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Abstract
This article focuses on a proportional-derivative (PD) feedback controller to control a
Neimark–Sacker bifurcation for a Mackey–Glass system by the Euler method. It has
been shown that the onset of the Neimark–Sacker bifurcation can be postponed or
advanced via a PD controller by choosing proper control parameters. Finally,
numerical simulations are given to confirm our analysis results and the effectiveness
of the control strategy. Especially, a derivative controller can significantly improve the
speed of response of a control system.
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1 Introduction
In Mackey and Glass [1], Mackey and Glass described a physiological system as the delay
differential equation (DDE):

ṗ(t) = –γ p(t) +
βθnp(t – τ )

θn + pn(t – τ )
, t ≥ 0. (1.1)

Here, p(t) denotes the density of mature cells in blood circulation, τ is the time delay
between the production of immature cells in the bone marrow and their maturation for
release in circulating bloodstreams, β , θ , γ , and n ≥ 3 are all positive constants and

β

γ
> 1. (1.2)

In [1], Michael C. Mackey and Leon Glass associated the onset of a disease with bifurca-
tions in Eq. (1.1). The fluctuations were caused in peripheral, while blood cell counts in
chronic granulocytic leukemia (CGL). So studying the dynamics of Eq. (1.1) is significant
to medical research.

Various bifurcations exist in nonlinear dynamical systems, such as complex circuits, net-
works, and so on. Bifurcations can be important and beneficial if they are under appro-
priate control. In [2], a nonlinear feedback control method was given, in which a polyno-
mial function was used to control the Hopf bifurcation. Bifurcation control refers to the
task of designing a controller to suppress or reduce some existing bifurcation dynamics
of a given nonlinear system, thereby achieving some desirable dynamical behaviors [3–7].
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In [8], a hybrid control strategy was proposed, in which state feedback and parameter per-
turbation were used to control the bifurcations. In [9], a discrete-time delayed feedback
controller was presented and studied. Proportional-integral-derivative (PID) controller is
a widely used control method for dynamics control in a nonlinear system for its superior
performance [10–14]. The results show one can delay or advance the onset of bifurcations
by changing the control parameters, including the proportional control parameter and the
derivative control parameter.

The discussion on the importance of discrete-time analogues in preserving the prop-
erties of stability and bifurcation of their continuous-time counterparts has been studied
by some authors. For example in [15], the authors considered the numerical approxima-
tion of a class of DDEs undergoing a Hopf bifurcation by using the Euler forward method.
Motivated by the works on bifurcation control, we adopt a proportional-derivative (PD)
feedback control Euler scheme in which a proportional control parameter and a derivative
control parameter are used to control the Neimark–Sacker bifurcations. By selecting ap-
propriate control parameters, we obtain that the dynamic behavior of a controlled system
can be changed. Especially, a derivative controller can significantly improve the speed of
response of a control system. As far as we know, the numerical controlled dynamics for
DDES by a PD feedback controller has been rarely studied.

The rest of the paper is organized as follows. In the next section, for a DDE of Mackey–
Glass system with PD controller, we analyze the local stability of the equilibria and exis-
tence of the Hopf bifurcation. The main results are obtained in Sect. 3. Among them, by
using a PD controlled Euler algorithm, the dynamics of the numerical discrete systems
are derived according to the Neimark–Sacker bifurcation theorem. In Sect. 4, by apply-
ing the theories of discrete bifurcation systems, the direction and stability of bifurcating
periodic solutions from the Neimark–Sacker bifurcation of controlled delay equation are
confirmed. Section 5 gives numerical examples to illustrate the validity of our results.

2 Hopf bifurcation in DDE via a PD controller
Under the transformation p(t) = θx(t), Eq. (1.1) becomes

ẋ(t) = –γ x(t) +
βx(t – τ )

1 + xn(t – τ )
. (2.1)

x∗ is a positive fixed point to Eq. (2.1), and x∗ satisfies

x∗ = n

√
β

γ
– 1. (2.2)

Apply a PD controller to system (2.1) as follows:

dx
dt

=
[

–γ x(t) +
βx(t – τ )

1 + xn(t – τ )

]
+ kp

(
x(t) – x∗

)
+ kd

d
dt

(
x(t) – x∗

)
, (2.3)

where kp is the proportional control parameter, and kd is the derivative control parameter.
Set x̃(t) = x(t) – x∗. Equation (2.3) becomes

dx̃
dt

=
1

1 – kd

[
–γ

(
x̃(t) + x∗

)
+

β(x̃(t – τ ) + x∗)
1 + (x̃(t – τ ) + x∗)n + kpx̃(t)

