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Abstract
We show the existence of positive solutions of the periodic problem of the quasilinear
difference equation

{
–∇[φ(�uk)] + qkuk = λgkf (uk), k ∈ T,

u0 = uT , u1 = uT+1,

where T = {1, 2, . . . , T} with integer T ≥ 2, φ(s) = s/
√
1 – s2, q = (q1, . . . ,qT ) ∈ R

T , qk ≥ 0
for all k ∈ T and qk0 > 0 for some k0 ∈ T, g = (g1, . . . ,gT ) ∈R

T changes the sign on T, f
is a continuous function, and λ ∈R is a parameter. The proofs of the main results are
based upon bifurcation techniques.
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1 Introduction
In this paper, we study the existence of positive solutions for boundary value problems of
the type

⎧⎨
⎩–∇[φ(�uk)] + qkuk = λgkf (uk), k ∈ T,

u0 = uT , u1 = uT+1,
(1.1)

where T = {1, 2, . . . , T} with integer T ≥ 2, λ ∈R is a parameter, φ : (–1, 1) →R is given by

φ(y) = y/
√

1 – y2,

q = (q1, . . . , qT ) ∈R
T , qk ≥ 0 for all k ∈ T and qk0 > 0 for some k0 ∈ T, f : [0,∞) → [0,∞) is

a continuous function with f (s) > 0 for s > 0, and g = (g1, . . . , gT ) ∈R
T satisfies the following

assumption:
(A1) g changes sign on T, that is, there exists a proper subset T+ of T such that gk > 0 for

k ∈ T
+ and gk < 0 for k ∈ T\T+.
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Let i be the number of elements in T
+. Then T – i is the number of elements in T\T+. Let

u ∈ R
p be a vector u = (u1, . . . , up). Define u ≥ 0 as uk ≥ 0 for k = 1, . . . , p; u > 0 is defined

as u ≥ 0 and u �= 0, that is, uk ≥ 0 for k = 1, . . . , p and uk0 > 0 for some 1 ≤ k0 ≤ p; u 
 0 is
defined as uk > 0 for k = 1, . . . , p.

For u ∈ R
p, set |u|∞ = max1≤k≤p |uk|. For any u ∈ R

p, where p ≥ 4 is a fixed integer, we
define

�u = (�u1, . . . ,�up–1) ∈R
p–1

as follows:

�uk = uk+1 – uk (1 ≤ k ≤ p – 1).

If |�u|∞ = max1≤k≤p–1 |�uk| < 1, then we define

∇[
φ(�u)

]
=

(∇[
φ(�u2)

]
, . . . ,∇[

φ(�up–1)
]) ∈R

p–2

as follows:

∇[
φ(�uk)

]
= φ(�uk) – φ(�uk–1) (2 ≤ k ≤ p – 1).

A solution of problem (1.1) is a vector u = (u0, . . . , uT+1) ∈R
T+2 satisfying (1.1) and such

that |�u|∞ < 1. A nontrivial solution of problem (1.1) is a solution of problem (1.1) such
that u �= 0. A positive solution of problem (1.1) is a solution of problem (1.1) such that
u > 0. Further, it is said to be strictly positive if u 
 0.

The existence and multiplicity of solutions of

–∇[
φ(�uk)

]
= fk(uk ,�uk), k ∈ T, (1.2)

subject to diverse boundary conditions have been investigated by several authors; we re-
fer the reader to [4–6] and the references therein. For example, Bereanu and Mawhin [4]
proved some existence results of solutions for the periodic boundary value problem of
Eq. (1.2) when the right-hand member f = (f1, . . . , fT ) only satisfies some sign conditions.
However, to the best of our knowledge, very little is known about the existence of posi-
tive solutions for the quasilinear periodic boundary value problem (1.1). Maybe the main
reason is that the spectrum of the corresponding linear eigenvalue problem

