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1 Introduction
In this paper, we study the nonlinear evolution system with nonlocal initial condition

⎧
⎨

⎩

ẏ(s) ∈ Ay(s) + F(s, y(s)), s ∈ I = [t0, T],

y(t0) = g(y(·)),
(1.1)

in a Banach space X with uniformly convex dual. Here A : D(A) ⊂ X ⇒ X is an m-
dissipative operator, F : I × X ⇒ X is a multifunction, and g : C(I, X) → D(A).

Notice that problem (1.1) has a number of applications, since it describes many phe-
nomena better than the local initial value problems. We refer to the recent interesting
book [6], where (1.1) is comprehensively studied. See also [2], where the authors assume
that X∗ is uniformly convex (as in the present paper) and A generates a compact semi-
group. Nonautonomous A is also studied. In [21] the author considered the case where A
is linear. In [16], it is assumed that A is of complete continuous type and generates a com-
pact semigroup. The conditions on F(·, ·) and g(·) are mild, and the problem is studied
in arbitrary (separable) Banach spaces. In fact the commonly assumptions used to prove
the existence of solutions are either that A is of compact type (in particular, it generates a
compact semigroup if X∗ is uniformly convex) and F satisfies some upper semicontinuity,
or F is Lipschitz continuous. In [22] the authors assumed that X∗ is uniformly convex, and
two cases are considered: one where A generates an equicontinuous semigroup and F(·, ·)
is Lipschitz w.r.t. the Hausdorff measure of noncompactness, and the second is where A is
m-dissipative and F(s, ·) is Lipschitz. In the recent paper [1], the existence of solutions of
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(1.1) is proved when F(s, ·) is Lipschitz with nonempty closed bounded values in general
Banach spaces. The results of [1, 22] are not applicable in the important case of periodic
or antiperiodic boundary conditions, that is, g(y) = y(T) or g(y) = –y(T). This problem is
especially studied in the present paper. The periodic or antiperiodic boundary conditions
were studied in the literature when A generates a compact semigroup (see [6]).

Among others, we recall also [8, 15, 19, 20], where nonlinear delayed evolution inclu-
sions with nonlocal initial conditions are considered. See also [7], where the authors in-
vestigated problem (1.2) with state constrains.

In the present paper, we first prove the existence of solutions to problem (1.1), assum-
ing that F(s, ·) is one-sided Lipschitz, which is weaker than the commonly used Lipschitz
condition. Further, we relax the growth conditions on g(·) used in [22]. Our assumptions
are weaker and more flexible. Notice also that even if F(s, ·) is Lipschitz, the one-sided
Lipschitz constant (or function) is in general smaller (even negative) than the Lipschitz
one.

Moreover, for the function g appearing in the nonlocal condition, we consider the
particular instance g(y) =

∑k
i=1 αiy(ti), where t1, t2, . . . , tk ∈ I are arbitrary but fixed, and

∑k
i=1 |αi| ≤ 1, which covers the remarkable periodic and antiperiodic cases. For this spe-

cific case of (1.1), we obtain an existence result under a one-sided Lipschitz condition
with negative constant on F . Notice that there exist non-Lipschitz multifunctions, which
are one-sided Lipschitz with respect to a negative constant.

To prove the existence of solutions to (1.1), we consider the corresponding local Cauchy
problem

⎧
⎨

⎩

ẏ(s) ∈ Ay(s) + F(s, y(s)),

y(t0) = x0 ∈ D(A),
(1.2)

for which the existence of the solutions and some properties of the solution set are dis-
cussed in [5, 9, 10, 12]. Here we provide estimates on dependence of the solution set of
(1.2) on the initial conditions, which will be used to get our existence result for the non-
local problem.

In the end of the paper, we give two examples to demonstrate the applicability of our
results.

2 Preliminaries
We start this section by giving the notation and the main definitions used further in this
paper. Also, we recall some known results, which will be used in the next sections.

For any nonempty closed bounded subset C of X and l ∈ X∗, we denote by σ (l, C) =
supa∈C〈l, a〉 the support function, where 〈·, ·〉 is the duality pairing. Denote by J(x) =
{z ∈ X∗; 〈z, x〉 = |z|2 = |x|2} the duality map. Since X∗ is uniformly convex, then J(·) is
single-valued and uniformly continuous on the bounded sets (see, e.g., [3]). We denote
by ΩJ (r) = sup{|J(x) – J(y)|; |x – y| ≤ r, x, y ∈ X} its modulus of continuity. We define
dist(x,A) = infa∈A |x – a|, the distance from x ∈ X to A ⊂ X. The Hausdorff distance be-
tween two subsets A and B of X is defined by DH (A,B) = max{ex(A,B), ex(B,A)}, where
ex(A,B) = supa∈A dist(a,B).

