt = βhEk(t) – δIk(t) – μIk(t),

dRk (t)
dt = γ kΘ(t)Sk(t) + β(1 – h)Ek(t) + δ(1 – m)Ik(t) – μRk(t),

(2.1)

Θ(t) denotes the probability of ignoramus contacts with a sharer at time t, which satisfies
the relation

Θ(t) =
n∑

i=1

ϕ(i)
i

P(i|k)
Ii(t)
Ni(t)

, (2.2)

where P(i|k) denotes the conditional probability that a node with degree k is connected
to a node with degree i. Considering the uncorrelated network [42], in this paper, P(i|k) =
iP(i)/〈k〉. Here, P(k) is the probability that a randomly chosen node has degree k, thus
∑n

k=1 P(k) = 1, 〈k〉 =
∑n

k=1 kP(k) denotes the average degree, and ϕ(k) is a function that
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represents the infectivity of a node with degree k; the factor 1/i stands for the probability
that one of the infected neighbors of a node, with degree i, will contact this node at the
present time step. Summing the four equations in (2.1), we can obtain

dNk(t)
dt

= b(k) – μNk(t), then Nk(t) = Nk(0)e–μt +
b(k)
μ

(
1 – e–μt),

lim
t→∞ Nk(t) =

b(k)
μ

.

We suppose that Nk(0) = Sk(0) + Ek(0) + Ik(0) + Rk(0) = b(k)
μ

in order to have a population
of constant size, namely Sk(t) + Ek(t) + Ik(t) + Rk(t) = Nk(t) ≡ ηk , where ηk = b(k)/μ. So we
can obtain

Θ(t) =
1

〈k〉
n∑

i=1

ϕ(k)
ηk

P(k)Ik(t). (2.3)

Furthermore, S(t) =
∑n

k=1 P(k)Sk(t), E(t) =
∑n

k=1 P(k)Ek(t), I(t) =
∑n

k=1 P(k)Ik(t), R(t) =
∑n

k=1 P(k)Rk(t) are the average densities of the four individual states, respectively. The
initial conditions for system can be given as follows: Sk(0) = ηk – Ek(0) – Ik(0) – Rk(0) >
0, Ek(0) ≥ 0, Ik(0) ≥ 0, Rk(0) ≥ 0, and Θ(0) > 0.

3 The basic reproduction number and existence of equilibriums
In this section, we present an analytic solution to the deterministic equations describing
the dynamics of the SEIR rumor spreading process in social networks.

Theorem 1 Consider system (2.1), let R0 = 〈ϕ(k)λ(k)〉βh
〈k〉(δ+μ)(β+μ) . There always exists a rumor-

free equilibrium E0(b(k)/μ, 0, 0, 0) when R0 < 1. When R0 > 1, system (2.1) has a rumor-
prevailing equilibrium E+(S∗

k , E∗
k , I∗

k , R∗
k).

Proof To get the rumor-prevailing equilibrium solution E+(S∗
k , E∗

k , I∗
k , R∗

k), we need to make
the right-hand side of the system equal to zero, it should satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(k) + δmI∗
k – μS∗

k – λ(k)Θ∗S∗
k – γ kΘ∗S∗

k = 0,

λ(k)Θ∗S∗
k – μE∗

k – βE∗
k = 0,

βhE∗
k – δI∗

k – μI∗
k = 0,

γ kΘ∗S∗
k + δ(1 – m)I∗

k + β(1 – h)E∗
k – μR∗

k = 0,

S∗
k + E∗

k + I∗
k + R∗

k = ηk ,

(3.1)

where Θ∗ = 1
〈k〉

∑n
i=1

ϕ(k)
ηk

P(k)I∗
k (t). One has

⎧
⎪⎪⎨

⎪⎪⎩

S∗
k = (μ+δ)(β+μ)

λ(k)βhΘ∗ I∗
k ,

E∗
k = μ+δ

βh I∗
k ,

R∗
k = γ k(β+μ)(δ+μ)+βλ(k)[(δ+μ)–h(μ+δm)]

λ(k)μβh I∗
k .

(3.2)
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Considering the following normalization condition Sk(t) + Ek(t) + Ik(t) + Rk(t) = ηk for
all k, we obtain

I∗
k =

μλ(k)Θ∗βhηk

(μ + γ kΘ∗)(β + μ)(δ + μ) + λ(k)Θ∗((β + μ)(δ + μ) – βhδm)
. (3.3)

Inserting into (2.2), we obtain that

Θ∗ =
1

〈k〉
∑

i=1

ϕ(k)
ηk

P(k)I∗
k . (3.4)

For simplification, we substitute Θ for Θ∗, then from (3.4) we have the self-consistency
equation:

Θ =
1

〈k〉
∑

i=1

ϕ(k)
ηk

P(k)
λ(k)βhΘμηk

(μ + γ kΘ)(β + μ)(δ + μ) + λ(k)Θ((β + μ)(δ + μ) – βhδm)

=: f (Θ). (3.5)

Clearly, Θ = 0 is the solution of (3.5), i.e., f (0) ≤ 0. The conditions under a nontrivial
solution to (3.5) exist.