⎧⎨
⎩–∇(�uk) + qkuk = λgkuk , k ∈ T,

u0 = uT , u1 = uT+1,
(1.3)

is incomplete when g changes its sign on T.
It is worth pointing out that only partial information is known to the spectrum of the

linear eigenvalue problem (1.3); see Gao and Ma [10] and Ji and Yang [11]. More precisely,
from the results in [10] and [11] it follows that (1.3) has T real eigenvalues, including
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i positive eigenvalues λ+
1 , . . . ,λ+

i and T – i negative eigenvalues λ–
1 , . . . ,λ–

T–i. From [10] it
follows that these eigenvalues and the eigenvalues of the linear eigenvalue problem

⎧⎨
⎩–∇[φ(�uk)] + qkuk = λgkf (uk), k ∈ T,

�u0 = 0, �uT = 0,
(1.4)

satisfy some order relation. Nevertheless, since in our study, we use bifurcation tech-
niques, it may have some interest to determine the sign of the eigenfunctions correspond-
ing to the eigenvalues.

However, [10] and [11] do not contain the sign of the eigenfunctions of (1.3), even of the
eigenfunctions corresponding to the simple eigenvalues λ+

1 and λ–
1 .

Recently, Ma et al. [16] used the infimum of Rayleigh quotient to characterize the princi-
pal eigenvalues of (1.3), proved the existence of the principal eigenvalues, and determined
the sign of the corresponding eigenfunctions.

Motivated by papers [4, 10, 11, 16], we are concerned with the global structure of the
positive solution set of (1.1) applying the spectrum structure of (1.3) under one of the
conditions:

(H1) f0 ∈ (0,∞);
(H2) f0 = 0;
(H3) f0 = ∞.

Here f0 := lims→0+
f (s)

s . Our main tools are the well-known Rabinowitz global bifurcation
theorem [18] and the Crandall–Rabinowitz local bifurcation theorem [9, 12].

The rest of the paper is organized as follows. In Sect. 2, we state and prove some prelim-
inary results. Section 3 is devoted to establish the existence result of positive solutions of
problem (1.1) by the well-known Rabinowitz bifurcation theory. Finally, in Sect. 4, we give
some further results in the cases that either f0 = 0 or f0 = ∞. Finally, we give an example
to illustrate our main results.

For other results concerning the problem associated with prescribed mean curvature
equations in the Minkowski space, we refer the reader to [2, 3, 7, 8, 15, 19].

2 Preliminary results
We first recall a fundamental result concerning the linear eigenvalue problem (1.3). To do
this, let us make the following assumption:

(A2) q = (q1, . . . , qT ) ∈R
T , qk ≥ 0 for all k ∈ T, and qk0 > 0 for some k0 ∈ T.

We have the following:

Lemma 2.1 ([16, Theorem 2.1]) Let (A1) and (A2) hold. Then problem (1.3) has exactly
two principal eigenvalues λ–

1 and λ+
1 such that

(1) λ–
1 < 0 < λ+

1 ;
(2) the algebraic multiplicity of λ–

1 and λ+
1 is 1;

(3) the eigenfunctions ϕ–
1 and ϕ+

1 corresponding to the eigenvalues λ–
1 and λ+

1 are of one
sign.

Lemma 2.2 Let

h(y, z) =

⎧⎨
⎩

√
1–y2

√
1–z2[

√
1–y2+

√
1–z2]√

1–z2
√

1–y2+1+zy
if |y| < 1 and |z| < 1,

0 if |y| ≥ 1, or |z| ≥ 1, or |y| ≥ 1 and |z| ≥ 1.
(2.1)
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Then

h(y, z) < 2 (2.2)

and

lim
(y,z)→(0,0)

h(y, z) – 1
max{|y|, |z|} = 0. (2.3)

Proof It is easy to check that if |y| < 1 and |z| < 1, then

√
1 – y2

√
1 – z2[

√
1 – y2 +

√
1 – z2]√

1 – z2
√

1 – y2 + 1 + zy
<

√
1 – y2

√
1 – z2[

√
1 – y2 +

√
1 – z2]√

1 – z2
√

1 – y2

=
√

1 – y2 +
√

1 – z2

≤ 2.