A multimap G : X ⇒ X is called hemicontinuous (upper hemicontinuous) if for every
l ∈ X∗, the support function σ (l, G(·)) is continuous (upper semicontinuous) as a real-
valued function. A multifunction F : I ×X ⇒ X is said to be almost upper hemicontinuous
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if for every ε > 0, there exists a compact Iε ⊂ I with meas(I \ Iε) < ε such that F|Iε×X is upper
hemicontinuous.

Let f ∈ L1(I, X). The continuous function x(·) : I → D(A) is said to be an (integral) solu-
tion of

⎧
⎨

⎩

ẋ(t) ∈ Ax(t) + f (t),

x(t0) = x0,
(2.1)

if x(t0) = x0, and for any u ∈ D(A), v ∈ A(u), and t0 ≤ τ < t ≤ T ,

∣
∣x(t) – u

∣
∣ ≤ |x0 – u| +

∫ t

τ

[
x(s) – u, f (s) + v

]

+ ds (2.2)

(see [4, 14, 17]). Here [x, u]+ denotes the right directional derivative of the norm calculated
at x in the direction u, i.e.,

[x, u]+ = lim
h→0+

‖x + hu‖ – ‖x‖
h

.

Concerning the properties of [·, ·]+ see, e.g., [14], Section 1.2. Along this paper we will
denote, when it is necessary, the solution x(·) of (2.1) as x(x0, f )(·). Here, of course, f (·) is
Bochner integrable and x0 ∈ D(A).

It is well known that (2.1) has a unique solution.
The following properties of solutions of (2.1) will be essentially used in this paper (see,

e.g., [14] for the proof ).

Theorem 2.1 Let x(·) = x(x0, f )(·) and y(·) = y(y0, g)(·), where x0, y0 ∈ D(A) and f , g ∈
L1(I, X). Then

∣
∣x(t) – y(t)

∣
∣2 ≤ |x0 – y0|2 + 2

∫ t

t0

〈
J
(
x(s) – y(s)

)
, f (s) – g(s)

〉
ds

and

∣
∣x(t) – y(t)

∣
∣ ≤ |x0 – y0| +

∫ t

t0

∣
∣f (s) – g(s)

∣
∣ds

for any t ∈ I .

We need the following theorem, which is a reformulation of [3], Theorem 4.1.

Theorem 2.2 Let ω > 0, and let A : D(A) ⊂ X ⇒ X be an m-dissipative operator such that
A + ωI is dissipative. Then

∣
∣x(t) – y(t)

∣
∣ ≤ e–ω(t–s)∣∣x(s) – y(s)

∣
∣ +

∫ t

s
e–ω(t–τ )[x(τ ) – y(τ ), f (τ ) – g(τ )

]

+ dτ (2.3)

for every x(·) = x(x0, f )(·), y(·) = y(y0, g)(·) and each t0 ≤ s < t ≤ T .

Definition 2.3 A continuous function y(·) is said to be:
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(i) a solution of (1.2) if y(·) = y(x0, f )(·) and f (s) ∈ F(s, y(s)) a.e. on I ,
(ii) an ε-solution of (1.2) if y(·) = y(x0, f )(·) and f (s) ∈ F(s, y(s) + εB) a.e. on I , where B is

the open unit ball in X .

We state the standard assumptions of our paper.
(F1) F(·, ·) has nonempty convex weakly compact values, and there exists a Lebesgue

integrable function λ(·) such that ‖F(t, x)‖ := maxv∈F(t,x) |v| ≤ λ(t)(1 + |x|) on I × X .
(F2) F(·, ·) is almost upper hemicontinuous, X is not necessarily separable, or X is

separable, F(·, x) is measurable, and F(t, ·) is hemicontinuous.
Regarding the existence of ε-solutions, we recall the following result proved in [10].

Proposition 2.4 Suppose that, for every x ∈ D(A), F(·, x) has a strongly measurable selec-
tion. Then, under (F1), for every ε > 0, there exists an ε-solution of (1.2).

Proposition 2.5 ([10], Proposition 1.5) Assume (F1). Then for every k > 0, there exist a
constant M > 0 and a Lebesgue-integrable function μ(·) such that, if y(·) = y(x0, f )(·) with
f (s) ∈ co F(s, y(s) + B) + B, then |y(s)| ≤ M and ‖F(s, y(s))‖ ≤ μ(s) on I .

In the end of this section, we give the following lemma, which is a simplified version of
[9], Lemma 1.

Lemma 2.6 Let G : I ⇒ X be a measurable multifunction, integrally bounded with convex
weakly compact values. Then for all strongly measurable u : I → X∗, there exists a strongly
measurable h(·) such that h(s) ∈ G(s) and 〈u(s), h(s)〉 = σ (u(s), G(s)) for a.e. s ∈ I .

3 An existence result
In this section, we prove the first main result of this paper, namely the existence of solu-
tions for the nonlocal problem (1.1). We add another assumption on F , much weaker than
the Lipschitz continuity, called one-sided Lipschitz condition.

