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1 Introduction
Scientists have been facing some difficulties in describing complex systems by using the
classical calculus. To overcome these difficulties, some scientists started to use fractional
calculus that studies the integration and differentiation of any order. See, for example, [1,
2] and the references therein. The conventional fractional derivatives, such as Riemann–
Liouville, Caputo, Hadamard, and Grunwald–Letnikov, have found numerous applica-
tions in science and engineering by giving the memory and hereditary effects. The so-
called Hausdorff derivative or the fractal derivative (see [3, 4] and the references therein)
are also derivatives that can be used to describe complex systems. Other derivatives, such
as the conformable derivatives which were introduced in [5, 6], may also be candidates to
be used in order to describe complex real world phenomena.

On the other hand, the powers of distribution functions play important roles in a variety
of branches of applied mathematics and physics (see [7, 8] and the references therein).
Consequently, finding the powers of such functions have attracted the attention of many
scientists. In [9], the author defined the powers of the Dirac-delta distribution and the
powers of its first order derivative for positive integers. In [10], the author utilized the
Temple delta sequence and the neutrix limit to show that δr(x) = 0 for all r ∈ Z

–. Recently,
C.K. Li and C.P. Li in [8] and C.K. Li in [11] defined the powers of the delta function using
Caputo fractional derivatives.

Recently, there have been some works on conformable derivatives and their applica-
tions in various fields. For example in [12], the Newton mechanics in the frame of con-
formable derivatives were discussed, and in [13] the physical interpretation of generalized
conformable derivatives was tackled. In [14], the Sturm–Liouville problems in the frame
of conformable derivatives were discussed.
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In this paper, we investigate a new approach to finding the distributions δr and (δ′)r for
r ∈ R using the Galapon property with the conformable derivative. We propose to apply
the neutrix calculus developed by J.G. van der Corput [15] and to utilize the conformable
derivatives [5, 6].

This article is organized as follows: In Sect. 2, we recall some basic definitions, lemmas,
and theorems. In Sect. 3, we present the powers of the delta function. In Sect. 4, we present
the powers of derivatives of the delta function. In Sect. 5, we present δr(xλ) for some values
of λ. The last section is devoted to the conclusion.

2 Preliminaries
Let D(R) be the space of infinitely differentiable function with compact support in R, and
let D′(R) be the space of distributions defined on D(R). The Dirac distribution is defined
by the formal property

(δ,φ) =
∫ +∞

–∞
δ(x)φ(x) dx = φ(0) (1)

for sufficiently well-behaved functions φ(x). Relation (1) is called the sifting property or
the reproducing property of the Dirac distribution (delta function). This definition of the
δ-function stands for a limit of a sequence of inner products, namely

lim
n→∞

∫ +∞

–∞
δn(x)φ(x) dx = φ(0), (2)

where δn(x) is a sequence of ordinary (classical) functions. Such a sequence is referred to
as a delta-convergent sequence or simply a δ-sequence. For a given δ-sequence, δn(x), we
have what is known as a limit representation of the δ-function

δ(x) = lim
n→∞ δn(x). (3)

Known δ-sequences have either increasing positive or infinite values at the origin; that
is, for sufficiently large n, 0 < δn1 (0) < δn2 (0) when n1 < n2 or δn(0) = ∞ for all n. Certain
sequences of classical functions exist and have property (2). For instance, the well-known
Dirichlet formula

lim
n→∞

∫ +∞

–∞
n√
π

exp
(
–n2x2)φ(x) dx = φ(0). (4)

Theorem 1 ([16]) Let ρ(x) be a nonnegative, locally integrable function in the d-dimen-
sional space Rd and

∫
Rd

ρ(x) dx = 1.

Then the sequence of functions

gε(x) = ε–dρ(x/ε)

converges to δ(x), ε → ∞ (in the sense of generalized functions).
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Definition 2 ([17]) A sequence of functions (δn(x)) is a delta-convergent sequence: (i) if
for any M > 0 and for |a|, |b| ≤ M, then

∫ b
a δn(x) dx are bounded by a constant depending

only on M; (ii) for any fixed non-vanishing a and b,

lim
n→∞

∫ b

a
δn(x) dx =

⎧⎨
⎩

0 for 0 < a < b and a < b < 0,

1 for a < 0 < b.