On the other hand, since

√
1 – x2 = 1 – x2 + o

(
x2) as x → 0,

it follows from (2.1) that

h(y, z) – 1 =
(1 – y2 + o(y2))(1 – z2 + o(z2))[(1 – y2 + o(y2)) + (1 – z2 + o(z2))]

(1 – z2 + o(z2))(1 – y2 + o(y2)) + 1 + zy
– 1

=
(1 – y2 + o(y2))(1 – z2 + o(z2))[(1 – y2 + o(y2)) + (1 – z2 + o(z2))]

2 – z2 – y2 + zy + o(y2) + o(z2)
– 1

=
2 – 3y2 – 3z2 + o(y2) + o(z2)

2 – z2 – y2 + zy + o(y2) + o(z2)
– 1

=
2 – 3y2 – 3z2 – [2 – z2 – y2 + zy] + o(y2) + o(z2)

2 – z2 – y2 + zy + o(y2) + o(z2)

=
–2y2 – 2z2 – zy + o(y2) + o(z2)
2 – z2 – y2 + zy + o(y2) + o(z2)

.

Thus

lim
(y,z)→(0,0)

h(y, z) – 1
max{|y|, |z|} = 0. �

Lemma 2.3 Let u = (u1, . . . , uT ) ∈R
T be such that |�u|∞ < 1. Then for any k ∈ T, we have

∇
(

�uk√
1 – (�uk)2

)

= ∇(�uk)
[ √

1 – (�uk–1)2
√

1 – (�uk)2 + 1 + �uk–1�uk√
1 – (�uk)2

√
1 – (�uk–1)2[

√
1 – (�uk)2 +

√
1 – (�uk–1)2]

]
.

Proof Since |�u|∞ < 1, by a simple calculation we get

∇
(

uk

vk

)
=

∇ukvk–1 – uk–1∇vk

vkvk–1
(2.4)
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and

∇(√
1 – (�uk)2

)
=

–∇(�uk)(�uk + �uk–1)√
1 – (�uk)2 +

√
1 – (�uk–1)2

, (2.5)

and, accordingly,

∇
(

�uk√
1 – (�uk)2

)

=
∇(�uk)

√
1 – (�uk–1)2 – �uk–1∇(

√
1 – (�uk)2)√

1 – (�uk)2
√

1 – (�uk–1)2

=
∇(�uk)

√
1 – (�uk–1)2 – �uk–1

–∇(�uk )(�uk +�uk–1)√
1–(�uk )2+

√
1–(�uk–1)2√

1 – (�uk)2
√

1 – (�uk–1)2

= ∇(�uk)
[√

1 – (�uk–1)2 + �uk–1
(�uk +�uk–1)√

1–(�uk )2+
√

1–(�uk–1)2√
1 – (�uk)2

√
1 – (�uk–1)2

]

= ∇(�uk)
[√

1 – (�uk–1)2(
√

1 – (�uk)2 +
√

1 – (�uk–1)2) + �uk–1(�uk + �uk–1)√
1 – (�uk)2

√
1 – (�uk–1)2[

√
1 – (�uk)2 +

√
1 – (�uk–1)2]

]

= ∇(�uk)
[ √

1 – (�uk–1)2
√

1 – (�uk)2 + 1 + �uk–1�uk√
1 – (�uk)2

√
1 – (�uk–1)2[

√
1 – (�uk)2 +

√
1 – (�uk–1)2]

]
. �

Let us introduce the vector space

D =
{

u = (u0, u1, . . . , uT , uT+1) ∈R
T+2 : u0 = uT , u1 = uT+1, |�u|∞ < 1

}
(2.6)

endowed with the usual norm | · |∞.
To apply the global bifurcation theorem, we extend f to the whole R by setting

f̃ (s) =

⎧⎨
⎩f (s) if s ≥ 0,

–f (–s) if s < 0.
(2.7)

Clearly, f̃ is an odd continuous function. Note that since we consider the positive solutions,
(1.1) is equivalent to the same problem with f replaced by f̃ . We further use the same
symbol f to denote the function f and the modified function f̃ .

From Lemmas 2.2 and 2.3 we have the following:

Lemma 2.4 u ∈ D is a positive solution of problem (1.1) if and only if u ∈ D is a positive
solution of the following problem:

⎧⎪⎪⎨
⎪⎪⎩

–∇(�uk) + qkuk = λgkf (uk)h(�uk ,�uk–1) – qkukh(�uk ,�uk–1) + qkuk ,

k ∈ T,

u0 = uT , u1 = uT+1.