(F3) There exists a Lebesgue-integrable function L : I → R+ such that, for all x, y ∈ X
and t ∈ I ,

σ
(
J(x – y), F(t, x)

)
– σ

(
J(x – y), F(t, y)

) ≤ L(t)|x – y|2.

Theorem 3.1 Assume (F1)–(F3). Moreover, assume that g is K-Lipschitz and

K exp

(∫ T

t0

L(s) ds
)

< 1. (3.1)

Then the nonlocal problem (1.1) has at least a solution.

To prove the theorem, we need some auxiliary results.

Lemma 3.2 Assume (F1)–(F3) and let x0, y0 ∈ kB ∩ D(A), k > 0. There exists a constant
C > 0 such that, for any 0 < δ < ε and any ε-solution x(·) of (1.2) with x(t0) = x0, there exists
a δ-solution y(·) of (1.2) with y(t0) = y0 such that

∣
∣x(t) – y(t)

∣
∣ ≤ |x0 – y0| exp

(∫ t

t0

L(s) ds
)

+ C
(
ΩJ (ε + δ) + ε + δ

)1/2

for all t ∈ I .
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A version of this lemma was proved in [9], Lemma 2. Our assumptions are however
stronger and allow us to obtain a more relevant result to the problems considered here.

Proof Let 0 < δ < ε, and let x(·) be an ε-solution of (1.2). Then x(·) = x(x0, fx)(·) with fx(t) ∈
F(t, x(t) + εB) a.e. on I . Let h(·) be such that |h(t)| ≤ ε and fx(t) ∈ F(t, x(t) + h(t)) for a.e.
t ∈ [t0, T]. Suppose that yτ (·) is a δ-solution of (1.2) defined on some interval [t0, τ ], τ < T ,
with yτ (t0) = y0 satisfying the condition of the lemma. Using (F3), we have that, for a.e.
t ∈ [t0, T],

σ
(
J
(
x(t) + h(t) – yτ (τ )

)
, F

(
t, x(t) + h(t)

))
– σ

(
J
(
x(t) + h(t) – yτ (τ )

)
, F

(
t, yτ (τ )

))

≤ L(t)
∣
∣x(t) + h(t) – yτ (τ )

∣
∣2.

By Lemma 2.6 there exists a (strongly) measurable fy(·) such that fy(t) ∈ F(t, yτ (τ )) and

〈
J
(
x(t) + h(t) – yτ (τ )

)
, fy(t)

〉
= σ

(
J
(
x(t) + h(t) – yτ (τ )

)
, F

(
t, yτ (τ )

))

for a.e. t ∈ [t0, T]. Therefore, we get the following inequality

〈
J
(
x(t) + h(t) – yτ (τ )

)
, fx(t) – fy(t)

〉 ≤ L(t)
∣
∣x(t) + h(t) – yτ (τ )

∣
∣2 (3.2)

for a.e. t ∈ [t0, T]. There exists θ > 0 such that if y(·) is an extension of yτ (·) on [τ , τ + θ ]
such that ẏ(t) ∈ Ay(t) + fy(t), then |y(t) – y(τ )| ≤ δ for t ∈ [τ , τ + θ ], and (3.2) holds with y(τ )
instead of yτ (τ ). We have that

〈
J
(
x(t) – y(t)

)
, fx(t) – fy(t)

〉 ≤ L(t)
∣
∣x(t) – y(t)

∣
∣2

+
∣
∣
〈
J
(
x(t) – y(t)

)
– J

(
x(t) + h(t) – y(τ )

)
, fx(t) – fy(t)

〉∣
∣

+ L(t)
(∣
∣x(t) + h(t) – y(τ )

∣
∣2 –

∣
∣x(t) – y(t)

∣
∣2).

Since |x(t) – y(t) – x(t) – h(t) + y(τ )| ≤ ε + δ, we get that

∣
∣J

(
x(t) – y(t)

)
– J

(
x(t) + h(t) – y(τ )

)∣
∣ ≤ ΩJ (ε + δ).

On another hand,

∣
∣
∣
∣x(t) + h(t) – y(τ )

∣
∣2–

∣
∣x(t) – y(t)

∣
∣2∣∣ ≤ ∣

∣y(t) + h(t) – y(τ )
∣
∣
∣
∣2x(t) + h(t) – y(t) – y(τ )

∣
∣

≤ (ε + δ)(4M + ε).

