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Abstract
In this paper, we derive the compositions of the fractional derivatives with the Shukla
function, a four-parameter Mittag-Leffler function. We investigate and compare the
difference between the Riemann–Liouville and Caputo derivatives of the generalized
Mittag-Leffler functions and obtain the reason causing the difference and expand the
fractional derivatives of the generalized Mittag-Leffler functions. Two illustrative
examples and the related numerical results are provided to demonstrate the validity.
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1 Introduction
In 2007, Shukla and Prajapati [1] introduced a four-parameter Mittag-Leffler function
Eρ,q

α,β (z) defined as

Eρ,q
α,β (z) =

∞∑

k=0

(ρ)qkzk

�(kα + β)k!
(
α,β ,ρ ∈C, q ∈ (0, 1) ∪N

)
, (1.1)

where Re(α) > 0, Re(ρ) > 0, and (ρ)qk = �(ρ+qk)
�(ρ) . In the paper, the authors presented its vari-

ous integral transforms and connections with other special functions, but they did not pro-
vide any relations of fractional derivatives. Obviously, it is a generalization of the Mittag-
Leffler function (MLF). Generally speaking, the exponential function ez , the Mittag-Leffler
function Eα(z), the Wiman function Eα,β (z), and the Prabhakar function Eρ

α,β (z) are par-
ticular cases of the Shukla function Eρ,q

α,β (z).
In recent decades, with successful employing the fractional calculus in modeling the

physical abnormal phenomena, the generalized MLFs frequently appeared in mathemat-
ical and physical problems because they were naturally presented along with the solution
of fractional integral and differential equations. Therefore the mathematicians paid more
attention to the behavior of the MLFs and extended their results to the complex domain.
Until now, many properties of the highlighted special function have been derived (see [1–
33] and the references therein). The earliest appearance of the MLFs dates back to 1903
when Magnus Gösta Mittag-Leffler [2] introduced the classical MLF Eα(z) as a special
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function of the form

Eα(z) =
∞∑

k=0

zk

�(kα + 1)
(
α ∈C, Re(α) > 0

)
. (1.2)

Two years later, Wiman [3] defined the two-parameter MLF Eα,β (z) as

Eα,β (z) =
∞∑

k=0

zk

�(kα + β)
(
α ∈ C, Re(α) > 0

)
, (1.3)

which is a generalization of the MLF and is now called the Wiman function. The early
and lengthy work focused on the essential properties of the MLFs as entire functions and
remained on the theoretical level of pure mathematics. Three decades later, the MLFs’
application period has finally arrived. In 1930, Hille and Tamarkin [4] applied them in
solving the Abel integral equations. In 1947, Gross [5] utilized the MLFs to study the creep
and relaxation functions. Barrett [6] in 1954 was the pioneer to present the solution for a
fractional differential equation with the MLFs. In 1971, using them, Caputo and Mainardi
[7] studied the fractional viscoelasticity. With the deep-going research, in 1971, Prabhakar
[8] introduced another generalization of MLFs, a three-parameter MLF Eρ

α,β(z), defined as
the follows:

Eρ
α,β (z) =

∞∑

k=0

(ρ)kzk

�(kα + β)k!
(
α,β ,ρ ∈C, Re(α) > 0

)
, (1.4)

which is popular among fractional differential equations with three or more terms, where
(ρ)0 = 1 and (ρ)k = �(ρ+k)

�(ρ) . In 1995, Kilbas and Saigo [9] generalized the MLF to another
three-parameter one, containing a special entire function:

Eα,m,l(z) =
∞∑

k=0

ckzk (
α ∈C, m, l ∈ R, Re(α) > 0, m > 0

)
, (1.5)

where c0 = 1 and ck =
∏k–1

i=0
�(α(im+l)+1)

�(α(im+l+1)+1) (k = 1, 2, . . .). In recent years, the MLFs, together
with the fractional calculus, have been applied in modeling the evolution of systems with
memory ([17–33]), and many MATLAB routines with desired precision for evaluating the
MLFs were given by I. Podlubny, Y.Q. Chen, and D.Y. Xue in the MATLAB Central.

