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Abstract
In this paper, we discuss the existence and uniqueness of solutions for two new
classes of sequential fractional differential equations of Riemann–Liouville and
Caputo types with generalized fractional integral boundary conditions, by using
standard fixed point theorems. In addition, we also demonstrate the application of
the obtained results with the aid of examples.
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1 Introduction
In this paper, we investigate the following two nonlinear sequential fractional differential
equations of Riemann–Liouville and Caputo fractional derivatives subject to the general-
ized fractional integral boundary conditions of the forms

RLDq(CDrx
)
(t) = f

(
t, x(t)

)
, t ∈ (0, T), (1)

x(0) =
m∑

i=1

γi
ρ̄i I ᾱi ,β̄i

η̄i ,κ̄i
x(ξi), x(T) =

n∑

j=1

σj
ρj Iαj ,βj

ηj ,κj x(δj), (2)

and

CDq(RLDrx
)
(t) = f

(
t, x(t)

)
, t ∈ (0, T), (3)

x(0) = 0, x(T) =
n∑

j=1

σj
ρj Iαj ,βj

ηj ,κj x(δj), (4)

where RLDq and CDr denote the Riemann–Liouville and Caputo fractional derivatives
of order 0 < q, r ≤ 1, respectively, with 1 < q + r ≤ 2, ρ̃I α̃,β̃

η̃,κ̃ denote the generalized frac-
tional integral of order α̃ > 0, f : [0, T] × R → R is a continuous function, ξi, δj ∈ (0, T),
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α̃ ∈ {ᾱi,αj} > 0, ρ̃ ∈ {ρ̄i,ρj}, β̃ ∈ {β̄i,βj}, η̃ ∈ {η̄i,ηj}, κ̃ ∈ {κ̄i,κj} ∈ R, γi,σj ∈ R, for all
i = 1, 2, . . . , m, j = 1, 2, . . . , n. Observe that interchanging the sequence of fractional deriva-
tives in (1) and (3) has an effect on the boundary conditions which are seen in (2) and (4),
namely the Caputo fractional derivative of a constant is zero while the Riemann–Liouville
derivative is not.

The subject of fractional differential equations has emerged as an interesting and pop-
ular field of research in view of its extensive applications in applied and technical sci-
ences. One can easily observe the role and importance of fractional calculus in several
diverse disciplines such as physics, chemical processes, population dynamics, biotechnol-
ogy, economics, etc. For examples and recent development on the topic, see [1–21] and
the references cited therein. The significance of fractional derivatives owes to the fact that
they serve as an excellent tool for the description of memory and hereditary properties
of various materials and processes. One can notice that fractional derivatives are defined
via fractional integrals. Among several types of fractional integral found in the literature,
Riemann–Liouville and Hadamard fractional integrals are the most extensively studied.
A new fractional integral, called generalized Riemann–Liouville fractional integral, which
generalizes the Riemann–Liouville and Hadamard integrals into a single form, was intro-
duced in [22] (see Definition 5). For more details of this integral and similar ones, we refer
the reader to [23] and [24–27].

Several new existence and uniqueness results for problems (1)–(2) and (3)–(4) are
proved by using a variety of fixed point theorems (such as Banach contraction princi-
ple, Krasnoselskii’s fixed point theorem, Leray–Schauder nonlinear alternative). The rest
of the paper is organized as follows: in Sect. 2 we recall some preliminary facts that we
need in the sequel. In Sect. 3 we present our existence and uniqueness results. Examples
illustrating the obtained results are presented in Sect. 4.

2 Preliminaries
In this section, we recall some basic concepts of fractional calculus [1, 2] and present
known results needed in our forthcoming analysis.

Definition 1 The Riemann–Liouville fractional derivative of order q for a function f :
(0,∞) →R is defined by

RLDqf (t) =
1

�(n – q)

(
d
dt

)n ∫ t

0+
(t – s)n–q–1f (s) ds, q > 0, n = [q] + 1,

where [q] denotes the integer part of the real number q, provided the right-hand side is
pointwise defined on (0,∞).

Definition 2 The Riemann–Liouville fractional integral of order q for a function f :
(0,∞) →R is defined by

RLIqf (t) =
1

�(q)

∫ t

0+
(t – s)q–1f (s) ds, q > 0,

provided the right-hand side is pointwise defined on (0,∞).
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Definition 3 The Caputo derivative of fractional order q for an n-times differentiable
function f : (0,∞) → R is defined as

CDqf (t) =
1

�(n – q)

∫ t

0+
(t – s)n–q–1

(
d
ds

)n

f (s) ds, q > 0, n = [q] + 1.

Definition 4 The Hadamard fractional integral of order q for a function f : (0,∞) →R is
defined by

HJqf (t) =
1

�(q)

∫ t

0+

(
log

t
s

)q–1 f (s)
s

ds, q > 0,

provided the integral exists, where log(·) = loge(·).

Definition 5 The Katugampola fractional integral of order q > 0 and ρ > 0 of a function
f (t) for all 0 < t < ∞ is defined by

ρ J̃ qf (t) =
ρ1–q

�(q)

∫ t

0+

sρ–1f (s)
(tρ – sρ)1–q ds,

provided the integral exists.

Remark 1 For ρ = 1 in the above definition, we arrive at the standard Riemann–Liouville
fractional integral, which is used to define both the Riemann–Liouville and Caputo frac-
tional derivatives, while in the limit ρ → 0+ we have

lim
ρ→0+

ρ J̃ qf (t) =
1

�(q)

∫ t

0+

(
log

t
s

)q–1 f (s)
s

ds,

which is the famous Hadamard fractional integral; see [22].