Hence

〈
J
(
x(t) – y(t)

)
, fx(t) – fy(t)

〉 ≤ L(t)
∣
∣x(t) – y(t)

∣
∣2 + 2μ(t)ΩJ (ε + δ) + L(t)c1(ε + δ)
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for a.e. t ∈ [τ , τ + θ ], where c1 = 4M + ε. Using now Theorem 2.1, we get that, for t ∈
[τ , τ + θ ],

∣
∣x(t) – y(t)

∣
∣2 ≤ |x0 – y0|2 + 2

∫ t

t0

(
L(s)

∣
∣x(s) – y(s)

∣
∣2

+ 2μ(s)ΩJ (ε + δ) + L(s)c1(ε + δ)
)

ds.

Therefore |x(t) – y(t)|2 ≤ r(t) on [t0, τ + θ ], where r(·) is the maximal solution of
⎧
⎨

⎩

ṙ(t) = 2L(t)r(t) + 4μ(t)ΩJ (ε + δ) + 2c1(ε + δ)L(t),

r(t0) = |x0 – y0|2.

It follows that

r(t) ≤ exp

(

2
∫ t

t0

L(s) ds
)(

|x0 – y0|2 + 4ΩJ (ε + δ)
∫ t

t0

μ(s) ds + 2c1(ε + δ)
∫ t

t0

L(s) ds
)

≤ exp

(

2
∫ t

t0

L(s) ds
)

(|x0 – y0|2 + c2
(
ΩJ (ε + δ) + ε + δ

))

for some positive constant c2. Clearly,

∣
∣x(t) – y(t)

∣
∣ ≤ √

r(t) ≤ |x0 – y0| exp

(∫ t

t0

L(s) ds
)

+ C
√

ΩJ (ε + δ) + ε + δ

on [t0, τ + θ ]. We have used the fact that exp(2
∫ t

t0
L(s) ds) is bounded. Applying now Zorn’s

lemma we get the existence of the δ-solution y(·) on the whole interval I . �

Denote by Sol(x0) the solution set of (1.2), which, under (F1)–(F3), is nonempty (see
[9]).

The next result is a variant of the well-known lemma of Filippov and Plis.

Lemma 3.3 Assume (F1)–(F3). Let x0, y0 ∈ kB ∩ D(A), k > 0, and let y(·) be an ε-solution
of (1.2) with y(t0) = y0. Then there exists c > 0 such that

dist
(
y(·), Sol(x0)

) ≤ |x0 – y0| exp

(∫ t

t0

L(s) ds
)

+ c
(
ΩJ (ε) + ε

)1/2.

Proof Let η > 0 and choose εn ↓ 0+ with ε0 = ε such that C
∑∞

n=1(ΩJ (2εn) + 2εn)1/2 < η/2,
where C is the constant given in Lemma 3.2. Applying Lemma 3.2 for ε = εn and δ = εn+1,
for every natural n ≥ 0, we obtain a sequence (xn(·)) of εn-solutions such that

∣
∣y(t) – x1(t)

∣
∣ ≤ |x0 – y0| exp

(∫ t

t0

L(s) ds
)

+ C
(
ΩJ (ε + ε1) + ε + ε1

)1/2

and, for any natural number n,

∣
∣xn(t) – xn+1(t)

∣
∣ ≤ C

(
ΩJ (εn + εn+1) + εn + εn+1

)1/2

for any t ∈ I . The latter implies that (xn(·)) converges uniformly on I to some function z(·).
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For any positive number n, let fn(·) ∈ L1(I, X) with fn(t) ∈ F(t, xn(t) + εnB) for a.e. t ∈ I
be such that xn(·) is a solution of ẋ(t) ∈ Ax(t) + fn(t). Due to the growth condition (F1),
the sequence (fn(·)) is integrally bounded and hence L1-weakly precompact. Passing to
subsequences if necessary, we get that (fn(·)) converges L1-weakly to some function f (·) ∈
L1(I, X). By [5], Prop. 1, we get that z(·) is a solution of (1.2) with z(t0) = x0.

Let n ∈N be such that |xn(t) – z(t)| < η/2 for any t ∈ I . We have that

∣
∣y(t) – z(t)

∣
∣ ≤ |x0 – y0| exp

(∫ t

t0

L(s) ds
)

+ C
(
ΩJ (2ε) + 2ε

)1/2 + C
∞∑

n=1

(
ΩJ (2εn) + 2εn

)1/2

+
∣
∣xn(t) – z(t)

∣
∣ < |x0 – y0| exp

(∫ t

t0

L(s) ds
)

+ C
(
ΩJ (2ε) + 2ε

)1/2 + η

for any t ∈ I . Since η is arbitrary, we get the conclusion. �

The following theorem is crucial in the proof of the main result.

Theorem 3.4 Assume (F1)–(F3). For any x0, y0 ∈ D(A),

DH
(
Sol(x0), Sol(y0)

) ≤ |x0 – y0| exp

(∫ t

t0

L(s) ds
)

.

The proof is very similar to the proof of Corollary 1 in [9] and is omitted.