Many results about the generalized MLFs have been presented; however, to our knowl-
edge, there are few results about fractional derivatives of the Shukla function. Since the
left Caputo derivative keeps the Mittag-Leffler function invariant, that is,

(CDq
a+Eq

(
λ(z – a)q))(t) = λEq

(
λ(t – a)q), (1.6)

it is interesting whether it does for the Shukla function. It is well known that (Dμ
a+1)(t) �=

(CDμ
a+1)(t) and (Dμ

a+Eμ(λ(t – a)μ))(t) �= (CDμ
a+Eμ(λ(t – a)μ))(t), where D

μ
a+ is the left

Riemann–Liouville fractional derivative, and CDμ
a+ is the left Caputo one. Our paper is

devoted to the compositions of fractional derivatives with the Shukla function (1.1) and
to the study of differences between the Riemann–Liouville (RL) and Caputo derivatives
of the MLFs. The remainder of our paper is arranged as follows. Section 2 collects some
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basic definitions and results. In Sect. 3, we derive the fractional derivatives of the gener-
alized MLFs. In the last section, we present examples to demonstrate the validity of our
main results.

2 Preliminaries
This section collects some fundamental definitions and necessary lemmas.

Definition 2.1 ([14]) The left Riemann–Liouville fractional integral Iμa+ and derivative
D

μ
a+ of order μ of a function g(t) ∈ C[a, b] are defined as

(
I
μ
a+g

)
(t) =

1
�(μ)

∫ t

a
(t – ξ )μ–1g(ξ ) dξ

(
μ ∈ C, Re(μ) > 0

)
(2.1)

and

(
D

μ
a+g

)
(t) =

1
�(n – μ)

(
d
dt

)n∫ t

a
(t – ξ )n–μ–1g(ξ ) dξ

(
μ ∈C, Re(μ) > 0

)
, (2.2)

where n = [Re(μ)] + 1, and [Re(μ)] denotes the integral part of Re(μ).

Definition 2.2 ([14]) The left Caputo fractional derivative CDμ
a+ of order μ of a function

g(t) ∈ Cn[a, b] is defined as

CDμ
a+g(t) =

1
�(n – μ)

∫ t

0
(t – ξ )n–μ–1g(n)(ξ ) dξ = I

n–μ
a+ g(n)(t), (2.3)

where μ ∈C and Re(μ) > 0.

Lemma 2.3 ([14]) If μ,ν ∈C, R(μ) ≥ 0, and R(ν) > 0, then

(
I
μ
a+(s – a)ν–1)(t) =

�(ν)
�(ν + μ)

(t – a)ν+μ–1 (
Re(μ) > 0

)
(2.4)

and

(
D

μ
a+(s – a)ν–1)(t) =

�(ν)
�(ν – μ)

(t – a)ν–μ–1 (
Re(μ) ≥ 0

)
. (2.5)

In particular, if ν = 1 and R(μ) ≥ 0, then the Riemann–Liouville (RL) derivative of a con-
stant C is

(
D

μ
a+C

)
(t) =

C(t – a)–μ

�(1 – μ)
(
0 < Re(μ) < 1

)
. (2.6)

Lemma 2.4 ([14]) Let μ,ν ∈C, R(μ) ≤ 0, and R(ν) > 0. Then, for Re(ν) > n, we have

(CDμ
a+(s – a)ν–1)(t) =

�(ν)
�(ν – μ)

(t – a)ν–μ–1 (2.7)

and

(CDμ
a+(s – a)j)(t) = 0 (j = 0, 1, . . . , n – 1). (2.8)
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In particular,

(CDμ
a+C

)
(t) = 0 (C is a constant). (2.9)

Lemma 2.5 ([14]) Let μ,λ ∈C, Re(μ) > 0, and a ∈ R. Then

(
D

μ
a+Eμ

(
λ(z – a)μ

))
(t) =

(t – a)–μ

�(1 – μ)
+ λEμ

(
λ(t – a)μ

)
. (2.10)

Lemma 2.6 ([14]) Let μ,λ ∈C, Re(μ) > 0, and a ∈ R. Then

(CDμ
a+Eμ

(
λ(z – a)μ

))
(t) = λEμ

(
λ(t – a)μ

)
. (2.11)

Lemma 2.7 ([16]) If α,β ∈C, Re(α) > 0, and n ∈ N. Then

znEα,β+nα(z) = Eα,β(z) –
n–1∑

k=0

zk

�(β + kα)
. (2.12)

In particular,

Eα,β (z) = zEα,α+β (z) +
1

�(β)
. (2.13)

3 Main results
In this section, we investigate the compositions of the fractional derivatives with the
Shukla function (1.1). First of all, we know that it is an entire function [16]. The com-
positions are given as follows.