Definition 6 The Erdélyi–Kober fractional integral of order δ > 0 with η > 0 and γ ∈ R of
a function f : (0,∞) →R is defined by

Ĵγ ,δ
η f (t) =

ηt–η(δ+γ )

�(δ)

∫ t

0+

sηγ +η–1f (s)
(tη – sη)1–δ

ds,

provided the integral exists.

Let Xp
c (a, b), c ∈ R, 1 ≤ p ≤ ∞ be the space of all complex-valued Lebesgue measurable

functions φ on (a, b) for which ‖φ‖Xp
c

< ∞, with

‖φ‖Xp
c

=
(∫ b

a

∣∣xcφ(x)
∣∣p dx

x

)1/p

, 1 ≤ p < ∞.

Definition 7 ([28]) Let f ∈ Xp
c (a, b) with a = 0+. The generalized fractional integral of

order α > 0 and constants β ,ρ,η,κ ∈R for a function f : (0,∞) →R is defined by

(
ρIα,β

η,κ f
)
(t) =

ρ1–βtκ

�(α)

∫ t

0+

τρ(η+1)–1

(tρ – τρ)1–α
f (τ ) dτ , (5)

provided the integral exists.
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Remark 2 The fractional integral (5) contains six well-known fractional integrals as its
particular cases (see also [28]).

From (5) we have the following special cases:
(i) If β = α, κ = 0, η = 0, then (2) can be reduced to

x(0) =
m∑

i=1

γi
ρ̄i J̃ ᾱi x(ξi), x(T) =

n∑

j=1

σj
ρj J̃αj x(δj), (6)

which are the Katugampola fractional integral boundary conditions;
(ii) If ρ = 1, β = α, κ = 0, η = 0, then (2) can be reduced to

x(0) =
m∑

i=1

γ RL
i I ᾱi x(ξi), x(T) =

n∑

j=1

σ RL
j Iαj x(δj), (7)

which are the Riemann–Liouville fractional integral boundary conditions;
(iii) If ρ → 0, β = α, κ = 0, η = 0, then (2) can be reduced

x(0) =
m∑

i=1

γ H
i J ᾱi x(ξi), x(T) =

n∑

j=1

σ H
j Jαj x(δj), (8)

which are the Hadamard fractional integral boundary conditions;
(iv) If β = 0, κ = –ρ(α + η), then (2) can be reduced to

x(0) =
m∑

i=1

γiĴ
ᾱi ,ρ̄i
η̄i

x(ξi), x(T) =
n∑

j=1

σj Ĵ
αj ,ρj
ηj x(δj), (9)

which are the Erdélyi–Kober fractional integral boundary conditions.

Lemma 1 ([2]) Let q > 0. Then for y ∈ C(0, T) ∩ L(0, T) it holds

RLIq(RLDqy
)
(t) = y(t) + c1tq–1 + c2tq–2 + · · · + cntq–n,

where ci ∈R, i = 1, 2, . . . , n and n – 1 < q < n.

Lemma 2 ([2]) Let q > 0. Then for y ∈ C(0, T) ∩ L(0, T) it holds

RLIq(CDqy
)
(t) = y(t) + c0 + c1t + c2t2 + · · · + cn–1tn–1,

where ci ∈R, i = 0, 1, 2, . . . , n – 1 and n = [q] + 1.

Lemma 3 Let α, ρ > 0 and β ,ρ,η,κ ∈R, m > 0 and ρ(α + η) + m + κ ≥ 0. Then we have

ρIα,β
η,κ tm = ρ–β

�( ρη+ρ+m
ρ

)
�( ρη+ρα+ρ+m

ρ
)
tρ(α+η)+m+κ . (10)
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Proof Now we state the definition of the beta function and its property, which for x, y > 0
read

B(x, y) =
∫ 1

0
ux–1(1 – u)y–1 du and B(x, y) =

�(x)�(y)
�(x + y)

.

From Definition 7 and by changing the variable of integration, we can compute the fol-
lowing formula:

ρIα,β
η,κ tm =

ρ1–βtκ

�(α)

∫ t

0

τρ(η+1)–1

(tρ – τρ)1–α
τm dτ

=
ρ–βtρ(α+η)+m+κ

�(α)

∫ 1

0
u( ρη+ρ+m

ρ )–1(1 – u)α–1 du

=
ρ–βtρ(α+η)+m+κ

�(α)
B
(

ρη + ρ + m
ρ

,α
)

= ρ–β
�( ρη+ρ+m

ρ
)

�( ρη+ρα+ρ+m
ρ

)
tρ(α+η)+m+κ .