Proof of Theorem 3.1 Consider the map S : C(I, X) ⇒ C(I, X), where S(z(·)) is the solution
set of the Cauchy problem

⎧
⎨

⎩

ẋ(t) ∈ Ax(t) + F(t, x(t)),

x(t0) = g(z(·)),
(3.3)

for any continuous function z(·). It follows from Theorem 3.4 that, for any y(·), z(·) ∈
C(I, X),

DH
(
S

(
z(·)),S

(
y(·))) ≤ ∣

∣g
(
z(·)) – g

(
y(·))∣∣ exp

(∫ t

t0

L(s) ds
)

≤ K
∥
∥z(·) – y(·)∥∥C(I,X) exp

(∫ t

t0

L(s) ds
)

< α
∥
∥z(·) – y(·)∥∥C(I,X),

where α = K exp (
∫ t

t0
L(s) ds) < 1. Consequently, the map S is a set-valued contraction with

closed values. Thus, there exists a fixed point x(·) ∈ S(x(·)). Clearly, this fixed point x(·) is
a solution of (1.1). �

4 A multipoint problem
Our target now is to investigate inclusion (1.1) with a particular choice of the function g .
More precisely, we consider the nonlocal problem

⎧
⎨

⎩

ẏ(s) ∈ Ay(s) + F(s, y(s)), s ∈ I,

y(t0) =
∑k

i=1 αiy(ti),
(4.1)

where t0 < t1 < · · · < tk ≤ T are arbitrary but fixed, and αi ∈R with
∑k

i=1 |αi| = κ ≤ 1.
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Clearly, we can apply Theorem 3.1 to this problem in the case where κ < 1. However,
this theorem is not applicable for κ = 1, since, in this case, (3.1) does not hold. We mention
that the case κ = 1 includes periodic and antiperiodic boundary conditions, that is, y(t0) =
±y(T).

We further provide an existence result the problem (4.1) that covers also the case κ = 1.
To this aim, we assume the following stronger form of condition (F3).

(F3′) There exists a positive constant m such that, for all x, y ∈ X and t ∈ I ,

σ
(
J(x – y), F(t, x)

)
– σ

(
J(x – y), F(t, y)

) ≤ –m|x – y|2.

Theorem 4.1 Under (F1), (F2), and (F3′), system (4.1) has at least a solution.

To prove this theorem, we need the following lemma, which is used implicitly in [9]
when the right-hand side is autonomous (see the proof of Theorem 4 therein).

Lemma 4.2 Assume (F1), (F2), and (F3′). Then for every τ ∈ (t0, T) there exists a constant
ᾱ = ᾱ(τ ) ∈ (0, 1) such that, for every solution x(·) of (1.2) with initial condition x0 ∈ D(A)
and every z0 ∈ D(A), there exists a solution z(·) of (1.2) with z(t0) = z0 such that

∣
∣x(t) – z(t)

∣
∣ ≤ ᾱ|x0 – z0| (4.2)

for every τ ≤ t ≤ T .

Proof To use Theorem 2.2, we define Ā = A – mI and H(t, x) = F(t, x) + mx. Clearly, Ā + mI
is m-dissipative, and H(t, ·) is one-sided Lipschitz with the constant 0. System (1.2) can be
rewritten as

⎧
⎨

⎩

ẋ(t) ∈ Āx(t) + H(t, x(t)),

x(t0) = x0.

However, we do not want to change the notation and assume that A + mI is m-dissipative
and F(t, ·) is one-sided Lipschitz with the constant 0.

Let x0, z0 ∈ D(A), x0 �= z0, and let x(·) = x(x0, fx)(·) with fx(s) ∈ F(s, x(s)) a.e. on I .
We define the multifunction

G(s, u) =
{

v ∈ F(s, u);
〈
J
(
x(s) – u

)
, fx(s) – v

〉 ≤ 0
}

.

It is easy to show that G(·, u) has a strongly measurable selection. Then, by Proposition 2.4,
for every δ > 0, there exists a δ-solution z(·) of

⎧
⎨

⎩

ż(t) ∈ Az(t) + G(t, z(t)),

z(t0) = z0.

Then z(·) is a solution of ż(t) ∈ Az(t) + fz(t) for some function fz(·) ∈ L1(I, X) with fz(t) ∈
G(t, z(t) + h(t)) a.e. on I , where |h(t)| ≤ δ. It follows that

〈
J
(
x(t) –

(
z(t) + h(t)

))
, fx(t) – fz(t)

〉 ≤ 0.
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Then we have that

〈
J
(
x(s) – z(s)

)
, fx(s) – fz(s)

〉 ≤ ∣
∣
〈
J
(
x(s) – z(s) – h(s)

)
– J

(
x(s) – z(s)

)
, fx(s) – fz(s)

〉∣
∣

≤ ΩJ (δ)
(∣
∣fx(s)

∣
∣ +

∣
∣fz(s)

∣
∣
) ≤ 2ΩJ (δ)μ(s).