To ensure that the equation has a nontrivial solution Θ(Θ ∈ (0, 1)), the following condi-
tion should be satisfied:

df (Θ)
dΘ

∣
∣
∣
Θ=0

> 1, (3.6)

which indicates that 〈ϕ(k)λ(k)〉
〈k〉

βh
(δ+μ)(β+μ) > 1, we can obtain the basic reproductive number

R0 =
〈ϕ(k)λ(k)〉

〈k〉
βh

(δ + μ)(β + μ)
. (3.7)

So, a nontrivial solution exists if and only if R0 > 1.
Inserting the nontrivial solution of (3.4) into Eq. (3.3), we can obtain I∗

k . By (3.2) and
(3.3) we can easily get 0 < S∗

k < ηk , 0 < E∗
k < ηk , 0 < I∗

k < ηk , 0 < R∗
k < ηk .

Thus, the equilibrium E+(S∗
k , E∗

k , I∗
k , R∗

k) is well-defined. Hence, when R0 > 1, only one
positive equilibrium E+(S∗

k , E∗
k , I∗

k , R∗
k) of system (2.1) exists. The proof is completed. �

Remark
(1) The basic reproductive number R0 is obtained by Eq. (3.7), it determines the

existence of the endemic equilibrium. The details will be further verified in the next
section. It can also be interpreted as the average number of secondary infections
generated by an infected node during its infection time [43].

(2) The basic reproductive number R0 depends on some parameters and the fluctuation
of the degree distribution. Interestingly, R0 has no correlation with the
degree-dependent new immigrate b(k) and the recovered rate γ . It seems that the
attractive parameter h and the infected rate β have the same effects, because their
increase will make R0 increase. In Sect. 6, their effects will be explored by the
detailed numerical calculation.
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(3) If λ(k) = λk,ϕ(k) = k, b(k) = 0, and μ = 0, then system (2.1) becomes the
network-based SEIRS model without demographics, and R0 > 1 is simplified to
λ > λc, where λc = δ〈k〉

β〈k2〉 . It is clear that, in the infinite size network, the total number
of nodes Nk(t) grows to infinity, i.e., Nk(t) → ∞, then 〈k2〉 → ∞, thus the absence
of the spreading threshold, i.e., λc → 0, is observed.

4 Stability analysis of the equilibrium
Theorem 2 If R0 < 1, the rumor-free equilibrium E0 of system (2.1) is locally asymptotically
stable, and it is unstable when R0 > 1.

Proof For Sk(t) + Ek(t) + Ik(t) + Rk(t) = ηk , i.e., if the values of Ek(t), Ik(t), and Rk(t) are fixed,
there is only one corresponding Sk(t), therefore, it will be sufficient for us to discuss the
last three equations of (2.1):

⎧
⎪⎪⎨

⎪⎪⎩

dEk (t)
dt = λ(k)Θ(t)Sk(t) – μEk(t) – βEk(t),

dIk (t)
dt = βhEk(t) – δIk(t) – μIk(t),

dRk (t)
dt = γ kΘ(t)Sk(t) + β(1 – h)Ek(t) + δ(1 – m)Ik(t) – μRk(t),

(4.1)

where the Jacobian matrix of the rumor-free equilibrium E0 of system (4.1) is

J =

⎡

⎢
⎢
⎢
⎢
⎣

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
...

...
An1 An2 · · · Ann

⎤

⎥
⎥
⎥
⎥
⎦

3n×3n

where Aij =

⎛

⎜
⎝

0 λ(j)ϕ(j)P(j)
〈k〉 0

0 0 0
0 0 0

⎞

⎟
⎠ ,

Ann =

⎛

⎜
⎝

–(β + μ) – λ(j)ϕ(j)P(j)
〈k〉 0

βh –(δ + μ) 0
β(1 – h) δ(1 – m) – λ(j)ϕ(j)P(j)

〈k〉 μ

⎞

⎟
⎠ (i, j = 1, 2, . . . , n).

By using the mathematical induction method, the characteristic equation can be calcu-
lated as follows:

(x + μ)n(x + β + μ)n–1(x + δ + μ)n–1
{

(x + β + μ)(x + δ + μ) – βh
〈λ(k)ϕ(k)〉

〈k〉
}

= 0, (4.2)

where
∑n

i=1 λ(i)ϕ(i)P(i) = λ(1)ϕ(1)P(1) + λ(2)ϕ(2)P(2) + · · · + λ(n)ϕ(n)P(n) = 〈λ(k)ϕ(k)〉.
This equation has a negative root –μ with multiplicity n, a negative root –μ – β with

multiplicity n – 1, and a negative root –μ – δ with multiplicity n – 1. The stability of E0 is
only dependent on

x2 + (β + δ + 2μ)x + (δ + μ)(β + μ) – βh
〈λ(k)ϕ(k)〉

〈k〉 = 0. (4.3)

According to equation (4.3), if R0 > 1, we can easily get (δ + μ)(β + μ) – βh 〈λ(k)ϕ(k)〉
〈k〉 > 0,

that is, x < 0. If x = R0 < 1, then x < 0, and if x = R0 > 1, then x > 0. Thus, E0 is locally
asymptotically stable when R0 > 1. The proof is completed. �
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In the following, we consider global asymptotic stability of E0 and the global attractivity
of E∗, which is one of the most important topics in the study of rumor spreading.

Lemma 4.1 ([44]) If a > 0, b > 0, and dx(t)
dt ≥ b – ax, when t ≥ 0 and x(0) ≥ 0, we have

limt→∞ sup x(t) ≤ b
a , if a > 0, b > 0, and dx(t)

dt ≤ b – ax, when t ≥ 0 and x(0) ≥ 0, we have
limt→∞ sup x(t) ≤ b

a .