]
. (2.4)
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The linearization of Eq. (2.4) at x̃ = 0 is

dx̃
dt

=
1

1 – kd

[
(kp – γ )x̃(t) + γ

(
n
(

γ

β
– 1

)
+ 1

)
x̃(t – τ )

]
, (2.5)

whose characteristic equation is

λ̃ =
1

1 – kd

[
(kp – γ ) + γ

(
n
(

γ

β
– 1

)
+ 1

)
e–λ̃τ

]
. (2.6)

For τ = 0, the only root of Eq. (2.6) is

λ̃ =
kp – γ + γ (n( γ

β
– 1) + 1)

1 – kd
< 0, (2.7)

here kd < 1 and
⎧⎨
⎩

β

γ
> 1 > nγ

nγ –kp
, kp < 0 or kp > nγ ,

β

γ
> nγ

nγ –kp
> 1, 0 < kp < nγ .

(2.8)

Let u(t) = x(τ t), then Eq. (2.1) can be written as

u̇(t) = –γ τu(t) +
βτu(t – 1)

1 + un(t – 1)
. (2.9)

u∗ is a positive fixed point to Eq. (2.9), and u∗ satisfies

u∗ = x∗ = n

√
β

γ
– 1. (2.10)

Apply a PD controller to system (2.9) as follows:

du
dt

=
[

–γ τu(t) +
βτu(t – 1)

1 + un(t – 1)

]
+ kpτ

(
u(t) – u∗

)
+ kd

d
dt

(
u(t) – u∗

)
. (2.11)

Set z(t) = u(t) – u∗. Equation (2.11) becomes

dz
dt

=
1

1 – kd

[
–γ τ

(
z(t) + u∗

)
+

βτ (z(t – 1) + u∗)
1 + (z(t – 1) + u∗)n + kpτz(t)

]
. (2.12)

The linearization of Eq. (2.12) at z = 0 is

dz
dt

=
1

1 – kd

[
(kpτ – γ τ )z(t) + γ τ

(
n
(

γ

β
– 1

)
+ 1

)
z(t – 1)

]
, (2.13)

whose characteristic equation is

λ =
1

1 – kd

[
(kpτ – γ τ ) + γ τ

(
n
(

γ

β
– 1

)
+ 1

)
e–λ

]
, (2.14)

with λ = λ̃τ for τ �= 0.
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Let iω be a root of Eq. (2.14) if and only if

(1 – kd)iω = (kpτ – γ τ ) + γ τ

(
n
(

γ

β
– 1

)
+ 1

)
e–iω.

Separating the real and imaginary parts, we have

⎧⎨
⎩γ τ (n( γ

β
– 1) + 1) cosω + (kpτ – γ τ ) = 0,

γ τ (n( γ

β
– 1) + 1) sinω + (1 – kd)ω = 0,

(2.15)

such that
(

γ τ

(
n
(

γ

β
– 1

)
+ 1

))2

= (kpτ – γ τ )2 + (1 – kd)2ω2,

that is,

ω =
τ

1 – kd

√(
γ

(
n
(

γ

β
– 1

)
+ 1

)
+ (kp – γ )

)(
γ

(
n
(

γ

β
– 1

)
+ 1

)
– (kp – γ )

)
. (2.16)

According to (2.6), (2.8), (2.14), and (2.16), this is impossible if and only if kd < 1 and

⎧⎨
⎩

nγ

nγ –kp
< 1 < β

γ
< nγ

kp+(n–2)γ , (2 – n)γ < kp < 0,

1 < nγ

nγ –kp
< β

γ
< nγ

kp+(n–2)γ , 0 < kp < γ .
(2.17)

For β

γ
> nγ

kp+(n–2)γ , here kd < 1, (2 – n)γ < kp < 0 or 0 < kp < γ , let

τk = –
(1 – kd)wk

γ [n( β

γ
– 1) + 1] sin wk

, k = 0, 1, 2, . . . .

Set ⎧⎨
⎩

ωk = τk
1–kd

√
(γ (n( γ

β
– 1) + 1) + (kp – γ ))(γ (n( γ

β
– 1) + 1) – (kp – γ )),

k = 0, 1, 2, . . . .