(2.8)
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3 Existence of positive solutions
In this section, we consider the existence of positive solutions of the discrete nonlinear
problem (1.1). To do this, we further assume that

(H4) f∞ := lims→+∞ f (s)
s = 0.

Our main result is stated as follows.

Theorem 3.1 Let (A1), (A2), (H1), and (H4) hold. Then there exist λ∗ ∈ (0, λ+
1

f0
] and λ∗∗ ∈

[ λ–
1

f0
, 0) such that (1.1) has no positive solution if λ ∈ (λ∗∗, 0) ∪ (0,λ∗) and has at least one

strictly positive solution if λ ∈ (–∞, λ–
1

f0
) ∪ ( λ+

1
f0

, +∞).

Proof We only prove the case λ > 0. The case λ < 0 is similar. We divide the proof into
three steps.

Step 1. A bifurcation result.
Denote by K : D →D the operator that sends any vector v ∈D onto the unique solution

w ∈D of⎧⎨
⎩–∇(�wk) + qkwk = vk , k ∈ T,

w0 = wT , w1 = wT+1.
(3.1)

Similarly, L : D → D denotes the operator that sends any vector z ∈ D onto the unique
solution r ∈D of⎧⎨

⎩–∇(�rk) + qkrk = gkzk , k ∈ T,

r0 = rT , r1 = rT+1.

By [1, Lemma 3.1] both K and L are completely continuous, and (1.3) is equivalent to

u = λL(u), (3.2)

so that the eigenvalues of (1.3) are precisely the characteristic values of L.
Since f : R→R is a continuous function and satisfies (H1), for any s ∈R, we can write

f (s) =
(
f0 + l(s)

)
s,

where l : R →R is continuous, and

lim
s→0

l(s) = 0. (3.3)

Let b(y, z) = h(y, z) – 1 for (y, z) ∈R
2. Then we have from Lemma 2.2 that

lim|�u|∞→0

b(�uk ,�uk–1)
|�u|∞ = 0, k ∈ T. (3.4)

Let us consider

uk = λf0L(uk) + λL
((

f0 + l(uk)
)
b(�uk ,�uk–1) + l(uk)

)
– K

(
qkb(�uk ,�uk–1)uk

)
, k ∈ T, (3.5)

as a bifurcation problem from the trivial solution axis.
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Define the operator H : R×D →D by

H(λ, uk) = λL
((

f0 + l(uk)
)
b(�uk ,�uk–1) + l(uk)

)
– K

(
qkb(�uk ,�uk–1)uk

)
, k ∈ T.

Obviously, H is completely continuous.
Since for all k ∈ T, �uk = uk+1 – uk , as |u|∞ → 0, we have that

|�u|∞ = max
1≤k≤T–1

|�uk| ≤ max
1≤k≤T–1

(|uk+1| + |uk|
) → 0. (3.6)

This fact, together with (3.3) and (3.4), yields that

lim|u|∞→0

H(λ, u)
|u|∞ = 0 (3.7)

uniformly on bounded λ intervals.
Note that, for any λ > 0, the couple (λ, u) ∈ R×D with u > 0 is a solution of the equation

u = λf0L(u) + H(λ, u) (3.8)

if and only if it is a positive solution of (1.1).
Denote

S :=
{

(λ, u) : λ > 0, (λ, u) is a nontrivial solution of (3.8)
}R

+×D
.

Then from Theorem 1.3 of [18] we have that there exists a connected component C in
S such that ( λ+

1
f0

, 0) ∈ C and at least one of the following properties holds:
(i) C is unbounded in R×D;

(ii) C contains ( λ̂
f0

, 0), where λ̂ is another characteristic value of L.
Step 2. Property (i) is valid.
In what follows, we prove several properties, which will eventually lead to the conclu-

sion.
Claim 1. If ( λ̃

f0
, 0) ∈ S , then λ̃ is a characteristic value of L.

Suppose that there exists a sequence {(λ[n], u[n])} of nontrivial solutions of (3.8) converg-
ing to ( λ̃

f0
, 0) in R×D.