It is well known that 〈J(u), v〉 = |u|[u, v]+. Hence, for |x(s) – z(s)| > 0, we have

[
x(s) – z(s), fx(s) – fz(s)

]

+ ≤ 2
ΩJ (δ)μ(s)
|x(s) – z(s)| .

Let t ∈ I be fixed. Then, either |x(t) – z(t)| ≤ 1
2 |x0 – z0|, or

[
x(s) – z(s), fx(s) – fz(s)

]

+ ≤ 4ΩJ (δ)μ(s)
|x0 – z0| = ν(δ)μ(s),

where ν(δ) = 4ΩJ (δ)
|x0–z0| . Denote N(t) =

∫ t
t0

μ(s) ds.
The set B = {t ∈ (t0, T); |x(t) – z(t)| > 1

2 |x0 – z0|} is open, and hence it is a countable union
of pairwise disjoin open intervals, that is, B =

⋃∞
i=1(ai, bi), where a1 = t0. Applying now

Theorem 2.2, we obtain that

∣
∣x(t) – z(t)

∣
∣ ≤ e–m(t–t0)|x0 – z0| + ν(δ)N(t) (4.3)

for t ∈ (a1, b1) and

∣
∣x(t) – z(t)

∣
∣ ≤ 1

2
e–m(t–ai)|x0 – z0| + ν(δ)

(
N(t) – N(ai)

) ≤ 1
2
|x0 – z0| + ν(δ)N(T)

for t ∈ (ai, bi), i > 1.
Since limδ→0 ΩJ (δ) = 0, for δ small enough, ν(δ)N(T) < 1

4 |x0 – z0|. Therefore, we get that
|x(t)–z(t)| ≤ 3

4 |x0 –z0| for every t ≥ b1. Let τ ∈ (t0, T). If τ ≥ b1, then we are done. If τ < b1,
then we will use estimate (4.3). We can choose δ so small that ν(δ)N(T) ≤ 1–e–m(τ–t0)

2 |x0 –
z0|. Consequently, |x(t) – z(t)| ≤ 1+e–m(τ–t0)

2 |x0 – z0| for every t ∈ [τ , b1). Hence, we have
proved that we can choose δ so small that |x(t) – z(t)| ≤ γ |x0 – z0| for all t ≥ τ , where γ < 1
does not depend on |x0 – z0|.

The latter, together with the lemma of Filippov–Plis [9], Lemma 2, finishes the proof. �

Note that in [9], Lemma 2, we assumed that A generates an equicontinuous semigroup.
This fact, however, is not used in the proof there.

Now we are ready to prove the second main result of this paper.

Proof of Theorem 4.1 We will use the successive approximations method. We start with a
point x0 ∈ D(A) and let y0(·) be a solution of the local problem

⎧
⎨

⎩

ẏ(t) ∈ Ay(t) + F(t, y(t)),

y(t0) = x0.
(4.4)
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For the existence of such a solution, see, for example, [9]. Consider now the problem
⎧
⎨

⎩

ẏ(t) ∈ Ay(t) + F(t, y(t)),

y(t0) =
∑k

i=1 αiy0(ti).
(4.5)

Let ᾱ = ᾱ(t1) given by Lemma 4.2. Furthermore, there exists a solution y1(·) of (4.5) such
that

∣
∣y1(t) – y0(t)

∣
∣ ≤ ᾱ

∣
∣
∣
∣
∣
x0 –

k∑

i=1

αiy0(ti)

∣
∣
∣
∣
∣

for all t ≥ t1.
We continue by applying Lemma 4.2 and define a sequence (yn(·)) such that, for every

positive number n, yn+1(·) is a solution of
⎧
⎨

⎩

ẏ(t) ∈ Ay(t) + F(t, y(t)),

y(t0) =
∑k

i=1 αiyn(ti),
(4.6)

and

∣
∣yn+1(t) – yn(t)

∣
∣ ≤ ᾱ

k∑

i=1

∣
∣αi

[
yn(ti) – yn–1(ti)

]∣
∣

for every t ≥ t1. It follows that |yn+1(t) – yn(t)| ≤ ᾱ‖yn(·) – yn–1(·)‖C(I,X) for every t ≥ t1.
Thus, the sequence (yn(·)) converges uniformly to some continuous function y(·). The

latter, together with yn+1(t0) =
∑k

i=1 αiyn(ti), shows that y(·) is the required solution. �

Remark 4.3 Using more carefully the estimations, we can prove the conclusion of Theo-
rem 4.1 when κ > 1 and

k∑

i=1

e–m(ti–t0)|αi| < 1.

5 Examples
In this section we give two examples to apply the abstract results to partial differential
inclusions.

The first one, inspired by [13], Section 5, illustrates the applicability of Theorem 3.1.