The proof is completed. �

Before going to prove the next lemma, for convenience, we set constants

�1 =
�(q)

�(q + r)

m∑

i=1

γiπ
ρ̄i ,ᾱi ,β̄i ,η̄i ,κ̄i
q+r–1 (ξi),

�2 =
m∑

i=1

γiπ
ρ̄i ,ᾱi ,β̄i ,η̄i ,κ̄i
0 (ξi) – 1,

�3 =
�(q)

�(q + r)

( n∑

j=1

σjπ
ρj ,αj ,βj ,ηj ,κj
q+r–1 (δj) – Tq+r–1

)

,

�4 =
n∑

j=1

σjπ
ρj ,αj ,βj ,ηj ,κj
0 (δj) – 1

and

� = �1�4 – �2�3 	= 0, (11)

where

πρ,α,β ,η,κ
m (t) = ρ–β

�( ρη+ρ+m
ρ

)
�( ρη+ρα+ρ+m

ρ
)
tρ(α+η)+κ+m. (12)

Lemma 4 Let 0 < q, r ≤ 1 with 1 < q + r ≤ 2, ρ̄i, ρj, q, r, ᾱi, αj > 0, ξi, δj ∈ (0, T), β̄i, η̄i, κ̄i, βj,
ηj, κj ∈R for i = 1, 2, . . . , m, j = 1, 2, . . . , n, � 	= 0 and y ∈ C([0, T],R). The unique solution of
the following linear sequential Riemann–Liouville and Caputo fractional differential equa-
tion

RLDq(CDrx
)
(t) = y(t), t ∈ (0, T), (13)
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subject to the generalized fractional integral boundary conditions

x(0) =
m∑

i=1

γi
ρ̄i I ᾱi ,β̄i

η̄i ,κ̄i
x(ξi), x(T) =

n∑

j=1

σj
ρj Iαj ,βj

ηj ,κj x(δj), (14)

is given by the integral equation

x(t) =
1
�

((
�1 – �2

�(q)
�(q + r)

tq+r–1
)

(RLIq+ry
)
(T)

+
(

�2
�(q)

�(q + r)
tq+r–1 – �1

) n∑

j=1

σj
[
ρj Iαj ,βj

ηj ,κ j
(RLIq+ry

)]
(δj)

+
(

�3 – �4
�(q)

�(q + r)
tq+r–1

) m∑

i=1

γi
[
ρ̄i I ᾱi ,β̄i

η̄i ,κ̄i

(RLIq+ry
)]

(ξi)

)

+
(RLIq+ry

)
(t). (15)

Proof Applying the Riemann–Liouville fractional integral of orders q and r, respectively,
to both sides of (13) and using Lemmas 1 and 2, we have

x(t) =
(RLIq+ry

)
(t) + c1

�(q)
�(q + r)

tq+r–1 + c2, (16)

where constants c1, c2 ∈R.
Using the nonlocal boundary condition (14) to the above equation with Lemma 3 and

the above-set constants, we obtain the following linear system of constants c1 and c2:

�1c1 + �2c2 = –
m∑

i=1

γi
[
ρ̄i I ᾱi ,β̄i

η̄i ,κ̄i

(RLIq+ry
)]

(ξi),

�3c1 + �4c2 = RLIq+ry(T) –
n∑

j=1

σj
[
ρj Iαj ,βj

ηj ,κj

(RLIq+ry
)]

(δj).

Solving the above system of linear equations for the constants c1, c2, we have

c1 =
1
�

[

�2

n∑

j=1

σj
[
ρj Iαj ,βj

ηj ,κj

(RLIq+ry
)]

(δj) – �2
(RLIq+ry

)
(T)

– �4

m∑

i=1

γi
[
ρ̄i I ᾱi ,β̄i

η̄i ,κ̄i

(RLIq+ry
)]

(ξi)

]

,

c2 =
1
�

[

�1
(RLIq+ry

)
(T) – �1

n∑

j=1

σj
[
ρj Iαj ,βj

ηj ,κj

(RLIq+ry
)]

(δj)

+ �3

m∑

i=1

γi
[
ρ̄i I ᾱi ,β̄i

η̄i ,κ̄i

(RLIq+ry
)]

(ξi)

]

.

Substituting constants c1 and c2 into (16), we obtain integral equation (15). The converse
follows by direct computation. The proof is completed. �

Remark 3 Since q + r > 1, equation (16) is well defined when t = 0.
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Lemma 5 The linear sequential Caputo and Riemann–Liouville fractional differential
equation

CDq(RLDrx
)
(t) = y(t), t ∈ (0, T), (17)

assuming (4), can be written as an integral equation

x(t) =
tq

�(q + 1)�∗

( n∑

j=1

σj
[
ρj Iαj ,βj

ηj ,κj

(RLIq+ry
)]

(δj) –
(RLIq+ry

)
(T)

)

+ RLIq+ry(t), (18)

where the constant �∗ 	= 0 is defined by

�∗ = Tq –
n∑

j=1

σjπ
ρj ,αj ,βj ,ηj ,κj
q (δj).

Proof By taking the Riemann–Liouville fractional derivative of orders q and r, respec-
tively, of (17), we obtain

x(t) =
(RLIq+ry

)
(t) + c1

tq

�(q + 1)
+ c2tq–1. (19)

Condition x(0) = 0 implies c2 = 0. Applying the boundary condition (4) and using the same
method as in Lemma 4 for finding a constant c1, we obtain (18) as desired. This completes
the proof. �

Remark 4 If c2 	= 0, then (19) is singular in the case t = 0 and q ∈ (0, 1).

The following fixed point theorems are fundamental in the proofs of our main results.

Lemma 6 (Krasnoselskii’s fixed point theorem, [29]) Let M be a closed, bounded, convex
and nonempty subset of a Banach space X. Let A, B be the operators such that (a) Ax + By ∈
M whenever x, y ∈ M; (b) A is compact and continuous; (c) B is a contraction mapping.
Then there exists z ∈ M such that z=Az+Bz.

Lemma 7 (Nonlinear alternative for single-valued maps, [30]) Let E be a Banach space, C
be a closed, convex subset of E, U be an open subset of C and 0 ∈ U . Suppose that F : U → C
is a continuous, compact (that is, F(U) is a relatively compact subset of C) map. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF(u).