Let v[n] = u[n]

|u[n]|∞ for all n. Then from (3.8) we have

v[n] = λ[n]f0L
(

v[n]) +
H(λ[n], u[n])

|u[n]|∞ . (3.9)

As L : D → D is completely continuous and {v[n]} is bounded in D, after taking a subse-
quence if necessary, there exists w ∈D such that

lim
n→+∞L

(
v[n]) = w.

From (3.7) and (3.9) it follows that

lim
n→+∞ v[n] = λ̃w
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and, accordingly,

w = λ̃L(w)

and

|λ̃w|∞ = 1.

In particular, w �= 0. Hence λ̃ is a characteristic value of L.
Denote the nonnegative cone in D by P, that is,

P = {u ∈D : u ≥ 0},

its interior by int P, and its boundary by ∂P.
Claim 2. Let U ⊂R×D be a neighborhood of ( λ+

1
f0

, 0). Then, for any (λ, u) ∈ C ∩ U , either

(λ, u) = ( λ+
1

f0
, 0), or u ∈ int P, or –u ∈ int P.

This is a direct consequence of the well-known Crandall–Rabinowitz local bifurcation
theorem [9, 12].

Claim 3. Assume that (λ, u) ∈ C and u ∈ ∂P. Suppose further that (λ, u) is the limit of a
sequence {(λ[n], u[n])} in C with u[n] > 0 for all n. Then (λ, u) = ( λ+

1
f0

, 0).
We first show that u = 0. Assume on the contrary that u > 0. From Lemma 2.2 it follows

that there exists c > 0 such that

λgk
(
f0 + l(uk)

)
h(�uk ,�uk–1) – qkb(�uk ,�uk–1) + c ≥ 1, k ∈ T. (3.10)

Therefore

–∇(�uk) + qkuk + cuk =
[
λgk

(
f0 + l(uk)

)
h(�uk ,�uk–1) – qkb(�uk ,�uk–1) + c

]
uk > 0

for all k ∈ T.
From this fact, since the Green’s function G(k, s) of the linear problem

–∇(�uk) + qkuk + cuk = 0, u0 = uT , u1 = uT+1, (3.11)

satisfies G(k, s) > 0 for all 1 ≤ k, s ≤ T (see [17, Thms. 2.1 and 2.2]), we have uk > 0 for all
k ∈ T, which contradicts with u ∈ ∂P. Hence u = 0.

By Claim 1, λ is a characteristic value of L. Let v[n] = u[n]

|u[n]|∞ . Arguing as in the proof of
Claim 1, we conclude that, possibly passing to a subsequence,

lim
n→∞L

(
v[n]) = w

in D, where w is an eigenfunction of (1.3) associated with λ. Since w > 0, we have λ = λ+
1

f0
.

Claim 4. For all (λ, u) ∈ C , either (λ, u) = ( λ+
1

f0
, 0), or u ∈ int P, or –u ∈ int P.

Let

E =
{

(λ, u) ∈ C : (λ, u) �=
(

λ+
1

f0
, 0

)
, u /∈ int P, –u /∈ int P

}
. (3.12)
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From Claim 2 we have

E =
{

(λ, u) ∈ (C \ U)
}

,

and therefore E ⊂ C is a closed subset of C .
Let us prove that E is still open in C . Suppose this is not the case. Then there exist (λ, u) ∈

E and a sequence {(λ[n], u[n])} in C/E converging to (λ, u). We may suppose that u[n] ∈
int P for all n, and hence by Claim 3 we obtain (λ, u) = ( λ+

1
f0

, 0), contradicting the fact that

(λ, u) ∈ E . Since C is connected and ( λ+
1

f0
, 0) ∈ C \ E , we conclude that E = ∅.