Example 5.1 Let Ω ⊂ R
n be a domain with smooth boundary ∂Ω . We consider the fol-

lowing boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut(t, x) ∈ �xu(t, x) – ∂ϕ(u(t, x)) + G(t, u(t, x)), x ∈ Ω , t ∈ (0, T],
∂u
∂n (t, x) ∈ ∂ψ(u(t, x)), x ∈ ∂Ω , t ∈ (0, T],

u(0, x) =
∫

Ω

∫ T
0 h(s, x,λ, u(s,λ)) ds dλ, x ∈ Ω .

(5.1)

Here ϕ : R →R is a proper lower semicontinuous convex function with ϕ(0) = 0, ψ : R →
R is a convex continuous function with 0 ≤ ψ(t) ≤ C(1+t2), t ∈R, for some constant C > 0,
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G(t, u) = [f1(t, u), f2(t, u)] with fi : [0, T] ×R→ R, i = 1, 2, and h : [0, T] × Ω × Ω ×R →R

is a given function.
Let X = L2(Ω). Following [13], we define

Φ(v) =
∫

Ω

ϕ
(
v(x)

)
dx,

Ψ (v) =

⎧
⎨

⎩

1
2
∫

Ω
|∇(v(x))|2 dx +

∫

∂Ω
ψ(v(x)) ds, v ∈ H1(Ω),

+∞ otherwise.

Then Φ and Ψ are proper lower semicontinuous convex functions with the domains
D(Φ) = {v ∈ L2(Ω);ϕ ◦ v ∈ L1(Ω)} and D(Ψ ) = H1(Ω). Moreover, f ∈ ∂Φ(v) if and only
if v, f ∈ L2(Ω), f (x) ∈ ∂ϕ(v(x)) for a.e. x ∈ Ω , and g ∈ ∂Ψ (v) if and only if –�v = g in
L2(Ω) and ∂v

∂n + ∂ψ(v) � 0 in L2(∂Ω) (see [18], Examples 2.B and 2.E, p. 163–164). Fur-
ther, ∂Φ + ∂Ψ is m-dissipative and equal to ∂(Φ + Ψ ) (see [18], Example 2.F, p. 167).

Then problem (5.1) can be rewritten in the abstract form (1.1) with the operator A =
∂(Φ + Ψ ), the multifunction F : [0, T] × L2(Ω) ⇒ L2(Ω) given by

F(t, u) =
{

v ∈ X; f1
(
t, u(x)

) ≤ v(x) ≤ f2
(
t, u(x)

)
, x ∈ Ω

}
,

and

g(u)(x) =
∫

Ω

∫ T

0
h
(
s, x,λ, u(s)(λ)

)
ds dλ,

for u ∈ L2(Ω) and x ∈ Ω . It is known that A generates an equicontinuous (but not compact)
semigroup on L2(Ω) (see, e.g., [13]).

We suppose that the following hypotheses are satisfied.
(F) The functions fi, i = 1, 2, satisfy the following conditions:

(1) f1(t, u) ≤ f2(t, u) for every (t, u) ∈ [0, T] ×R;
(2) f1(·, ·) is almost lower semicontinuous, and f2(·, ·) is almost upper

semicontinuous;
(3) there exists two positive Lebesgue-integrable functions a(·) and b(·) such that

|fi(t, u)| ≤ a(t)|u| + b(t) on [0, T] ×R for i = 1, 2;
(4) fi(t, u) = f ′

i (t, u) + f ′′
i (t, u), where f ′

i (t, ·) is Lipschitz continuous with respect to a
Lebesgue-integrable function L(·), and f ′′

i (t, ·) are decreasing for i = 1, 2.
(H) The function h satisfies the following conditions:

(1) there exist a function H(·) ∈ L2(Ω ,R+) and a positive Lebesgue-integrable
function ν(·) such that |h(t, x,λ, r)| ≤ ν(t)H(λ) for all
(t, x,λ, r) ∈ [0, T] × Ω × Ω ×R;

(2) h(t, x,λ, r) is measurable in (t, x,λ) for all r ∈R;
(3) |h(t, x,λ, u) – h(t, x,λ, v)| ≤ K

Tμ(Ω) |u – v| for all
(t, x,λ, u), (t, x,λ, v) ∈ [0, T] × Ω × Ω ×R.

If hypothesis (F) holds, then it is easy to prove that the multifunction F(·, ·) satisfies
(F1)–(F3). Due to hypothesis (H), the function g(·) is well defined, and

∣
∣g(u1) – g(u2)

∣
∣
L2(Ω) ≤ K

∥
∥u1(·) – u2(·)∥∥C([0,T];L2(Ω))

for all u1, u2 ∈ C([0, T]; L2(Ω)). Applying Theorem 3.1, we get the following result.
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Theorem 5.2 Assume that (F) and (H) hold. If

K exp

(∫ T

0
L(s) ds

)

< 1,

then the nonlocal problem (5.1) has at least one solution.