3 Main results
In this section, we will use fixed point theorems to prove the existence and uniqueness
of solutions for problems (1)–(2) and (3)–(4). Throughout this paper, for convenience, we
use the abbreviate notations

(RLIq+rfx
)
(z) =

1
�(q + r)

∫ z

0+
(z – s)q+r–1f

(
s, x(s)

)
ds for z ∈ [0, T]
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and

[ρ̃I α̃,β̃
η̃,κ̃

(RLIq+rfx
)]

(v) =
ρ̃vκ̃

�(α̃)�(q + r)

∫ v

0+

∫ t

0+

vρ̃(η̃+1)–1

(tρ̃ – vρ̃)1–α̃
(t – s)q+r–1f

(
s, x(s)

)
ds dt,

for v ∈ [0, T], where z ∈ {t, T}, v ∈ {ξi, δj}, ρ̃ ∈ {ρ̄i,ρj}, α̃ ∈ {ᾱi,αj}, β̃ ∈ {β̄i,βj}, η̃ ∈ {η̄i,ηj},
κ̃ ∈ {κ̄i,κj}, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Let C = C([0, T],R) denote the Banach space of all continuous functions from [0, T] to
R endowed with the norm defined by ‖x‖ = supt∈[0,T] |x(t)|. By Lemma 4, we define an
operator F : C → C by

(Fx)(t)

=
1
�

((
�1 – �2

�(q)
�(q + r)

tq+r–1
)

(RLIq+rfx
)
(T)

+
(

�2
�(q)

�(q + r)
tq+r–1 – �1

) n∑

j=1

σj
[
ρj Iαj ,βj

ηj ,κj

(RLIq+rfx
)]

(δj)

+
(

�3 – �4
�(q)

�(q + r)
tq+r–1

) m∑

i=1

γi
[
ρ̄i I ᾱi ,β̄i

η̄j ,κ̄i

(RLIq+rfx
)]

(ξi)

)

+
(RLIq+rfx

)
(t), (20)

with � 	= 0. It should be noticed that problem (1)–(2) has solutions if and only if the oper-
ator F has fixed points. For the sake of convenience, we put a constant

� =
1

�(q + r + 1)|�|

(

|�1|Tq+r + |�2| �(q)
�(q + r)

T2q+2r–1

+
[
|�2| �(q)

�(q + r)
Tq+r–1 + |�1|

] n∑

j=1

|σj|πρj ,αj ,βj ,ηj ,κj
q+r (δj)

+
[
|�3| + |�4| �(q)

�(q + r)
Tq+r–1

] m∑

i=1

|γi|πρ̄i ,ᾱi ,β̄i ,η̄i ,κ̄i
q+r (ξi)

)

+
Tq+r

�(q + r + 1)
. (21)

To prove the existence theorems for problem (3)–(4), by Lemma 5, we define an operator
H : C → C by

(Hx)(t) =
tq

�(q + 1)�∗

( n∑

j=1

σj
[
ρj Iαj ,βj

ηj ,κj

(RLIq+rfx
)]

(δj) –
(RLIq+rfx

)
(T)

)

+
(RLIq+rfx

)
(t), �∗ 	= 0. (22)

The first existence and uniqueness result is based on the Banach contraction mapping
principle.
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Theorem 1 Let f : [0, T] × R → R be a continuous function satisfying the following as-
sumption:

(H1) There exists a constant L > 0 such that |f (t, x) – f (t, y)| ≤ L|x – y|, for each t ∈ [0, T]
and x, y ∈R.

If

L� < 1, (23)

where a constant � is given by (21), then the boundary value problem (1)–(2) has a unique
solution on [0, T].

Proof Problem (1)–(2) can be transformed into a fixed point problem, x = Fx, where the
operator F is defined by (20). By using the Banach’s contraction mapping principle, we
shall show that F has a fixed point which is the unique solution of problem (1)–(2).

Let us set supt∈[0,T] |f (t, 0)| = M < ∞ and choose

r ≥ M�

1 – L�
,

as a radius of the ball Br , where Br = {x ∈ C : ‖x‖ ≤ r}. From inequality (23), a constant
r is well defined. Now, we show that FBr ⊂ Br . For any x ∈ Br , and taking into account
Lemma 3, we obtain

‖Fx‖ = sup
t∈[0,T]

∣∣
∣∣∣

1
�

((
�1 – �2

�(q)
�(q + r)

tq+r–1
)

(RLIq+rfx
)
(T)

+
(

�2
�(q)

�(q + r)
tq+r–1 – �1

) n∑

j=1

σj
[
ρj Iαj ,βj

ηj ,κj

(RLIq+rfx
)]

(δj)

+
(

�3 – �4
�(q)

�(q + r)
tq+r–1

) m∑

i=1

γi
[
ρ̄i I ᾱi ,β̄i

η̄i ,κ̄i

(RLIq+rfx
)]

(ξi)

)

+
(RLIq+rfx

)
(t)

∣∣
∣∣
∣

≤ 1
|�|

([
|�1| + |�2| �(q)

�(q + r)
Tq+r–1

]
[(RLIq+r(|fx – f0| + |f0|

))
(T)

]

+
[
|�2| �(q)

�(q + r)
Tq+r–1 + |�1|

]

×
n∑

j=1

|σj|
[
ρj Iαj ,βj

ηj ,κj

(RLIq+r(|fx – f0| + |f0|
))]

(δj)

+
[
|�3| + |�4| �(q)

�(q + r)
Tq+r–1

]