Theorem 3.1 Let μ,α,β ,ρ,λ ∈ C, Re(μ) > 0, Re(α) > 0, Re(β) > 0, Re(ρ) > 0, and q ∈ N.
Then

(
D

μ
a+(z – a)β–1Eρ,q

α,β
(
λ(z – a)α

))
(t) = (t – a)β–μ–1Eρ,q

α,β–μ

(
λ(t – a)α

)
. (3.1)

Proof From (1.1) the left side of (3.1) can be changed o

(
D

μ
a+(z – a)β–1Eρ,q

α,β
(
λ(z – a)α

))
(t) =

(
D

μ
a+

∞∑

k=0

(ρ)qkλ
k(z – a)kα+β–1

�(kα + β)k!

)
(t).

Because of the convergence, we can differentiate each individual term with (2.5):

(
D

μ
a+(z – a)β–1Eρ,q

α,β
(
λ(z – a)α

))
(t) =

∞∑

k=0

(ρ)qkλ
k�(kα + β)(t – a)kα+β–1–μ

k!�(kα + β)�(kα + β – μ)

=
∞∑

k=0

(ρ)qkλ
k(t – a)kα+β–1–μ

k!�(kα + β – μ)

= (t – a)β–μ–1Eρ,q
α,β–μ

(
λ(t – a)α

)
. �
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Remark 3.2 Formula (3.1) generalizes the RL derivative of Prabhakar’s function

(
D

μ
a+(z – a)β–1Eρ

α,β
(
λ(z – a)α

))
(t) = (t – a)β–μ–1Eρ

α,β–μ

(
λ(t – a)α

)
, (3.2)

the RL derivative of Wiman’s function

(
D

μ
a+(z – a)β–1Eα,β

(
λ(z – a)α

))
(t) = (t – a)β–μ–1Eα,β–μ

(
λ(t – a)α

)
, (3.3)

and Lemma (2.5). Substituting α = μ and ρ = q = β = 1 into (3.1) and applying (2.13), we
obtain

(
D

μ
a+Eμ

(
λ(z – a)μ

))
(t) = (t – a)–μEμ,1–μ

(
λ(t – a)μ

)

=
(t – a)–μ

�(1 – μ)
+ λEμ

(
λ(t – a)μ

)
. (3.4)

From Lemmas (2.5) and (2.6) we can find that the results are distinct. Let us check the
Caputo derivative of Shukla’s function (1.1).

Theorem 3.3 Let μ,α,β ,ρ,λ ∈ C, Re(μ) > 0, Re(α) > 0, Re(β) > 0, Re(ρ) > 0, and q ∈ N .
Then, for Re(β) �= 1, we have

(CDμ
a+(z – a)β–1Eρ,q

α,β
(
λ(z – a)α

))
(t) = (t – a)β–μ–1Eρ,q

α,β–μ

(
λ(t – a)α

)
, (3.5)

(CDμ
a+(z – a)β–1Eρ

α,β
(
λ(z – a)α

))
(t) = (t – a)β–μ–1Eρ

α,β–μ

(
λ(t – a)α

)
, (3.6)

and

(CDμ
a+(z – a)β–1Eα,β

(
λ(z – a)α

))
(t) = (t – a)β–μ–1Eα,β–μ

(
λ(t – a)α

)
. (3.7)

In particular, for α = μ,

(CDμ
a+(z – a)β–1Eμ,β

(
λ(z – a)μ

))
(t) = λ(t – a)β–1Eμ,β

(
λ(t – a)μ

)
+

(t – a)β–μ–1

�(β – μ)
. (3.8)

Proof According to (1.1), we can rewrite the left side of (3.5) as

(CDμ
a+(z – a)β–1Eρ,q

α,β
(
λ(z – a)α

))
(t) =

(
CDμ

a+

∞∑

k=0

(ρ)qkλ
k(z – a)kα+β–1

�(kα + β)k!

)
(t). (3.9)

Since the the series converges, we can interchange the order of the Caputo derivative and
summation. Applying (2.7) straightway to (3.9), we derive

(CDμ
a+(z – a)β–1Eρ,q

α,β
(
λ(z – a)α

))
(t) =

∞∑

k=0

(ρ)qkλ
k�(kα + β)(t – a)kα+β–1–μ

k!�(kα + β)�(kα + β – μ)

= (t – a)β–μ–1Eρ,q
α,β–μ

(
λ(t – a)α

)
.