Theorem 3 If R0 < 1, the rumor-free equilibrium E0 of system (2.1) is globally asymptoti-
cally stable.

Proof First, we define a Lyapunov function V (t) as follows:

V (t) =
∑

k

ϕ(k)
ηk

P(k)Ek(t) +
(β + μ)

βh
∑

k

ϕ(k)
ηk

P(k)Ik(t). (4.4)

Then, according to a calculation of the derivative of V (t) along the solution of sys-
tem (2.1), we get

·
V (t) =

∑ ϕ(k)
ηk

P(k)
(
λ(k)Θ(t)Sk(t) – μEk(t) – βEk(t)

)

+
∑ (β + μ)

βh
ϕ(k)
ηk

(
βhEk(t) – δIk(t) – μIk(t)

)

=
∑ ϕ(k)

ηk
P(k)λ(k)Θ(t)Sk(t) +

∑ (β + μ)
βh

ϕ(k)
ηk

(
–δIk(t) – μIk(t)

)

≤
∑ ϕ(k)

ηk
P(k)

[

λ(k)Θ(t)ηk +
–(β + μ)(δ + μ)

βh
Ik(t)

]

= Θ(t)
1

βh
(
(β + μ)(δ + μ)

)
(R0 – 1). (4.5)

When R0 < 1, we can obtain V (t) ≤ 0 for all t ≥ 0, and that V (t) = 0 only if Θ(t) = 0, that
is, I∗

k = 0. Combining with the second equation of system (4.1), it obviously follows that
E∗

k = 0 as t → +∞ for k = 1, 2, . . . , n.
Due to I∗

k = 0 and E∗
k = 0, from the first equation for system (2.1), it follows that

dSk(t)
dt

= b(k) + δmIk(t) – λ(k)Θ(t)Sk(t) – γ kΘ(t)Sk(t) – μSk(t).

By Lemma 4.1, we derive that

lim
t→∞ sup Sk(t) ≤ b(k)

μ
=: S0

k . (4.6)

For arbitrarily enough small ε2 > 0, there exists t2 > 0 such that 0 ≤ Ek(t) ≤ ε2, 0 ≤ Ik(t) ≤
ε2 for t > t2. From the first equation (4.1), we have

dSk(t)
dt

≥ b(k) + δmε2 – λ(k)Sk(t)Mε2 – γ kSk(t)Mε2 – μSk(t), (4.7)

where M = 1
〈k〉

∑n
i=1 kP(k), by Lemma 4.1, we have limt→+∞ Sk(t) ≥ b(k)+δmε2

μ+(λ(k)+γ k)Mε2
. Setting

ε2 → 0, it follows that limt→+∞ Sk(t) ≥ b(k)
μ

= S0
k .
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From (4.4) and (4.7), it is clear that limt→+∞ Sk(t) = S0
k = b(k)

μ
= η(k). This proves that the

rumor-free equilibrium E0 of system (4.1) is globally asymptotically stable when R0 < 1.
The proof is completed. �

Next, the global attractivity of the rumor-prevailing equilibrium is discussed. The main
result is given in the following theorem.

Theorem 4 Suppose that (Sk(t), Ek(t), Ik(t)) is a solution of system (4.1) satisfying initial
conditions Ek(t) > 0 or Ik(t) > 0. If R0 > 1, then limt→∞(Sk(t), Ek(t), Ik(t)) = (S∗

k (t), E∗
k (t), I∗

k (t)),
where (S∗

k (t), E∗
k (t), I∗

k (t)) is the information-prevailing equilibrium of (4.1) satisfying (3.2)
for k = 1, 2, . . . , n.

Proof In the following, k is fixed to be any integer in (1, 2, . . . , n). By Theorem 4, there
exists a sufficiently small constant ξ (0 < ξ < 1) and a larger enough constant T > 0 such
that Ii0 (t) ≥ ξ for t > T , therefore Θ(t) > ξΘ for t > T . Thus

Θ =
1

〈k〉
∑

i=1

ϕ(i)
ηi

P(i)Ii(t) ≥ ϕ(i0)P(i0)
ηi0〈k〉 ξ = φξ > 0,

where φ = ϕ(i0)P(i0)
ηi0 〈k〉 . Submitting this into the equation of (4.1) gives

S′
k(t) ≤ b(k) + δm

(
ηk – Sk(t)

)
–

(
λ(k) + γ k

)
φξSk(t) – μSk(t), t > T . (4.8)

By Lemma 4.1, we derive that lim supt→∞ Sk(t) ≤ b(k)+δmηk
(λ(k)+γ k)φξ+μ+δm , thus, for any given con-

stant 0 < ξ1 < (λ(k)+γ k)φξηk
2(μ+δm+(λ(k)+γ k)φξ ) , there exists t1 > T such that Sk(t) ≤ A(1)

k – ξ1 for t > t1,
where

A(1)
k =

b(k) + δmηk

(λ(k) + γ k)φξ + μ
+ 2ξ1 < ηk .