×
m∑

i=1

|γi|
[
ρ̄i I ᾱi ,β̄i

η̄i ,κ̄i

(RLIq+r(|fx – f0| + |f0|
))]

(ξi)

)

+
(RLIq+r(|fx – f0| + |f0|

))
(t)

≤ (Lr + M)

{
1

�(q + r + 1)|�|

(

|�1|Tq+r + |�2| �(q)
�(q + r)

T2q+2r–1

+
[
|�2| �(q)

�(q + r)
Tq+r–1 + |�1|

] n∑

j=1

|σj|πρj ,αj ,βj ,ηj ,κj
q+r (δj)
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+
[
|�3| + |�4| �(q)

�(q + r)
Tq+r–1

] m∑

i=1

|γi|πρ̄i ,ᾱi ,β̄i ,η̄i ,κ̄i
q+r (ξi)

)

+
Tq+r

�(q + r + 1)

}

= (Lr + M)� ≤ r,

which gives FBr ⊂ Br .
For x, y ∈ C and for each t ∈ [0, T], we obtain

∣
∣Fx(t) – Fy(t)

∣
∣

≤ 1
|�|

([
|�1| + |�2| �(q)

�(q + r)
Tq+r–1

]
(RLIq+r(|fx – fy|

))
(T)

+
[
|�2| �(q)

�(q + r)
Tq+r–1 + |�1|

]

×
n∑

j=1

|σj|
[
ρj Iαj ,βj

ηj ,κj

(RLIq+r(|fx – fy|
))]

(δj)

+
[
|�3| + |�4| �(q)

�(q + r)
Tq+r–1

]

×
m∑

i=1

|γi|
[
ρ̄i I ᾱi ,β̄i

η̄i ,κ̄i

(RLIq+r(|fx – fy|
))]

(ξi)

)

+
(RLIq+r(|fx – fy|

))
(t)

≤ L‖x – y‖
{

1
�(q + r + 1)|�|

(

|�1|Tq+r + |�2| �(q)
�(q + r)

T2q+2r–1

+
[
|�2| �(q)

�(q + r)
Tq+r–1 + |�1|

] n∑

j=1

|σj|πρj ,αj ,βj ,ηj ,κj
q+r (δj)

+
[
|�3| + |�4| �(q)

�(q + r)
Tq+r–1

] m∑

i=1

|γi|πρ̄i ,ᾱi ,β̄i ,η̄i ,κ̄i
q+r (ξi)

)

+
Tq+r

�(q + r + 1)

}

= L�‖x – y‖.

The above result leads to ‖Fx –Fy‖ ≤ L�‖x – y‖. As L� < 1, therefore the operator F is a
contraction. Hence, by the Banach contraction mapping principle, we deduce that F has a
fixed point which is the unique solution of the problem (1)–(2). The proof is completed. �

Corollary 1 Let condition (H1) in Theorem (1) hold. If L�∗ < 1, where �∗ is defined by

�∗ =
Tq

|�∗|�(q + 1)�(q + r + 1)

( n∑

j=1

|σj|πρj ,αj ,βj ,ηj ,κj
q+r (δj) + Tq+r

)

+
Tq+r

�(q + r + 1)
,

then the boundary value problem (3)–(4) has a unique solution on [0, T].

Next, we give the second existence theorem by using Krasnoselskii’s fixed point theorem.
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Setting a constant

�1 =
Tq+r

�(q + r + 1)
+

1
|�|�(q + r + 1)

(
|�1|Tq+r + |�2| �(q)

�(q + r)
T2q+2r+1

)
.

Note that �1 ≤ �. Now, we state and prove the second result.

Theorem 2 Assume that f : [0, T] × R → R is continuous and satisfies assumption (H1)
of Theorem 1. In addition we suppose that:

(H2) |f (t, x)| ≤ φ(t), ∀(t, x) ∈ [0, T] ×R and φ ∈ C([0, T],R+).
If the inequality

�1L < 1 (24)

holds, then the boundary value problem (1)–(2) has at least one solution on [0, T].

Proof Let us define a suitable ball Br = {x ∈ C : ‖x‖ ≤ r}, where the radius r is defined by

r ≥ ‖φ‖�,

with supt∈[0,T] |φ(t)| = ‖φ‖ and � defined by (21). Furthermore, we define two operators
P and Q on Br as

(Px)(t) =
1
�

((
�2

�(q)
�(q + r)

tq+r–1 – �1

) n∑

j=1

σj
[
ρj Iαj ,βj

ηj ,φj

(RLIq+rfx
)]

(δj)

+
(

�3 – �4
�(q)

�(q + r)
tq+r–1

) m∑

i=1

γi
[
ρ̄i I ᾱi ,β̄i

η̄i ,κ̄i

(RLIq+rfx
)]

(ξj)

)

,

(Qx)(t) =
1
�

((
�1 – �2

�(q)
�(q + r)

tq+r–1
)(RLIq+rfx

)
(T)

)

+
(RLIq+rfx

)
(t), t ∈ [0, T].