Let λk = αk(τ ) + iωk(τ ) denote a root of Eq. (2.14) near τ = τk such that αk(τk) = 0, ωk(τk) =
ωk . We obtain the following result.

Lemma 1 α′
k(τk) > 0.

Proof By differentiating both sides of Eq. (2.14) with respect to τ , we obtain

dλ

dτ
=

γ (n( γ

β
– 1) + 1)e–λ + kp – γ

1 – kd + γ τ (n( γ

β
– 1) + 1)e–λ

.

Therefore,

dλ

dτ

∣∣∣
τ=τk

=
γ (n( γ

β
– 1) + 1) cosωk + kp – γ – iγ (n( γ

β
– 1) + 1) sinωk

1 – kd + γ τ (n( γ

β
– 1) + 1)(cosωk – i sinωk)

=
A + Bi
C + Di

,
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here

A = γ

(
n
(

γ

β
– 1

)
+ 1

)
cosωk + kp – γ ; B = –γ

(
n
(

γ

β
– 1

)
+ 1

)
sinωk ;

C = 1 – kd + γ τ

(
n
(

γ

β
– 1

)
+ 1

)
cosωk ; D = –γ τ

(
n
(

γ

β
– 1

)
+ 1

)
sinωk .

This implies that

α′
k(τk) =

AC + BD
	c

=
τ [(γ (n( γ

β
– 1) + 1))2 – (kp – γ )2]

	c
> 0,

where 	c = C2 + D2. The result is confirmed. �

Theorem 1 For systems (2.3) and (2.11), we give the following statements:
– If

⎧⎨
⎩

nγ

nγ –kp
< 1 < β

γ
< nγ

kp+(n–2)γ , (2 – n)γ < kp < 0,

1 < nγ

nγ –kp
< β

γ
< nγ

kp+(n–2)γ , 0 < kp < γ ,
(2.18)

and kd < 1, then u = u∗ is asymptotically stable.
– If β

γ
> nγ

kp+(n–2)γ , here kd < 1, (2 – n)γ < kp < 0 or 0 < kp < γ (when kp = 0, β

γ
> n

n–2 ), then
u = u∗ is asymptotically stable for τ ∈ [0, τ0) and unstable for τ > τ0. Equations (2.3)
and (2.11) undergo a Hopf bifurcation at u = u∗ when τ = τk for k = 0, 1, 2, . . . .

3 Neimark–Sacker bifurcation analysis of the PD control Euler method
This section concerns the stability and bifurcation of the numerical discrete PD control
system. We implement the PD control strategy [10–13].

Set y(t) = u(t) – u∗. Equation (2.11) becomes

dy
dt

=
1

1 – kd

[
–γ τ

(
y(t) + u∗

)
+

βτ (y(t – 1) + u∗)
1 + (y(t – 1) + u∗)n + kpτy(t)

]
. (3.1)

When kd = 0, kp = 0, Eq. (3.1) is the uncontrolled system.
Employing the Euler method to Eq. (3.1) yields the difference equation

yn+1 = yn +
h

1 – kd

[
(kp – γ )τyn – γ τu∗ +

βτ (yn–m + u∗)
1 + (yn–m + u∗)n

]
, (3.2)

here h = 1
m , m ∈ Z, yn is an approximate value to y(nh).

Providing a new variable Yn = (yn, yn–1, . . . , yn–m)T , we can rewrite (3.2) as

Yn+1 = F(Yn, τ ), (3.3)

where F = (F0, F1, . . . , Fm)T , and

Fk =

⎧⎨
⎩yn–k + h

1–kd
[(kp – γ )τyn–k – γ τu∗ + βτ (yn–m–k+u∗)

1+(yn–m–k+u∗)n ], k = 0,

yn–k+1, 1 ≤ k ≤ m.
(3.4)
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Clearly the linear part of map (3.3) is

Yn+1 = AYn. (3.5)

Here

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + h(kp–γ )τ
1–kd

0 · · · 0 0
hγ τ (1+n( γ

β
–1))

1–kd

1 0 · · · 0 0 0
0 1 · · · 0 0 0

· · ·
0 0 · · · 1 0 0
0 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.6)

The characteristic equation of A is

λm+1 –
(

1 +
h(kp – γ )τ

1 – kd

)
λm –

hγ τ (1 + n( γ

β
– 1))

1 – kd
= 0. (3.7)

Lemma 2 If kd < 1 and

⎧⎨
⎩

β

γ
> 1 > nγ

nγ –kp
, kp < 0 or kp > nγ ,

β

γ
> nγ

nγ –kp
> 1, 0 < kp < nγ ,

(3.8)

then all the roots of Eq. (3.7) have modulus less than one for sufficiently small τ > 0.