In the second example, we will use Theorem 4.1.

Example 5.3 Let Ω , ϕ, and ψ be as in the previous example, and let G : [0, T] ×R
2 ⇒R

2

be a given multifunction. We consider the following system:

(
ut(t, x)

v̇(t)

)

∈
(

B
0

)

+ G
(
t, u(t, x), v(t)

)
, x ∈ Ω , t ∈ (0, T), (5.2)

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂n (t, x) ∈ ∂ψ(u(t, x)), x ∈ ∂Ω , t ∈ (0, T),

u(0, x) = 1
2 (u( T

2 , x) + u(T , x)), x ∈ Ω ,

v(0) = 1
2 (v( T

2 ) + v(T)).

(5.3)

Here B = ∂(Φ + Ψ ) with Φ and Ψ as in the first example.
Let X = L2(Ω) × H1(0, T) with the norm |(u, v)|X =

√
|u|2L2(Ω) + |v|2H1(0,T). Problem (5.2)–

(5.3) can be rewritten in the abstract form (4.1) with the m-dissipative operator A =
( B

0

)

and the multifunction F : [0, T] × X ⇒ X given by

F(t, u, v) =
{

(y1, y2) ∈ X;
(
y1(x), y2(t)

) ∈ G
(
t, u(x), v(t)

)
for a.e. x ∈ Ω and t ∈ [0, T]

}
.

We suppose that the multifunction G satisfies the following conditions:
(G1) there exist a(·), b(·) ∈ L1(0, T) such that ‖G(t, z)‖ ≤ a(t) + b(t)|z| for all

(t, z) ∈ [0, T] × X ;
(G2) G is almost upper semicontinuous with nonempty closed convex values;
(G3) G(t, ·) is one-sided Lipschitz with negative constant.
Under these hypotheses, it is easy to prove that (F1), (F2), and (F3′) hold. Then, due to

Theorem 4.1, we obtain the following result.

Theorem 5.4 Under assumptions (G1)–(G3), the nonlocal problem (5.2)–(5.3) has at least
one solution.

6 Concluding remarks
In this paper, we investigate the nonlocal problem (1.1) and prove two existence results.

The first one extends Theorem 4.1 of [22] in several directions. We recall that, in [22], the
authors established an existence result for the nonlocal differential inclusion (1.1) assum-
ing that X is separable with uniformly convex dual, F(·, x) is measurable, F(t, ·) is Lipschitz
with the Lipschitz function p(·) ∈ L1(I,R+), and

K +
∫ T

t0

p(s) ds < 1, (6.1)
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where K is the Lipschitz constant of g(·). Our condition (3.1) is weaker than (6.1), as can be
seen from [1], Lemma 2.7. In fact, this condition (3.1) was used in [1] to prove an existence
result for the nonlocal problem (1.1) in general Banach spaces under the assumption that
F(t, ·) is Lipschitz continuous. Clearly, the one-sided Lipschitz condition assumed in this
paper is much weaker than the Lipschitz one, and, moreover, if F(t, ·) is p(t) Lipschitz,
then it is L(t) one-sided Lipschitz with L(t) ≤ p(t). We further give two simple examples
of maps that are one-sided Lipschitz but not Lipschitz. We also refer the reader to [11],
where the advantages of the one-sided Lipschitz condition are shown.

Example 6.1 Let X be a Hilbert space. We define the map

f (x) =

⎧
⎨

⎩

– x√|x| , x �= 0,

0, x = 0.

Clearly, f (·) is continuous and one-sided Lipschitz with the constant 0, but it is not Lips-
chitz.

Another example is in X = L3(Ω), where Ω ⊂ R
n is a bounded domain. The dual space

is X∗ = L3/2(Ω), and the duality map is

J(x)(ω) =

⎧
⎨

⎩

x(ω)|x(ω)|
‖x‖L3(Ω)

, x �= 0,

0, x = 0,

for a.e. ω ∈ Ω and for all x ∈ L3(Ω). The map F : L3(Ω) ⇒ L3(Ω) given by

F(x) = –x +

⎧
⎨

⎩

– x
|x| , x �= 0,

B̄, x = 0,

is upper semicontinuous at 0 and one-sided Lipschitz with the constant –1, but it is not
Lipschitz, and even discontinuous at 0.

The second main result of this paper is devoted to the so-called multipoint problem.
Note that this problem cannot be studied under the assumptions of Theorem 3.1. Such
a kind of problems is studied in the literature under compactness-type assumptions or
under stronger assumptions on the right-hand side. We refer the reader to [6]. Another
approach is assuming that F(t, ·) is m-Lipschitz, A is m-dissipative, and, moreover, A +
λI is dissipative with m < λ. We can see that our assumptions are more clear than the
assumptions in [6] (although their results are applicable in more general Banach spaces).
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