Since Θ ≤ 1
〈k〉

∑
i=1 ϕ(i)P(i) =: Φ , we obtain from the second equation of system (4.1)

that

E′
k(t) ≤ λ(k)

(
ηk – Ek(t) – Ik(t) – Rk(t)

)
– (β + μ)Ek(t)

≤ λ(k)Φ
(
ηk – Ek(t)

)
– (β + μ)Ek(t)

= ηkλ(k)Φ – Ek(t)
(
λ(k)Φ + β + μ

)
, t > t1. (4.9)

Hence, for any given constant 0 < ξ2 < min{1/2, ξ1, (μ + β)ηk[2(λ(k)Φ + μ + β)]–1}, there
exists t2 > t1 such that Ek(t) ≤ B(1)

k – ξ2 for t > t2, where

B(1)
k =

λ(k)Φηk

λ(k)Φ + μ + β
+ 2ξ2 < ηk .

Then it follows from the third equation of (4.1) that

I ′
k(t) ≤ βh

(
ηk – Ik(t)

)
– (μ + δ)Ik(t) = βhηk – (μ + δ + βh)Ik(t), t > t2. (4.10)
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Similarly, for any given constant 0 < ξ3 < min{1/3, ξ2, (μ + βh)ηk[2(μ + δ + βh)]–1}, there
exists t3 > t2 such that Ik(t) ≤ C(1)

k – ξ3 for t > t3, where

C(1)
k =

δηk

μ + δ + βh
+ 2ξ3 < ηk .

On the other hand, we substitute this into the first equation of (4.1)

S′
k(t) ≥ b(k) + δmηk –

(
λ(k) + γ k

)
ΦSk(t) – μSk(t) – δmSk(t), t > T . (4.11)

So, for any given enough small constant 0 < ξ4 < min{1/4, ξ3, (b(k) + δmηk)[2((λ(k) +
γ k)Φ + μ + δm)]–1}, there exists t4 > t3 such that Sk(t) ≥ a(1)

k + ξ4 for t > t4, where

a(1)
k =

b(k) + δmηk

(λ(k) + γ k)Φ + μ + δm
– 2ξ4 > 0.

It follows that

E′
k(t) ≥ λ(k)φξa(1)

k – (β + μ)Ek(t), t > t4. (4.12)

So, for any given enough small constant 0 < ξ5 < min{1/5, ξ4, (λ(k)φξa(1)
k )[2(μ + β)]–1},

there exists t5 > t4 such that Ek(t) ≥ b(1)
k + ξ5 for t > t5, where

b(1)
k =

(
λ(k)φξa(1)

k
)
(μ + β)–1 – 2ξ5 > 0.

The third equation of (2.1) implies that

I ′
k(t) ≥ βhb(1)

k – (μ + δ)Ik(t), t > t5. (4.13)

So, for any given enough small constant 0 < ξ6 < min{1/6, ξ5, (βhb(1)
k )(2(μ + δ))–1}, there

exists t6 > t5 such that Ik(t) ≥ c(1)
k + ξ6 for t > t6, where c(1)

k = βhb(1)
k (μ + δ)–1 – 2ξ6 > 0.

Due to ξ being a small positive constant, we can derive that 0 < a(1)
k < A(1)

k < 1, 0 < b(1)
k <

B(1)
k < 1, and 0 < c(1)

k < C(1)
k < 1. Let

q(j) =
1

〈k〉
n∑

j=1

iP(i)c(j)
i , Q(j) 1

〈k〉
n∑

j=1

iP(i)C(j)
i , j = 1, 2, . . . . (4.14)

We can easily get 0 < q(j) ≤ Θ(t) ≤ Q(j) < Φ , t > t4.
Again, from the first equation of (4.1), we have

S′
k(t) ≤ b(k) + δmηk –

(
λ(k) + γ k

)
q(1)Sk(t) – μSk(t) – δmSk(t), t > t4. (4.15)

Hence, for any given constant 0 < ξ7 < min{1/7, ξ6}, there exists t7 > t6 such that

S′
k(t) ≤ A(2)

k � min
{

A(1)
k – ξ1,

(
b(k) + δmηk

)[(
λ(k) + γ k

)
q(1) + μ + δm

]–1 + ξ7
}

, t > t7.

Then, from the second equation of (4.1), we have

E′
k(t) ≥ λ(k)Q(1)A(2)

k – (μ + β)Ek(t), t > t7. (4.16)
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So, for any given constant 0 < ξ8 < min{1/8, ξ7}, there exists t8 > t7 such that

E′
k(t) ≤ B(2)

k � min
{

B(1)
k – ξ2,

(
λ(k)Q(1)A(2)

k
)
(μ + β)–1 + ξ8

}
, t > t8.

Consequently, from the third equation of (4.1), we have

I ′
k(t) ≤ βhB(2)

k – (μ + δ)Ik(t), t > t8. (4.17)

Hence, for any given constant 0 < ξ9 < min{1/9, ξ8}, there exists t9 > t8 such that

I ′
k(t) ≤ C(2)

k � min
{

C(1)
k – ξ3,

(
βhB(2)

k
)
(δ + μ)–1 + ξ9

}
, t9 > t8.

Turning back, one has

S′
k(t) ≥ b(k) + δmηk –

(
λ(k) + γ k

)
Q(2)Sk(t) – μSk(t) – δmSk(t), t > t9. (4.18)

So, for any given enough small constant 0 < ξ10 < min{1/10, ξ9, (b(k) + δmηk)[2(λ(k) +
γ k)Q(2) + μ + δm]–1}, there exists t10 > t9 such that Sk(t) ≥ a(2)

k + ξ10 for t > t10, where

a(2)
k = max

{
a(1)

k + ξ4,
(
b(k) + δmηk

)(
λ(k) + γ k

)
Q(2) + μ + δm)–1 – 2ξ10

}
.