Proof For τ = 0, Eq. (3.7) becomes

λm+1 – λm = 0.

The equation has an m-fold root λ = 0 and a simple root λ = 1.
Consider the root λ(τ ) such that |λ(0)| = 1. This root is a C1 function of τ . For Eq. (3.7),

we have

d|λ|2
dτ

= λ
dλ

dτ
+ λ

dλ

dτ
.

If kd < 1 and (3.8) are satisfied, then

d|λ|2
dτ

∣∣∣
λ=1,τ=0

=
2h(kp – γ + γ (n( γ

β
– 1) + 1))

1 – kd
< 0. (3.9)

Consequently, all roots of Eq. (3.7) lie in |λ| < 1 for sufficiently small τ > 0. �

Lemma 3 If the step-size h is sufficiently small, kd < 1 and

⎧⎨
⎩

nγ

nγ –kp
< 1 < β

γ
< nγ

kp+(n–2)γ , (2 – n)γ < kp < 0,

1 < nγ

nγ –kp
< β

γ
< nγ

kp+(n–2)γ , 0 < kp < γ ,
(3.10)

then Eq. (3.7) has no root with modulus one for all τ > 0.
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Proof When two roots of characteristic equation (3.7) pass through the unit circle, a
Neimark–Sacker bifurcation occurs. Assume that there exists τ ∗ such that eiω∗ ,ω∗ ∈
(–π ,π ] is the root of characteristic equation (3.7). Then

ei(m+1)ω∗
–

(
1 +

h((kp – γ )τ ∗)
1 – kd

)
eimω∗

–
hγ τ ∗[n( γ

β
– 1) + 1]

1 – kd
= 0. (3.11)

Hence, separating the real and the imaginary parts gives

⎧⎨
⎩cosω∗ – (1 + h((kp–γ )τ∗)

1–kd
) –

hγ τ∗[n( γ
β

–1)+1]
1–kd

cos mω∗ = 0,

sinω∗ +
hγ τ∗[n( γ

β
–1)+1]

1–kd
sin mω∗ = 0.

(3.12)

We get

cosω∗ = 1 +
(

hτ ∗

1 – kd

)2 (kp – γ – γ [n( γ

β
– 1) + 1])(kp – γ + γ [n( γ

β
– 1) + 1])

2(1 + h((kp–γ )τ∗)
1–kd

)
. (3.13)

By virtue of the step-size h being sufficiently small, kd < 1 and (3.10) being satisfied, we
obtain cosω∗ > 1, which yields a contradiction. So Eq. (3.7) has no root with modulus one
for all τ > 0. �

If β

γ
> nγ

kp+(n–2)γ , here kd < 1, (2 – n)γ < kp < 0 or 0 < kp < γ and the step-size h is sufficiently
small, then | cosω∗| < 1. From (3.13) we know that

ω∗
k = arccos

(
1 +

(
hτ ∗

k
1 – kd

)2 (kp – γ – γ [n( γ

β
– 1) + 1])(kp – γ + γ [n( γ

β
– 1) + 1])

2(1 + h(kpτ∗
k –γ τ∗

k )
1–kd

)

)

+ 2kπ , k = 0, 1, 2, . . . ,
[

m – 1
2

]
, (3.14)

where [·] denotes the greatest integer function. It is clear that there exists a sequence of
the time delay parameters τ ∗

k satisfying Eq. (3.12) according to ω = ω∗
k .