Observe that Fx = Px + Qx. For x, y ∈ Br , we have

‖Px + Qy‖

≤ ‖φ‖
{

1
�(q + r + 1)|�|

(

|�1|Tq+r + |�2| �(q)
�(q + r)

T2q+2r–1

+
[
|�2| �(q)

�(q + r)
Tq+r–1 + |�1|

] n∑

j=1

|σj|πρj ,αj ,βj ,ηj ,κj
q+r (δj)

+
[
|�3| + |�4| �(q)

�(q + r)
Tq+r–1

] m∑

i=1

|γi|πρ̄i ,ᾱi ,β̄i ,η̄i ,κ̄i
q+r (ξi)

)

+
Tq+r

�(q + r + 1)

}

= ‖φ‖�
≤ r.
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This shows that Px +Qy ∈ Br . Therefore, condition (a) of Lemma 6 holds. Using assump-
tion (H1) with the inequality in (24), we deduce that operator Q is a contraction mapping
which satisfies condition (c) of Lemma 6.

Now, we will show that operator P satisfies condition (b) of Lemma 6. Since f is a con-
tinuous function, we have that operator P is continuous. Next, we prove compactness of
operator P . It is easy to verify that

‖Px‖ ≤ ‖φ‖
{

1
�(q + r + 1)|�|

([
|�2| �(q)

�(q + r)
Tq+r–1 + |�1|

] n∑

j=1

|σj|πρj ,αj ,βj ,ηj ,κj
q+r (δj)

+
[
|�3| + |�4| �(q)

�(q + r)
Tq+r–1

] m∑

i=1

|γi|πρ̄i ,ᾱi ,β̄i ,η̄i ,κ̄i
q+r (ξi)

)}

.

Hence, P(Br) is a uniformly bounded set. Let us put sup(t,x)∈[0,T]×Br
|f (t, x)| = f < ∞. Con-

sequently, we get

∣∣(Px)(t1) – (Px)(t2)
∣∣

=

∣
∣∣∣
∣

1
�

{(
�2

�(q)
�(q + r)

tq+r–1
1 – �1

) n∑

j=1

σj
[
ρj Iαj ,βj

ηj ,κj

(RLIq+rfx
)]

(δj)

+
(

�3 – �4
�(q)

�(q + r)
tq+r–1
1

) m∑

i=1

γi
[
ρ̄i I ᾱi ,β̄i

η̄i ,κ̄i

(RLIq+rfx
)]

(ξi)

}

–
1
�

{(
�2

�(q)
�(q + r)

tq+r–1
2 – �1

) n∑

j=1

σj
[
ρj Iαj ,βj

ηj ,κj

(RLIq+rfx
)]

(δj)

+
(

�3 – �4
�(q)

�(q + r)
tq+r–1
2

) m∑

i=1

γi
[
ρ̄i I ᾱi ,β̄i

η̄i ,κ̄i

(RLIq+rfx
)]

(ξi)

}∣∣∣
∣∣

≤ 1
|�|

[

|�2| �(q)
�(q + r)

∣
∣tq+r–1

1 – tq+r–1
2

∣
∣f̄

n∑

j=1

|σj|πρj ,αj ,βj ,ηj ,κj
q+r (δj)

+ |�4| �(q)
�(q + r)

∣
∣tq+r–1

2 – tq+r–1
1

∣
∣f̄

m∑

i=1

|γi|πρ̄i ,ᾱi ,β̄i ,η̄i ,κ̄i
q+r (ξi)

]

,

which is independent of x and tends to zero as t2 → t1. Hence, the set P(Br) is equicontin-
uous. Hence, by the Arzelá–Ascoli theorem, the set P(Br) is relatively compact. Therefore,
the operator P is compact on Br . Thus all the assumptions of Lemma 6 are satisfied. Then
the boundary value problem (1)–(2) has at least one solution on [0, T]. The proof is com-
pleted. �

Remark 5 In the above theorem, we can interchange the roles of operators P and Q to
obtain a second result, replacing (24) by the following condition:

L
|�|�(q + r + 1)

([
|�2| �(q)

�(q + r)
Tq+r–1 + |�1|

] n∑

j=1

|σj|πρj ,αj ,βj ,ηj ,κj
q+r (δj)

+
[
|�3| + |�4| �(q)

�(q + r)
Tq+r–1

] m∑

i=1

|γi|πρ̄i ,ᾱi ,β̄i ,η̄i ,κ̄i
q+r (ξi)

)

< 1.
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Corollary 2 Assume that (H1) and (H2) are fulfilled. If either

LTq+r

�(q + r + 1)
< 1,

or

LTq

|�∗|�(q + 1)�(q + r + 1)

( n∑

j=1

|σj|πρj ,αj ,βj ,ηj ,κj
q+r (δj) + Tq+r

)

< 1,

holds, then the boundary value problem (3)–(4) has at least one solution on [0, T].

Now, our third existence theorem will be proved by using the Leray–Schauder’s Non-
linear Alternative.

Theorem 3 Assume that f : [0, T] ×R→ R is a continuous function. In addition, we sup-
pose that:

(H3) There exist a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a function
p ∈ C([0, T],R+) such that

∣∣f (t, x)
∣∣ ≤ p(t)ψ

(‖x‖) for each (t, x) ∈ [0, T] ×R;

(H4) There exists a constant N > 0 such that

N
‖p‖ψ(N)�

> 1,

where � is defined by (21).
Then the boundary value problem (1)–(2) has at least one solution on [0, T].