By Claim 4 we have that if ( λ̂
f0

, 0) ∈ C , then λ̂ = λ+
1 . Hence, property (ii) is not valid,

whereas property (i) is valid.
Step 3. The global behavior of C .
We first show that there exists ε > 0 such that S ⊂ [ε, +∞) ×D.
Suppose on the contrary that there exists a sequence {(λ[n], u[n])} of nontrivial solutions

of (3.8) converging in R × D to some (0, u) ∈ R × D. Arguing as in the proof of Claim 1
(in Step 2) and setting v[n] = u[n]

|u[n]|∞ , we have

v[n] = λ[n]L
(

v[n]) +
H(λ[n], u[n])

|u[n]|∞

and conclude that, possibly passing to a subsequence, limn→∞ v[n] = 0 in D, which contra-
dicts |v[n]|∞ = 1.

Next, we will prove that Proj
R
C = [ε, +∞), where ε is given by the previous fact.

Assume on the contrary that sup{λ : (λ, y) ∈ C} < ∞. Then there exists a sequence
{(μ[n], u[n])} ⊂ C such that

μ[n] ≤ M0,
∣∣u[n]∣∣∞ → ∞, n → ∞, (3.13)

where M0 = M0(n) is a positive constant. Combining this fact with

u[n]
k ≥ γ

∣∣u[n]∣∣∞ for all k ∈ T,

where γ > 0 satisfies G(k, s) ≥ γ G(s, s), we have

u[n]
k → ∞, k ∈ T, n → ∞. (3.14)

Since {(μ[n], u[n])} ⊂ C , we have

⎧⎪⎪⎨
⎪⎪⎩

–∇(�u[n]
k ) + qku[n]

k = μ[n]gkf (u[n]
k )h(�u[n]

k ,�u[n]
k–1) – b(�u[n]

k ,�u[n]
k–1)qku[n]

k ,

k ∈ T,

u[n]
0 = u[n]

T , u[n]
1 = u[n]

T+1.

(3.15)
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We divide (3.15) by |u[n]|∞, and for all n, setting v[n]
k = u[n]

k
|u[n]|∞ , we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

–∇(�v[n]
k ) + qkv[n]

k = μ[n]gk
f (u[n]

k )

u[n]
k

h(�u[n]
k ,�u[n]

k–1)v[n]
k – b(�u[n]

k ,�u[n]
k–1)qkv[n]

k ,

k ∈ T,

v[n]
0 = v[n]

T , v[n]
1 = v[n]

T+1.

(3.16)

Since {v[n]} is bounded in D, after taking a subsequence and relabeling if necessary, we
have that v[n] → v for all n ∈N, where v ∈D with |v|∞ = 1. However, by (3.4), (3.6), (3.13),
(3.14), and (H4) we have

v = 0,

which is a contradiction.
We are now in position of getting the conclusions of the theorem. By Step 3 we infer that

(1.1) has at least one nontrivial solution for all λ > λ+
1

f0
. From the fact that f , and hence H, is

odd with respect to the second variable it follows that (λ, u) ∈ C if and only if (λ, –u) ∈ C .
This fact, together with Claim 4, also implies that at least one of those solutions belongs
to int P, that is, (1.1) has at least one strictly positive solution for all λ > λ+

1
f0

.
Let

Λ =
{
λ : (λ, u) is a positive solution of (1.1),λ > 0

}
,

and let

λ∗ = infΛ.

From Step 3 we have λ∗ > 0. Therefore we conclude that, for all λ ∈ (0,λ∗), (1.1) has no
positive solution. �

4 Some further results
In this section, we deal with the cases f0 = 0 and f0 = ∞.

Theorem 4.1 Let (A1), (A2), (H2), and (H4) hold. Then there exist 0 < λ∗ ≤ λ∗ and λ∗∗ ≤
λ∗∗ < 0 such that (1.1) has at least two strictly positive solutions if λ ∈ (–∞,λ∗∗) ∪ (λ∗, +∞)
and has no positive solution if λ ∈ (λ∗∗, 0) ∪ (0,λ∗).

Proof (Sketched) We will use a similar argument as in [13] and [14] to get the desired
results. For each n ∈N, let us define function f [n] : [0,∞) → R by

f [n](s) =

⎧⎨
⎩f (s) if s ∈ ( 1

n ,∞),

nf ( 1
n )s if s ∈ [0, 1

n ].
(4.1)

Then for each n ∈N, f [n] is a continuous function such that

lim sup
n→∞

[
f [n](s) – f (s)

]
= 0 uniformly for s ∈ [0,∞) (4.2)
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and

(
f [n])

0 = lim
s→0

f [n](s)
s

= nf
(

1
n

)
. (4.3)

To apply the global bifurcation theorem, we extend f [n] to an odd function f̃ [n] : R → R

by

f̃ [n](s) =

⎧⎨
⎩f [n](s) if s ≥ 0,

–f [n](–s) if s < 0.