It follows that

E′
k(t) ≥ λ(k)q(1)a(2)

k – (β + μ)Ek(t), t > t10. (4.19)

So, for any given enough small constant 0 < ξ11 < min{1/11, ξ10,λ(k)q(1)a(2)
k + [2(μ +

β)]–1}, there exists t11 > t10 such that Ek(t) ≥ b(2)
k + ξ11 for t > t10, where

b(2)
k = max

{
b(1)

k + ξ5,λ(k)q(1)a(2)
k +

[
2(μ + β)

]–1 – 2ξ11
}

.

The third equation of (4.1) implies that

I ′
k(t) ≥ βhb(2)

k – (μ + δ)Ik(t), t > t11. (4.20)

So, for any given enough small constant 0 < ξ12 < min{1/12, ξ11, [βhb(2)
k ](2(μ + δ))–1},

there exists t12 > t11 such that Ik(t) ≥ c(2)
k + ξ12 for t > t12, where

c(2)
k = max

{[
c(1)

k + ξ6,βhb(2)
k

]
(μ + δ)–1 – 2ξ12

}
.

Repeating the above analyses and calculations, we get six sequences A(i)
k , B(i)

k , C(i)
k , a(i)

k , b(i)
k ,

c(i)
k , i = 1, 2, . . . . Due to the first three being monotone decreasing sequences and the last

three being monotone increasing ones, there exists a sufficiently large positive integer L ≥
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2 such that l ≥ L:

A(l)
k =

b(k) + δmηk

(λ(k) + γ k)q(l–1) + μ + δm
+ ξ6l–5, B(l)

k =
λ(k)Q(l–1)A(l)

k
μ + β

+ ξ6l–4,

C(l)
k =

βhB(l)
k

δ + μ
+ ξ6l–3, a(l)

k =
b(k) + δmηk

(λ(k) + γ k)Q(l) + μ + δm
+ ξ6l–2,

b(l)
k =

λ(k)q(l–1)a(l)
k

μ + β
+ ξ6l–1, c(l)

k =
βhb(l)

k
δ + μ

+ ξ6l.

(4.21)

We can easily get that

a(l)
k ≤ Sk(t) ≤ A(l)

k , b(l)
k ≤ Ek(t) ≤ B(l)

k , c(l)
k ≤ Ik(t) ≤ C(l)

k , t > t6l. (4.22)

Since the sequential limits of (4.21) exist, let liml→∞ 

(l)
k = 
k , where 


(l)
k ∈ {A(l)

k , B(l)
k , C(l)

k ,
a(l)

k , b(l)
k , c(l)

k , Q(l)
k , q(l)

k } and 
k ∈ {Ak , Bk , Ck , ak , bk , ck , Qk , qk}.
Noting that 0 < ξ1 < 1/l, one has ξ1 → 0 as l → ∞. In the six sequences of (4.21), by

taking l → ∞, it follows from (4.21) that

Ak =
b(k) + δmηk

(λ(k) + γ k)q + μ + δm
, Bk =

λ(k)QAk

μ + β
, Ck =

βhBk

δ + μ
,

ak =
b(k) + δmηk

(λ(k) + γ k)Q + μ + δm
, bk =

λ(k)qak

μ + β
, ck =

βhbk

δ + μ
,

(4.23)

where

q =
1

〈k〉
n∑

i=1

iP(i)ci, Q =
1

〈k〉
n∑

i=1

iP(i)Ci. (4.24)

Further,

C(l)
k =

βhλ(k)Q(b(k) + δmηk)
(δ + μ)(μ + β)((λ(k) + γ k)q + μ + δm)

,

c(l)
k =

βhλ(k)q(b(k) + δmηk)
(δ + μ)(μ + β)((λ(k) + γ k)Q + μ + δm)

.
(4.25)

Substituting (4.24) into q and Q, respectively, one has

1 =
βh(μ + δm)

〈k〉(δ + μ)(μ + β)

n∑

i=1

ϕ(k)P(k)λ(k)
((λ(k) + γ k)Q + μ + δm)

,

1 =
βh(μ + δm)

〈k〉(δ + μ)(μ + β)

n∑

i=1

ϕ(k)P(k)λ(k)
((λ(k) + γ k)q + μ + δm)

.

By subtracting the above two equations, we arrive at

0 =
βh(μ + δm)(Q – q)
〈k〉(δ + μ)(μ + β)

n∑

i=1

ϕ(k)P(k)λ(k)(λ(k) + γ k)
((λ(k) + γ k)Q + μ + δm)((λ(k) + γ k)q + μ + δm)

. (4.26)
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It is obvious that q = Q, so 1
〈k〉

∑n
i=1

ϕ(k)
ηk

P(k)(Ck – ck) = 0, which sees that Ck = ck for
i = 1, 2, . . . , n. From (4.24) and (4.25), it follows that

lim
t→∞ Sk(t) = Ak = ak , lim

t→∞ Ek(t) = Bk = bk , lim
t→∞ Ik(t) = Ck = ck .