Lemma 4 If the step-size h is sufficiently small, let λk(τ ) = rk(τ )eiωk (τ ) be a root of Eq. (3.7)
near τ = τ ∗

k satisfying rk(τ ∗
k ) = 1 and ωk(τ ∗

k ) = ω∗
k , then

dr2
k (τ )
dτ

∣∣∣
τ=τ∗

k ,ω=ω∗
k

> 0. (3.15)

Proof According to Eq. (3.7), we obtain

λm =
hγ τ

1–kd
[n( γ

β
– 1) + 1]

λ – [1 + hτ (kp–γ )
1–kd

]
,

dr2
k (τ )
dτ

∣∣∣
τ=τ∗

k ,ω=ω∗
k

= 2�
(

λ
dλ

dτ

)∣∣∣
τ=τ∗

k ,ω=ω∗
k

=
2(1 – kd)[(1 – kd)(2m + 1) + (kp – γ )τ ](1 – cosω)

τ	d

∣∣∣
τ=τ∗

k ,ω=ω∗
k

> 0,
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where 	d = ((1 – kd)(m + 1) cosω – m(1 – kd) – (kpτ – γ τ ))2 + ((1 – kd)(m + 1) sinω)2, there-
fore this completes the proof. �

Theorem 2 In view of system (3.2), if the step-size h is sufficiently small, kd < 1, the follow-
ing statements are true:

(1) If
⎧⎨
⎩

nγ

nγ –kp
< 1 < β

γ
< nγ

kp+(n–2)γ , (2 – n)γ < kp < 0,

1 < nγ

nγ –kp
< β

γ
< nγ

kp+(n–2)γ , 0 < kp < γ ,

then u = u∗ is asymptotically stable for any τ > 0;
(2) If β

γ
> nγ

kp+(n–2)γ , here (2 – n)γ < kp < 0 or 0 < kp < γ , then u = u∗ is asymptotically
stable for τ ∈ (0, τ ∗

0 ) and unstable for τ > τ ∗
0 . Equation (3.2) undergoes a Neimark–Sacker

bifurcation at u = u∗ when τ = τ ∗
k for k = 0, 1, 2, . . . , [ m–1

2 ].

Proof (1) If kd < 1 and
⎧⎨
⎩

nγ

nγ –kp
< 1 < β

γ
< nγ

kp+(n–2)γ , (2 – n)γ < kp < 0,

1 < nγ

nγ –kp
< β

γ
< nγ

kp+(n–2)γ , 0 < kp < γ ,

from Lemmas 2 and 3, we know that Eq. (3.7) has no root with modulus one for all τ > 0.
Applying Corollary 2.4 in [16], all roots of Eq. (3.7) have modulus less than one for all τ > 0.
The conclusion follows.

(2) If β

γ
> nγ

kp+(n–2)γ , here kd < 1, (2 – n)γ < kp < 0 or 0 < kp < γ , applying Lemmas 3 and
4, we know that all roots of Eq. (3.7) have modulus less than one when τ ∈ (0, τ0), and
Eq. (3.7) has at least a couple of roots with modulus greater than one when τ > τ ∗

0 . The
conclusion follows. �

Remark 1 Through the above conclusions of Lemmas 2–4 and Theorem 2, for the step-
size h is sufficiently small, due to β

γ
> nγ

kp+(n–2)γ , here kd < 1, (2 – n)γ < kp < 0 or 0 < kp < γ

(when kp = 0, β

γ
> n

n–2 ), we can delay (or advance) the onset of a Neimark–Sacker bifurca-
tion by choosing appropriate control parameters kp and kd .

4 Direction and stability of the Neimark–Sacker bifurcation in a discrete
control model

In the previous section, we have verified the conditions for the Neimark–Sacker bifurca-
tion to occur when τ = τ ∗

k for k = 0, 1, 2, . . . , [ m–1
2 ]. In this section we continue to study the

direction of the Neimark–Sacker bifurcation and the stability of the bifurcating periodic
solutions when τ = τ ∗

0 using the techniques from normal form and center manifold theory
[17, 18].

yn+1 =
(

1 +
hτ (kp – γ )

1 – kd

)
yn

+
hτγ [n( γ

β
– 1) + 1]

1 – kd
yn–m +

1
2

hτγ

1 – kd

n(β – γ )[(n – 1)β – 2nγ ]
β2u∗

y2
n–m

+
1
6

hτγ

1 – kd

n(β – γ )[(n2 – 1)β2 – 6n2βγ + 6n2γ 2]
β3u2∗

y3
n–m + O

(|yn–m|4).
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So, we can rewrite system (3.2) as

Yn+1 = AYn +
1
2

B(Yn, Yn) +
1
6

C(Yn, Yn, Yn) + O
(‖Yn‖4),

where

B(Yn, Yn) =
(
b0(Yn, Yn), 0, . . . , 0

)T ,

C(Yn, Yn, Yn) =
(
c0(Yn, Yn, Yn), 0, . . . , 0

)T ,

and

ã0 = 1 +
hτ (kp – γ )

1 – kd
,

ã1 =
hτγ [n( γ

β
– 1) + 1]

1 – kd
,

b0(φ,φ) =
hτγ

1 – kd

n(β – γ )[(n – 1)β – 2nγ ]
β2u∗

φ2
m = b̃ · φ2

m,

c0(φ,φ,φ) =
hτγ

1 – kd

n(β – γ )[(n2 – 1)β2 – 6n2βγ + 6n2γ 2]
β3u2∗

φ3
m = c̃ · φ3

m.