By the same method, to prove Theorem 3.1, with obvious changes, we get that for each
n ∈N, the positive solution set of the auxiliary problem

⎧⎨
⎩–∇[φ(�uk)] + qkuk = λgk f̃ [n](uk), k ∈ T,

u0 = uT , u1 = uT+1,
(4.4)

possesses a connected component C[n] that joins ( λ+
1

nf (1/n) , 0) with (∞,∞).
From (H2) we have

lim
n→∞

(
f [n])

0 = lim
n→∞ nf

(
1
n

)
= 0 (4.5)

and, accordingly,

lim
n→∞

λ+
1

nf (1/n)
= ∞. (4.6)

According to [13, Lemma 2.4] and [14, Lemma 2.2], the set lim supC[n] contains a con-
nected component of positive solutions that joins (∞, 0) to (∞,∞).

Therefore there exists 0 < λ∗ ≤ λ∗ such that problem (1.1) has at least two strictly pos-
itive solutions for λ > λ∗ and has no positive solution for λ ∈ (0,λ∗). Similarly, there exist
λ∗∗ ≤ λ∗∗ < 0 such that (1.1) has at least two strictly positive solutions if λ < λ∗∗ and has
no positive solution if λ ∈ (λ∗∗, 0). �

Theorem 4.2 Let (A1), (A2), (H3), and (H4) hold. Then (1.1) has at least one strictly pos-
itive solution if λ ∈ (–∞, 0) ∪ (0, +∞).

Proof (Sketched) From (H3) it follows that

lim
n→∞

(
f [n])

0 = ∞ (4.7)

and

lim
n→∞

λ+
1

nf (1/n)
= 0. (4.8)

Similarly to the proof of Theorem 4.1, we get that, for each n ∈ N, the positive solu-
tion set of the auxiliary problem (4.4) possesses a connected component C[n] that joins
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(0, 0) with (∞,∞). According to [13, Lemma 2.4] and [14, Lemma 2.2], the set lim supC[n]

contains an unbounded connected component C ,

(0, 0) ∈ C ⊂ lim sup
n→∞

C[n], (4.9)

which joins (0, 0) with (∞,∞).
Therefore problem (1.1) has at least one strictly positive solution for all λ > 0. With

obvious changes, we may obtain the existence of (1.1) in the case λ < 0. �

Example 4.1 Let us consider the periodic problem of the quasilinear difference equation

⎧⎨
⎩–∇[φ(�uk)] + 1

4 uk = λf (k, uk), k ∈ T := {1, 2, 3},
u0 = u3, u1 = u4,

(4.10)

with

f (k, s) = α∗(s) + γ (k, s)s,

where

α∗(s) =

⎧⎪⎪⎨
⎪⎪⎩

0, s = 0,
1
4 s, s ∈ (0, 1],
1
4 , s ∈ (1,∞),

and

γ (k, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 , k ∈ {1, 2}, s ∈ [0, 1),
1
2s , k ∈ {1, 2}, s ∈ [1,∞),

– 1
2 , k = 3, s ∈ [0, 1],

1
4 s – 3

4 , k = 3, s ∈ (1, 2),

– 1
2s , k = 3, s ∈ [2,∞).

Clearly,

lim
s→∞

f (k, s)
s

= 0, lim
s→0

f (k, s)
s

= gk for all k ∈ T,

and

gk =

⎧⎨
⎩

3
4 , k ∈ {1, 2},
– 1

4 , k = 3.

By a direct calculation we have

λ–
1

.= –7.883, λ+
1

.= 0.550.
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Therefore by Theorem 3.1 there exist λ∗ ∈ (0, 0.550] and λ∗∗ ∈ [–7.883, 0) such that (4.10)
has no positive solution if λ ∈ (0,λ∗)∪ (λ∗∗, 0) and has at least one strictly positive solution
if λ > 0.550 or λ < –7.883.