Finally, substituting q = Q into (4.22), in view of (3.2) and (4.23), we obtain Sk = S∗
k , Ek =

E∗
k , and Ik = I∗

k . The proof is completed. �

5 The modified SEIR model with feedback mechanism
Rumor has a sudden and fast spreading speed, it has bad influence on the normal social
stability. Due to the fact that the internet rumors are difficult to identify and bewitch, it is
easy to cause serious social problems and even cause social unrest and political instability.
However, due to the rapid development of network technology, the information spreading
on the network will be further verified, which will weaken the spread of rumors, and this
can be described as a feedback mechanism. Based on the above observations and model
(2.1), we present the modified model with feedback mechanism in social networks:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSk (t)
dt = b(k) + δmIk(t) – λ(k)Θ(t)(1 – αΘ(t))Sk(t)

– γ kΘ(t)(1 – αΘ(t))Sk(t) – μSk(t),
dEk (t)

dt = λ(k)Θ(t)(1 – αΘ(t))Sk(t) – μEk(t) – βEk(t),
dIk (t)

dt = βhEk(t) – δIk(t) – μIk(t),
dRk (t)

dt = γ kΘ(t)(1 – αΘ(t))Sk(t) + δ(1 – m)Ik(t) + β(1 – h)Ek(t) – μRk(t),

(5.1)

where α is the positive parameter called ‘fear factor’, which is determined by the fear degree
of people to the rumor spreading. Θ(t) denotes the probability of a susceptible contacting
an infected at time t, which satisfies the relation

Θ(t) =
1

〈k〉
n∑

i=1

ϕ(k)
ηk

P(k)Ik(t). (5.2)

Here, P(i|k) = iP(k)/〈k〉,λ(k)(1 – αΘ(t))Sk(t)Θ(t) represents the proportion of individu-
als who having acquired infection became exposed individuals. The spreading speed will
decrease when α becomes lower, which is consistent with the actual prevalence law of
rumor spreading.

Theorem 5 Consider model (5.1), define R1 = 〈ϕ(k)λ(k)〉βh
〈k〉(δ+μ)(β+μ) , then the following statements

hold:
(1) If R1 < 1, there always exists a rumor-free equilibrium E1(ηk , 0, 0, 0).
(2) There is a rumor-prevailing equilibrium E1+(S∗

k , E∗
k , I∗

k , R∗
k) if R1 > 1.
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Figure 2 The relationship between the basic reproduction number R0 and the parameters on social networks

Proof To get the rumor-prevailing equilibrium solution E1+(S∗
k , E∗

k , I∗
k , R∗

k), we need to
make the right-hand side of system (5.1) equal to zero, it should satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(k) + δmI∗
k – λ(k)Θ∗(1 – αΘ∗)S∗

k – γ kΘ∗(1 – αΘ∗)S∗
k – μS∗

k = 0,

λ(k)Θ∗(1 – αΘ∗)S∗
k – μE∗

k – βE∗
k = 0,

βhE∗
k – δI∗

k – μI∗
k = 0,

γ kΘ∗(1 – αΘ∗)S∗
k + δ(1 – m)I∗

k + β(1 – h)E∗
k – μR∗

k = 0,

S∗
k + E∗

k + I∗
k + R∗

k = ηk ,

(5.3)

where Θ∗ = 1
〈k〉

∑n
i=1

ϕ(k)
ηk

p(k)I∗
k (t). One has

⎧
⎪⎪⎨

⎪⎪⎩

S∗
k = (μ+δ)(β+μ)

λ(k)βhΘ∗(1–αΘ∗) I∗
k ,

E∗
k = μ+δ

βh I∗
k ,

R∗
k = γ k(β+μ)(μ+δ)+λ(k)β((μ+δ)–h(μ+δm))

λ(k)βhμ
I∗

k .

(5.4)
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Figure 2 Continued

Considering the following normalization condition Sk(t) + Ek(t) + Ik(t) + Rk(t) = ηk for
all k, we obtain

I∗
k =

μλ(k)Θ∗(1 – αΘ∗)βhηk

(μ + γ kΘ∗(1 – αΘ∗))(β + μ)(δ + μ) + λ(k)Θ∗(1 – αΘ∗)((β + μ)(δ + μ) – βhδm)
. (5.5)

Inserting (5.5) into (5.2), we have the self-consistency equation

Θ∗ =
1

〈k〉
∑

i=1

ϕ(k)P(k)

× Θ∗(1 – αΘ∗)λ(k)βh
(γ kΘ∗(1 – αΘ∗) + μ)(β + μ)(δ + μ) + λ(k)Θ∗(1 – αΘ∗)((β + μ)(δ + μ) – βhδm)

=: f
(
Θ∗). (5.6)

Clearly, Θ∗ = 0 is the solution of (5.6). To ensure that (5.6) has a nontrivial solution, i.e.,
0 < Θ∗ ≤ 1, the following conditions must be satisfied:

df (Θ∗)
dΘ∗

∣
∣
∣
Θ∗=0

> 1 and f (1) ≤ 1, (5.7)
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which indicates that 〈ϕ(k)λ(k)〉
〈k〉

βh
(δ+μ)(β+μ) > 1, so we can get the basic reproductive number

R1 =
βh

(δ + μ)(β + μ)
〈ϕ(k)λ(k)〉

〈k〉 . (5.8)

So, a nontrivial solution exists if and only if R1 > 1. �

Remark The feedback mechanism parameter α cannot change the basic reproductive
number, but it can reduce the prevailing level and weaken the rumor spreading.