(4.1)

Let q = q(τ ∗
0 ) ∈C

m+1 be an eigenvector of A corresponding to eiω∗
0 , then

Aq = eiω∗
0 q, Aq = e–iω∗

0 q.

We also introduce an adjoint eigenvector q∗ = q∗(τ ) ∈C
m+1 having the properties

AT q∗ = e–iω∗
0 q∗, AT q∗ = eiω∗

0 q∗,

and satisfying the normalization 〈q∗, q〉 = 1, where 〈q∗, q〉 =
∑m

i=0 q∗
i qi.

Lemma 5 ([19]) Consider a vector-valued function p : C −→ C
m+1 by

p(ξ ) =
(
ξm, ξm–1, . . . , 1

)T .

If ξ is an eigenvalue of A, then Ap(ξ ) = ξp(ξ ).

According to Lemma 5, we have

q = p
(
eiw∗

0
)

=
(
eimw∗

0 , ei(m–1)w∗
0 , . . . , eiw∗

0 , 1
)T . (4.2)

Lemma 6 Suppose q∗ = (q∗
0, q∗

1, . . . , q∗
m)T is the eigenvector of AT corresponding to eigen-

value e–iw∗
0 , and 〈q∗, q〉 = 1. Then

q∗ = K
(
1, ã1eimw∗

0 , ã1ei(m–1)w∗
0 , . . . , ã1e2iw∗

0 , ã1eiw∗
0
)T , (4.3)

where

K =
[
e–imw∗

0 + mã1e–iw∗
0
]–1. (4.4)
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(a)

(b)

Figure 1 The numerical solution of Eq. (2.11) with PD control Euler method corresponding to
kp = 0.09, kd = 0.2 when (a) τ = 2.5, (b) τ = 3.5

Proof Assign q∗ satisfies AT q∗ = zq∗ with z = e–iw∗
0 . Then there are

⎧⎪⎪⎨
⎪⎪⎩

ã0q∗
0 + q∗

1 = e–iw∗
0 q∗

0,

q∗
k = e–iw∗

0 q∗
k–1, k = 2, 3, . . . , m,

ã1q∗
0 = e–iw∗

0 q∗
m.

(4.5)

Let q∗
m = ã1eiw∗

0 K , by the normalization 〈q∗, q〉 = 1 and direct computation, the lemma fol-
lows. �

Let Tcenter denote a real eigenspace corresponding to e±iw∗
0 , which is two-dimensional

and is spanned by {�(q), Im(q̄)}, and let Tstable be a real eigenspace corresponding to all
eigenvalues of AT , other than e±iw∗

0 , which is (m – 1)-dimensional.
All vectors x ∈R

m+1 can be decomposed as

x = vq + v̄q̄ + y,
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(a)

(b)

Figure 2 The numerical solution of Eq. (2.11) with PD control Euler method corresponding to kp = 0, kd = 0
when (a) τ = 3, (b) τ = 5

where v ∈ C, vq + v̄q̄ ∈ Tcenter, and y ∈ Tstable. The complex variable v can be viewed as a
new coordinate on Tcenter, so we have

v =
〈
q∗, x

〉
,

y = x –
〈
q∗, x

〉
q –

〈
q∗, x

〉
q.

Let a(λ) be a characteristic polynomial of A and λ0 = eiw∗
0 . Following the algorithms in [17]

and using a computation process similar to that in [15, 19], we have

g20 =
〈
q∗, B(q, q)

〉
,

g11 =
〈
q∗, B(q, q)

〉
,

g02 =
〈
q∗, B(q, q)

〉
,

g21 =
〈
q∗, B(q, w20)

〉
+ 2

〈
q∗, B(q, w11)

〉
+

〈
q∗, C(q, q, q)

〉
,
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(a)

(b)

Figure 3 The numerical solution of Eq. (2.11) with PD control Euler method corresponding to
kp = –0.2, kd = 0.2 when (a) τ = 5, (b) τ = 7

where

w20 =
b0(q, q)
a(λ2

0)
p
(
λ2

0
)

–
〈q∗, B(q, q)〉

λ2
0 – λ0

q –
〈q∗, B(q, q)〉

λ2
0 – λ0

q,

w11 =
b0(q, q)

a(1)
p(1) –

〈q∗, B(q, q)〉
1 – λ0

q –
〈q∗, B(q, q)〉

1 – λ0
q.