Similarly, formulas (3.6), (3.7), and (3.8) obviously hold. �
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Remark 3.4 Comparing the two fractional derivatives of the generalized MLFs, their re-
sults are identical except for the Mittag-Leffler function Eα(z). For Re(β) = 1, formula (3.8)
will not hold because the left Caputo derivative of any constant equals zero, which is differ-
ent from the Riemann–Liouville derivative. For Re(β) = 1, we cannot utilize (3.8) directly.
By (1.2) we obtain

(CDμ
a+Eμ

(
λ(z – a)μ

))
(t) =

(
CDμ

a+

∞∑

k=0

λk(z – a)kμ

�(kμ + 1)

)
(t). (3.10)

Since the series converges, we can use term-by-term differentiation. Applying (2.8) and
(2.7) to the first constant term and the others of (3.10) yields

(CDμ
a+Eμ

(
λ(z – a)μ

))
(t) =

∞∑

k=1

λk(t – a)(k–1)μ

�((k – 1)μ + 1)
= λEμ

(
λ(t – a)μ

)
. (3.11)

4 Two illustrative examples
The following illustrative examples are given to show the compositions of the RL and Ca-
puto derivatives with the Shukla function or the MLFs under different conditions.

Example 1 Let us evaluate and sketch the groups of

(
D

0.5
0+ E1,1

0.5,1
(
10–0.6z0.5))(t) and

(CD0.5
0+ E1,1

0.5,1
(
10–0.6z0.5))(t).

Substituting the parameters a = 0, μ = 0.5, and λ = 10–0.6 into (3.4) and (3.11), we obtain

(
D

0.5
0+ E1,1

0.5,1
(
10–0.6z0.5))(t) =

t–0.5

�(0.5)
+ 10–0.6E0.5

(
10–0.6t0.5) (4.1)

and

(CD0.5
0+ E1,1

0.5,1
(
10–0.6z0.5))(t) = 10–0.6E0.5

(
10–0.6t0.5). (4.2)

The curves of the primitive function y1, the RL derived function yr, the RL derivative of
y1, the Caputo derived function yc, the Caputo derivative of y1, and the function t–0.5

�(0.5) are
shown in Fig. 1.

Remark 4.1 For the condition β = 1, firstly, we can see that the evaluating results of the
derived unction yr and the derived function yc agree well with the numerical results for the
RL derivative of y1 and the Caputo derivative of y1, respectively. Secondly, the difference
between the two derivatives of the primitive function y1 is t–0.5

�(0.5) , which decays rapidly over
time.

Example 2 Let us evaluate and sketch the groups of

(
D

0.5
0+ t1.3E1,1

0.5,2.3
(
10–2z0.5))(t) and

(CD0.5
0+ t1.3E1,1

0.5,2.3
(
10–2z0.5))(t).
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Figure 1 The fractional derivatives of the generalized MLFs for β = 1

Figure 2 The fractional derivatives of the generalized MLFs for β �= 1

Substituting the parameters a = 0, μ = α = 0.5, β = 2.3, ρ = q = 1, and λ = 0.01 into (3.1)
and (3.5), we get the following relations:

(
D

0.5
0+ t1.3E1,1

0.5,2.3
(
10–2z0.5))(t) =

(CD0.5
0+ t1.3E1,1

0.5,2.3
(
10–2z0.5))(t) = t0.8E0.5,1.8

(
10–2t0.5).

The comparison of the RL and Caputo derivatives with the Shukla function is shown in
Fig. 2.
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Remark 4.2 For the condition β = 2.3 �= 1, the evaluating results for the derived function
y2 and the numerical results for the RL derivative of y1 and Caputo derivative of y1 agree
very well with each other.

5 Conclusions
In this paper, we presented the compositions of the fractional derivatives with the Shukla
function. We obtained the reason causing the difference between the Riemann–Liouville
and Caputo derivatives of the generalized MLFs and expanded the fractional derivatives
of the generalized MLFs. Finally, we provided two numerical examples to demonstrate the
validity. For further research, it is interesting and challenging to discuss the relations of the
new fractional derivatives and exponential or Mittag-Leffler laws [22, 32] and investigate
the delayed Mittag-Leffler-type matrix functions [33] and apply them to fractional-order
equations.
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