Theorem 6 When R1 < 1, the rumor-free equilibrium is globally asymptotically stable;
when R1 > 1, system (5.1) is permanent, there exists ε > 0 such that

lim inf
x→∞

{
Sk(t), Ek(t), Ik(t)

}n
k=1 ≥ ε,

where (Sk(t), Ek(t), Ik(t)) is any solution of (5.3) satisfying (5.1) and Ek(0) > 0 or Ik(0) > 0.

Proof Let Sk(t) = ηk +xk(t), Ek(t) = yk(t), Ik(t) = zk(t), k = 1, 2, . . . , n, where (xk(t), yk(t), zk(t))
is a small perturbation of E1. Now we consider the linearized system at E1:

⎧
⎪⎪⎨

⎪⎪⎩

dxk (t)
dt = –μxk(t) + δmzk(t) – (λ(k) + γ k) 1

〈k〉
∑

ϕ(k)P(k)zi(t),
dyk (t)

dt = γ k 1
〈k〉

∑
ϕ(k)P(k)zi(t) – μyk(t) – βyk(t),

dzk (t)
dt = βhyk(t) – δzk(t) – μzk(t)

which can be written as

d
dt

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1

y1

z1

x2

y2

z2
...

xn

yn

zn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= Q

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1

y1

z1

x2

y2

z2
...

xn

yn

zn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where matrix Q is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–μ 0 δm – A1l1 0 0 –A1l2 · · · 0 0 –A1ln
0 –μ – β B1l1 0 0 B1l2 · · · 0 0 B1ln
0 βh –δ – μ 0 0 0 · · · 0 0 0
0 0 –A2l1 –μ 0 δm – A2l2 · · · 0 0 –A2ln
0 0 B2l1 0 –μ – β B2l2 · · · 0 0 B2ln
0 0 0 0 βh –δ – μ · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

...
0 0 –Anl1 0 0 –Anl2 · · · –μ 0 δm – Anln
0 0 Bnl1 0 0 Bnl2 · · · 0 –μ – β Bnln
0 0 0 0 0 0 · · · 0 βh –δ – μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Figure 3 Each compartment population changes over time when R0 < 1 (a) and R0 > 1 (b)

To simplify the matrix, we rewrite it as follows:

Q =

⎛

⎜
⎜
⎝

N11 · · · N1n
...

. . .
...

Nn1 · · · Nnn

⎞

⎟
⎟
⎠ ,

where

N11 =

⎛

⎜
⎝

–μ 0 δm – A1l1

0 –μ – β B1l1

0 βh –δ – μ

⎞

⎟
⎠ ,

N1n =

⎛

⎜
⎝

0 0 A1ln

0 0 B1ln

0 0 0

⎞

⎟
⎠ ,
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Figure 4 Dynamic behavior of Ik in rumor-free equilibrium (a) and rumor-prevailing equilibrium (b) with
different degree

Nn1 =

⎛

⎜
⎝

0 0 Anl1

0 0 Bnl1

0 0 0

⎞

⎟
⎠ ,

Nnn =

⎛

⎜
⎝

–μ 0 δm – Anln

0 –μ – β Bnln

0 βh –δ – μ

⎞

⎟
⎠ ,

in which Ak = λ(k)+γ k
〈k〉 , Bk = λ(k)

〈k〉 , lk = ϕ(k)P(k). A direct calculation leads to the characteris-
tic polynomial of the rumor-free equilibrium in the following form:

(x + μ)n(x + (μ + β)
)n–1(x + (μ + δ)

)n–1(x2 + px + q
)

= 0,

where p = 2μ + δ + β , q = (β + μ)(δ + μ) – βh
∑n

i=1 ϕ(i)P(i).
It is obvious that p > 0 and R1 < 1 is equivalent to q > 0. Therefore, there exists a unique

positive eigenvalue x of Q if and only if R1 > 1; otherwise, if R1 < 1, all real-valued eigenval-
ues of Q are negative. By the Perron–Frobenius theorem, this implies that the maximal real
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Figure 5 Density of I150 and R150 versus varying over different attractive parameter h

part of all eigenvalues of Q is positive if and only if R1 > 1. Then a theorem of Lajmanovich
and York [45] yields the results of this theorem. The proof is completed. �

Conjecture Suppose that (Sk(t), Ek(t), Ik(t)) is a solution of (5.3) with Sk(0) > 0, Ek(0) > 0
and Ik(0) > 0. If R1 > 1, then lim infx→∞{Sk(t), Ek(t), Ik(t)} = (S∗

k , E∗
k , I∗

k ), where (S∗
k , E∗

k , I∗
k ) is

the unique alcoholism equilibrium of (5.3).

Remark We have great difficulty in proving the global stability of E1+. Then we only carry
out simulations to test our conjecture (Fig. 9). It is still an open problem to prove the global
stability of E1+.

6 Simulation results and analysis
First, we perform some sensitivity analysis of the basic reproduction number R0 in terms
of the model parameters on social networks. Obviously,

∂R0

∂h
=

〈λ(k)ϕ(k)〉
〈k〉

β

[(δ + μ)(β + μ)]2 ,
∂R0

∂δ
=

〈λ(k)ϕ(k)〉
〈k〉

–βh(β + μ)
[(δ + μ)(β + μ)]2 ,
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Figure 6 Each compartment population changes over time with different forget rate δ

∂R0

∂β
=

〈λ(k)ϕ(k)〉
〈k〉

μh(δ + μ)
[(δ + μ)(β + μ)]2 ,

∂R0

∂μ
=

〈λ(k)ϕ(k)〉
〈k〉

–(δ + 2μ + μ)
[(δ + μ)(β + μ)]2 .