So, we can get an expression for the critical coefficient c1(τ ∗
0 )

c1
(
τ ∗

0
)

=
g20g11(1 – 2λ0)

2(λ2
0 – λ0)

+
|g11|2
1 – λ0

+
|g02|2

2(λ2
0 – λ0)

+
g21

2
. (4.6)

By (4.1), (4.2), and Lemma 6, we get

c1
(
τ ∗

0
)

=
K
2

(
b̃2

a(e2w∗
0i)

+
2̃b2

a(1)
+ c̃

)
. (4.7)
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(a)

(b)

Figure 4 The numerical solution of Eq. (2.11) with PD control Euler method corresponding to
kp = –0.2, kd = –0.2 when (a) τ = 7, (b) τ = 10

We obtain the stability of the closed invariant curve by applying the Neimark–Sacker
bifurcation theorem [20]. The results are as follows.

Theorem 3 If β

γ
> nγ

kp+(n–2)γ , here kd < 1, (2 – n)γ < kp < 0, or 0 < kp < γ , then u = u∗ is
asymptotically stable for any τ ∈ [0, τ ∗

0 ) and unstable for τ > τ ∗
0 . An attracting (repelling)

invariant closed curve exists for τ > τ ∗
0 if �[e–iw0 c1(τ ∗

0 )] < 0 (> 0). (When kp = 0, kd = 0, we
obtain the results of the uncontrolled system.)

Remark 2 The proportional control parameter kp and the derivative control parameter kd

could decide the dynamics of system (3.2), e.g., the stability, the amplitude of the closed
invariant curve, and the direction of the bifurcation [4, 7, 10, 17, 19].

5 Numerical simulations
The purpose of this section is to validate the effectiveness of the PD control Euler method
in Sects. 2–4 by numerical examples.
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(a)

(b)

Figure 5 The numerical solution of Eq. (2.11) with PD control Euler method corresponding to
kp = 0.09, kd = 0.8 when (a) τ = 0.6, (b) τ = 0.8

Table 1 The values of τ0 of the PD control Euler method

kd 0.2 0 0.2 –0.2 0.8
kp 0.09 0 –0.2 –0.2 0.09
τ0 3.0317 4.3769 6.0871 9.1305 0.7579

Let β = 0.2,γ = 0.1, n = 10, then u∗ = 1. From Table 1 we can see the different values of
τ0 by choosing kp, kd with the PD control Euler method. For h = 1/10, at different kp, kd ,
the results are shown in Figs. 1–5.

From Figs. 3 and 4 and Table 1, we could argue that the PD control Euler method enlarges
the stable region by choosing control parameters kp < 0, kd < 1. From Figs. 1 and 5, we could
obtain that the PD control Euler method narrows the stable region by choosing control
parameters kp > 0, kd < 1.

At the same time, for the purpose of comparison, we choose the same the proportional
control parameter kp = 0.09, the different derivative control parameters kd = 0.2 (Fig. 1)
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and kd = 0.8 (Fig. 5). The results show that the derivative controller can significantly im-
prove the speed of response of a control system.

6 Conclusions
In this paper, the problem of a proportional-derivative (PD) feedback numerical control
method for Mackey–Glass system has been studied. In Sect. 2, for DDE of Mackey–Glass
system with PD controller, we analyzed the local stability of equilibria and existence of the
Hopf bifurcation. In Sects. 3 and 4, the PD control numerical strategy can delay (or ad-
vance) the onset of an inherent bifurcation. Some computer simulations were performed
to illustrate the theoretical results. According to the theoretical and numerical analysis,
by choosing a different proportional control parameter kp and a derivative control param-
eter kd , we can enlarge (or narrow) the stable region and postpone (or advance) the onset
of the Neimark–Sacker bifurcation. PD control laws proved effective since they made the
control system fairly sensitive to the parameter. In our future work, we intend to widen
the application scopes of our theories.
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