Proof To apply Lemma 7, we define a bounded ball in C by BR = {x ∈ C : ‖x‖ ≤ R}, R >
0. Now, we shall show that the operator F defined by (20), maps bounded sets BR into
bounded sets in C . For t ∈ [0, T] we have

∣∣Fx(t)
∣∣

≤ 1
|�|

([
|�1| + |�2| �(q)

�(q + r)
Tq+r–1

](RLIq+r(|fx|
))

(T)

+
[
|�2| �(q)

�(q + r)
Tq+r–1 + |�1|

] n∑

j=1

|σj|
[
ρj Iαj ,βj

ηj ,κj

(RLIq+r(|fx|
))]

(δj)

+
[
|�3| + |�4| �(q)

�(q + r)
Tq+r–1

] m∑

i=1

|γi|
[
ρ̄i I ᾱi ,β̄i

η̄i ,κ̄i

(RLIq+r(|fx|
))]

(ξi)

)

+
(RLIq+r(|fx|

))
(t)

≤ ‖p‖ψ(‖x‖)
{

1
�(q + r + 1)|�|

(

|�1|Tq+r + |�2| �(q)
�(q + r)

T2q+2r–1
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+
[
|�2| �(q)

�(q + r)
Tq+r–1 + |�1|

] n∑

j=1

|σj|πρj ,αj ,βj ,ηj ,κj
q+r (δj)

+
[
|�3| + |�4| �(q)

�(q + r)
Tq+r–1

] m∑

i=1

|γi|πρ̄i ,ᾱi ,β̄i ,η̄i ,κ̄i
q+r (ξi)

)

+
Tq+r

�(q + r + 1)

}

≤ ‖p‖ψ(R)�.

Therefore, we conclude that ‖Fx‖ ≤ ‖p‖ψ(R)�, which implies that the set F (BR) is uni-
formly bounded.

Next, we will show that F maps a bounded set BR into an equicontinuous set in C . Let
ν1,ν2 ∈ [0, T] with ν1 < ν2 and for any x ∈ BR. Then we have

∣∣(Fx)(ν2) – (Fx)(ν1)
∣∣

≤ 1
|�|

((
|�2| �(q)

�(q + r)
∣
∣ν1

q+r–1 – ν2
q+r–1∣∣

)(RLIq+r|fx|
)
(T)

+
(

|�2| �(q)
�(q + r)

∣
∣ν2

q+r–1 – ν1
q+r–1∣∣

) n∑

j=1

σj
[
ρj Iαj ,βj

ηj ,κ j
(RLIq+r|fx|

)]
(δj)

+
(

|�4| �(q)
�(q + r)

∣
∣ν1

q+r–1 – ν2
q+r–1∣∣

) m∑

i=1

γi
[
ρ̄i I ᾱi ,β̄i

η̄i ,κ̄i

(RLIq+r|fx|
)]

(ξi)

)

+
‖p‖ψ(R)
�(q + r)

∣∣
∣∣

∫ ν1

0

[
(ν2 – s)q+r–1 – (ν1 – s)q+r–1]ds

∣∣
∣∣

+
‖p‖ψ(R)
�(q + r)

∣∣
∣∣

∫ ν2

ν1

(ν2 – s)q+r–1 ds
∣∣
∣∣

≤ ‖p‖ψ(R)

{
1

|�|

((
|�2| �(q)

�(q + r)
∣∣ν1

q+r–1 – ν2
q+r–1∣∣

)
Tq+r

�(q + r + 1)

+
(

|�2| �(q)
�(q + r)

∣
∣ν2

q+r–1 – ν1
q+r–1∣∣

) n∑

j=1

|σj|πρj ,αj ,βj ,ηj ,κj
q+r (δj)

+
(

|�4| �(q)
�(q + r)

∣
∣ν1

q+r–1 – ν2
q+r–1∣∣

) m∑

i=1

|γi|πρ̄i ,ᾱi ,β̄i ,η̄i ,κ̄i
q+r (ξi)

)

+
1

�(q + r + 1)
[∣∣νq+r

2 – ν
q+r
1

∣∣ + 2(ν2 – ν1)q+r]
}

.

Obviously, the right-hand side of the above inequality tends to zero independently of x ∈
BR as ν2 → ν1. Thus F (BR) is an equicontinuous set. Therefore, it follows by the Arzelá–
Ascoli theorem that F : C → C is completely continuous.

Let x be a solution of boundary value problem (1)–(2). Hence, for t ∈ [0, T], and using
the above method, we have

‖x‖ ≤ ‖p‖ψ(‖x‖)�,
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which can be written as

‖x‖
‖p‖ψ(‖x‖)�

≤ 1.

In view of (H4), there exists an N such that ‖x‖ 	= N . Now we define a set

U =
{

x ∈ BR : ‖x‖ < N
}

. (25)

Note that the operator F : U → C is continuous and compact. From the choice of U ,
there is no x ∈ ∂U such that x = θFx for some θ ∈ (0, 1). Consequently, by the nonlinear
alternative of Leray–Schauder type (Lemma 7) we get that F has a fixed point in U , which
is a solution of the boundary value problem (1)–(2). This completes the proof. �

Corollary 3 Let condition (H3) in Theorem 3 hold. If there exists a constant N > 0 such
that

N
‖p‖ψ(N)�∗ > 1,

then the boundary value problem (3)–(4) has at least one solution on [0, T].

The following corollary is obtained by substituting p(t) ≡ 1 and ψ(|x|) = M|x| + K . Then
we can use the following assumption.

(H5) There exist constants M > 0 and K ≥ 0 such that

∣∣f (t, x)
∣∣ ≤ M|x| + K for each (t, x) ∈ [0, T] ×R.

Corollary 4 Assume that a continuous function f : [0, T] × R → R satisfies condition
(H5).

(i) If M� < 1, then boundary value problem (1)–(2) has at least one solution on [0, T].
(ii) If M�∗ < 1, then the boundary value problem (3)–(4) has at least one solution on

[0, T].