Funding
We are very grateful to the anonymous referees for their valuable suggestions. This work was supported by the NSFC
(No. 11671322).

Abbreviations
Not applicable.

Availability of data and materials
Data sharing not applicable to this paper as no datasets were generated or analyzed during the current study.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MX and RM completed the main study and drafted the paper together. ZH checked the proofs and verified the
calculation. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 28 March 2018 Accepted: 17 October 2018

References
1. Atici, F.M., Guseinov, G.Sh.: Positive periodic solutions for nonlinear difference equations with periodic coefficients.

J. Math. Anal. Appl. 232, 166–182 (1999)
2. Bereanu, C., Jebelean, P., Torres, P.J.: Positive radial solutions for Dirichlet problems with mean curvature operators in

Minkowski space. J. Funct. Anal. 264, 270–287 (2013)
3. Bereanu, C., Mawhin, J.: Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian.

J. Differ. Equ. 243, 536–557 (2007)
4. Bereanu, C., Mawhin, J.: Boundary value problems for second order nonlinear difference equations with discrete

φ-Laplacian and singular φ . J. Differ. Equ. Appl. 14, 1099–1118 (2008)
5. Bereanu, C., Thompson, H.B.: Periodic solutions of second order nonlinear difference equations with discrete

φ-Laplacian. J. Math. Anal. Appl. 330, 1002–1015 (2007)
6. Cabada, A., Otero-Espinar, V.: Existence and comparison results for difference φ-Laplacian boundary value problems

with lower and upper solutions in reversed order. J. Math. Anal. Appl. 267, 501–521 (2002)
7. Cheng, S.Y., Yau, S.T.: Maximal spacelike hypersurfaces in the Lorentz–Minkowski spaces. Ann. Math. 104, 407–419

(1976)
8. Corsato, C., Obersnel, F., Omari, P.: The Dirichlet problem for gradient dependent prescribed mean curvature

equations in the Lorentz–Minkowski space. Georgian Math. J. 24(1), 113–134 (2017)
9. Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)
10. Gao, C., Ma, R.: Eigenvalues of discrete linear second-order periodic and antiperiodic eigenvalue problems with

sign-changing weight. Linear Algebra Appl. 467, 40–56 (2015)
11. Ji, J., Yang, B.: Eigenvalue comparisons for second order difference equations with periodic and antiperiodic

boundary conditions. J. Appl. Math. Comput. 27, 307–324 (2008)
12. Kielhöfer, H.: Bifurcation Theory. An Introduction with Applications to Partial Differential Equations, 2nd edn. Applied

Mathematical Sciences, vol. 156. Springer, New York (2012)
13. Ma, R., An, Y.: Global structure of positive solutions for superlinear second orderm-point boundary value problems.

Topol. Methods Nonlinear Anal. 34(2), 279–290 (2009)
14. Ma, R., An, Y.: Global structure of positive solutions for nonlocal boundary value problems involving integral

conditions. Nonlinear Anal. 71(10), 4364–4376 (2009)
15. Ma, R., Gao, H., Lu, Y.: Global structure of radial positive solutions for a prescribed mean curvature problem in a ball.

J. Funct. Anal. 270, 2430–2455 (2016)
16. Ma, R., Xu, M., Long, Y.: Principal eigenvalues of a second-order difference operator with sign-changing weight and its

applications. Discrete Dyn. Nat. Soc. 2018, Article ID 1949254 (2018)
17. Mawhin, J., Willem, M.: Multiple solutions of the periodic boundary value problem for some forced pendulum-type

equations. J. Differ. Equ. 52, 264–287 (1984)
18. Rabinowitz, P.H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487–513 (1971)
19. Treibergs, A.E.: Entire spacelike hypersurfaces of constant mean curvature in Minkowski space. Invent. Math. 66,

39–56 (1982)


	Positive solutions of the periodic problems for quasilinear difference equation with sign-changing weight
	Abstract
	MSC
	Keywords

	Introduction
	Preliminary results
	Existence of positive solutions
	Some further results
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