We can find some interesting results, which have been showed in Fig. 2. In Fig. 2(a) and
(b), it can be seen that big β or h can lead to large R0. That is to say, the larger infected
or the higher attractiveness of rumor can increase the chance of rumor spreading. From
Fig. 2(c) and (d), R0 increases as δ or μ decreases. At the same time, variance of degree
distribution 〈ϕ(k)λ(k)〉 manifests the diversity in contact patterns. Particularly, the ratio
〈ϕ(k)λ(k)〉/〈k〉 is the parameter defining the level of heterogeneity of the network [26].

Next, we carry out Runge–Kutta method simulations to investigate the dynamics of
model (2.1) on both artificial and real networks. We take the degree distribution to be
P(k) = ck–l (2 < l ≤ 3), in which l = 3 and c satisfies

∑n
k=1 P(k) = 1, n = 1000. We choose

λ(k) = λk,ϕ(k) = k, b(k) = b/n.
In Fig. 3(a), the parameters are chosen as b = 0.1,λ = 0.15,γ = 0.1, δ = 0.2,β = 0.25, m =

0.1, h = 0.4, thus the basic reproduction number R0 = 0.65. It is shown that when R0 <
1, the rumor spreading will disappear, even for a large fraction of the infected nodes at
the beginning. And we can also see Ik → 0 as t → ∞. It suggests that the rumor-free
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Figure 7 Each compartment population changes over time with different fuzzy parameterm

equilibrium is globally asymptotically stable when R0 < 1, in agreement with Theorem 2.
In Fig. 3(b), the parameters are chosen as b = 0.04,λ = 0.35,γ = 0.1, δ = 0.2,β = 0.3, m =
0.2, h = 0.6, the basic reproduction number is R0 = 3.51. It is shown that when R0 > 1, even
for a small fraction of the infected nodes at the beginning, the rumor is permanent on the
network, in accord with Theorem 2.

Figure 4 shows the dynamical behavior of I100 in R0 < 1 (a) and R0 > 1 (b) with different
degree. We find that the larger degree leads to a larger value of the spreading level.

Figure 5 shows the effect of attractive parameter h to I150 and R150. We choose the param-
eters h = 0.1 in Fig. 5(a) and h = 0.4 in Fig. 5(b). We can find that the greater attraction of
the rumor, the greater people who spread rumor and the fewer people who recover rumor.

Figures 6 and 7 show the effect of forget rate δ and fuzzy parameter m to each popula-
tion. One can see that both forget rate δ and fuzzy parameter m have great influence on
Sk and Rk . In Fig. 6, we choose δ = 0.1 in (a) and δ = 0.05 in (a), it shows that the forget rate
δ has a positive effect on Sk and Rk . In Fig. 7, we choose m = 0.15 in (a) and m = 0.4 in (a),
we find that increasing fuzzy parameter m can decrease the level of recovered. In the real
world, the fuzzier the rumor is, the more curious people will be. This fact causes a sec-
ondary rumor diffusion. Thus, if we want to reduce the final rumor size, the authoritative
organizations or media should give precise and clear information.
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Figure 8 Density of I100 versus t varying over different infected rate β in (a) and the density of R100 versus t
varying over different direct immunization rate γ in (b)

In Fig. 8(a), the prevalence I100 versus t corresponding to different infected rates β , which
are chosen as 0.1, 0.4, 0.7, 0.9 from bottom to top, is shown. We can see that I100 increases
significantly as β increases. In Fig. 8(b), the prevalence R100 versus t corresponding to
different infected rates γ , which are chosen as 0.1, 0.4, 0.7, 0.9 from bottom to top, is il-
lustrated. We can easily find that the density of the removed population increases as γ

increases.
In Fig. 9(a), the parameters are chosen as in Fig. 3(a) and the parameters in Fig. 5(b) are

chosen as in Fig. 3(b). We can see that I100 corresponding decreases significantly as the
feedback parameter α increases, i.e., a larger feedback parameter can reduce the rumor
spreading level.

7 Conclusion
This paper is mainly focused on the dynamics of rumor spreading on the complex social
networks. A detailed SEIR rumor spreading model with hesitating mechanism has been
presented and simulated. By using mean-field theory, we obtained the basic reproduction



Liu et al. Advances in Difference Equations        (2018) 2018:391 Page 22 of 24

Figure 9 Density of I100 versus t with R1 < 1 (a) and R1 > 1 (b) to a different feedback parameter

number R0 and the equilibrium. As the results indicate, the basic reproduction number
in society networks is virtually correlated with the fluctuations of the degree distribution.
Interestingly, R0 bears no relation to the degree-dependent immigration b(k). The global
stability of equilibrium and the permanence have been proved in detail. We get the con-
clusion that higher attractiveness and fuzziness of rumor contribute to rumor spreading.
Furthermore, increasing feedback parameters can result in the weakness of rumor spread-
ing and the decrease of the population finally is infected. The study may give us valuable
guidance to prevent the rumor spreading.
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