4 Examples
Example 1 Consider the following nonlinear sequential Riemann–Liouville and Caputo
fractional differential equation with generalized fractional integral conditions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

RLD 1
2 (CD 3

4 x)(t) = cos2(2π t)
(t2+5)2+35

· ( x2(t)+2|x(t)|
|x(t)|+1 ) + et , 0 < t < 5,

x(0) = 1
3

1
2 I

1
2 , 3

4
1
2 , 3

4
x( 3

2 ) + 1
2

5
2 I

3
2 , 1

2
1
2 , 1

3
x( 5

2 ),

x(5) = 2
3

1
3 I

1
4 , 1

4
1
2 , 1

3
x( 1

2 ) + 5
7

3
2 I

1
3 , 1

4
1
2 , 3

2
x( 7

2 ) + 11
16

5
2 I

5
2 , 1

2
3
2 , 1

2
x( 9

2 ).

(26)

Here q = 1/2, r = 3/4, m = 2, n = 3, T = 5, γ1 = 1/3, γ2 = 1/2, ρ̄1 = 1/2, ρ̄2 = 3/2, ᾱ1 = 1/2,
ᾱ2 = 3/2, β̄1 = 3/4, β̄2 = 1/2, η̄1 = 3/2, η̄2 = 1/2, κ̄1 = 1/2, κ̄2 = 1/3, ξ1 = 3/2, ξ2 = 5/2, σ1 = 2/3,
σ2 = 5/7, σ3 = 11/16, ρ1 = 1/3, ρ2 = 3/2, ρ3 = 5/2, α1 = 1/4, α2 = 1/3, α3 = 5/2, β1 = 1/4,
β2 = 1/4, β3 = 1/2, η1 = 1/2, η2 = 1/2, η3 = 3/2, κ1 = 1/3, κ2 = 3/2, κ3 = 1/2, δ1 = 1/2, δ2 = 7/2,
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δ3 = 9/2 and f (t, x) = ((cos2(2π t))/((t2 + 5)2 + 35)) · ((x2 + 2|x|)/(|x|+ 1)) + et . From the given
information, we find that � = 26.98694773. Since

∣∣f (t, x) – f (t, y)
∣∣ ≤ 1

30
|x – y|,

condition (H1) is satisfied with L = 1/30. Thus

L� = 0.8995649243 < 1.

Hence, by Theorem 1, the boundary value problem (26) has a unique solution on [0, 5].

Example 2 Consider the following nonlinear sequential Riemann–Liouville and Caputo
fractional differential equation with generalized fractional integral conditions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

RLD
4
5 (CD 1

2 x)(t) = e–t2

(t+2)2+2 · |x(t)|
|x(t)|+1 + t

t+1 , 0 < t < 3,

x(0) = 1
2

1
2 I

1
2 , 1

4
1
2 , 1

4
x( 1

2 ) + 1
3

1
3 I

1
3 , 1

2
1
2 , 1

2
x( 2

3 ) + 5
6

1
4 I

1
2 , 1

2
1
4 , 1

4
x( 3

2 ),

x(3) = 1
4

1
4 I

1
3 , 1

2
1
4 , 1

4
x( 4

3 ) + 1
3

1
3 I

1
3 , 1

3
1
2 , 1

2
x( 7

3 ) + 5
6

1
4 I

1
4 , 1

2
1
2 , 1

4
x( 5

2 ).

(27)

Here q = 4/5, r = 1/2, m = 3, n = 3, T = 3, γ1 = 1/2, γ2 = 1/3, γ3 = 5/6, ρ̄1 = 1/2, ρ̄2 = 1/3,
ρ̄3 = 1/4, ᾱ1 = 1/2, ᾱ2 = 1/3, ᾱ3 = 1/2 β̄1 = 1/4, β̄2 = 1/2, β̄3 = 1/2 η̄1 = 1/2, η̄2 = 1/2, η̄3 = 1/4,
κ̄1 = 1/4, κ̄2 = 1/2, κ̄3 = 1/4, ξ1 = 1/2, ξ2 = 2/3, ξ3 = 3/2, σ1 = 1/4, σ2 = 1/3, σ3 = 5/6, ρ1 =
1/4, ρ2 = 1/3, ρ3 = 1/4, α1 = 1/3, α2 = 1/3, α3 = 1/4, β1 = 1/2, β2 = 1/3, β3 = 1/2, η1 = 1/4,
η2 = 1/2, η3 = 1/2, κ1 = 1/4, κ2 = 1/2, κ3 = 1/4, δ1 = 4/3, δ2 = 7/3, δ3 = 5/2 and f (t, x) =
((e–t2 )/((t + 2)2 + 2)) · ((|x|)/(|x| + 1)) + (t/(t + 1)). From the above information, we can
find that � = 11.03750380 and �1 = 5.898666195. From |f (t, x) – f (t, y)| ≤ (1/6)|x – y|, we
set L = 1/6, which is a constant satisfying (H1). Since L� = 1.839583967 > 1, Theorem 1
cannot be used in this example. However, we can check that

L�1 = 0.9831110325 < 1

and

∣∣f (t, x)
∣∣ =

∣
∣∣
∣

e–t2

(t + 2)2 · |x(t)|
|x(t) + 1| +

t
t + 1

∣
∣∣
∣ ≤ e–t2

6
+

t
t + 1

,

which is needed in condition (H2) in Theorem 2. Hence, by Theorem 2, the boundary
value problem (27) has at least one solution on [0, 3].
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