We now wish to show that for any positive integer m the set of functions with the
Galapon property

δn(m, x) =
1

22m+1Γ (m + 1/2)
nm+1/2x2m exp

(
–nx2/4

)
(5)

is a δ-sequence in n so that

lim
n→∞ δn(m, x) = δ(x).

These functions satisfy

δn(m, 0) = 0 for all n ∈N.

At any other point x, the sequence also tends to zero. Nevertheless, the sequence generates
the δ-function. The known limit representations of the δ-function involve delta sequences
that do not vanish at the support of the limit δ-function. However, in [18], Galapon as-
sumes that a δ-sequence may vanish at the support of the limit δ-function for all finite
values of the limit parameter. It seems impossible to define products of two arbitrary dis-
tributions in general [17, 19]. However, the product of an infinitely differentiable function
φ(x) with a distribution g is given by

(φg,ψ) = (g,φψ), (6)

which is well defined since φψ ∈D(R) if ψ ∈D(R).

Definition 3 ([16, 17]) Let g ∈D′(R). The distributions g ′ given by (1) are called the first
order derivatives of g , then

(
g ′,φ

)
= –

(
g,φ′), φ ∈D(R),

(∗′ = d/dx
)
. (7)

A distribution has derivatives of all orders. For one can iterate (7) to obtain

(
g(n),φ

)
= (–1)n(g,φ(n)). (8)

The product of φδ(n) exists by equation (6) for n = 0, 1, 2, . . . , and

φ(x)δ(n)(x) = (–1)n
n∑

k=0

(
n
k

)
(–1)kφ(n–k)(0)δ(k)(x),

(
n
k

)
=

n!
k!(n – k)!

. (9)
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Recently, in [5, 6], the definition of conformable derivatives of functions of order α ∈
(0, 1] have been formulated and given as follows.

Definition 4 ([5, 6]) Given any function f : [0,∞] →R. Then the conformable derivative
of f of order α ∈ (0, 1] is defined by

(
Tα

a g
)
(x) = lim

ε→0

g(x + εx1–α) – g(x)
ε

.

Note that if g is differentiable, then

(
Tα

a g
)
(x) = x1–αg ′(x), (10)

where

g ′(x) = lim
ε→0

[
g(x + ε) – g(x)

]
/ε.

Reciprocally, if (Tα
a g)(x) exists, then for x 	= 0 we have

g ′(x) = lim
ε→0

[
g(x + ε) – g(x)

]
/ε = lim

ε→0

[
g
(
x + εx1–α

)
– g(x)

]
/
(
εx1–α

)
=

(
Tα

a g
)
(x).

Definition 5 ([5]) Let α ∈ (n, n + 1] and g be an n-differentiable function at x > 0, then the
left conformable derivative of order α at x > 0 is given by

(
Tα

a g
)
(x) =

(
Tα

a
)
g(n)(x) = lim

ε→0

[
g(n)(x + εxn+1–α

)
– g(n)(x)

]
/
(
εxn+1–α

)

provided the limit of the right-hand side exists. If g is α-differentiable in some (0, a), a > 0,
and limx→0+ (Tα

a g)(x) exists, then define (T0g)(x) = limx→0+ (Tα
a g)(x).

The properties of (Tα
a g) can be found in [5].

Lemma 6 ([5]) Let x > 0, α ∈ (n, n + 1]. The function g is (n + 1)-differentiable if and only
if g is α-differentiable; moreover, (Tα

a g)(x) = xn+1–αg(n+1)(x).

The generalized Taylor’s formula and Taylor’s theorem in the frame of conformable
derivatives are given in the following theorems.

Theorem 7 ([5]) Assume that g is an infinitely α-differentiable function for some 0 < α ≤ 1
at a neighborhood of a point a. Then g has the fractional power series expansion

g(x) =
∞∑

k=0

(x – a)kα(Tα
a g)(k)(a)

αkk!
, for all 0 < a < x < a + R

1
α , R > 0,

here (Tα
a g)(k)(x) = Tα

a Tα
a · · ·Tα

a g(x) means the application of the conformable derivative k
times.
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Definition 8 ([5]) Assume that g is an infinitely α-differentiable function for some 0 <
α ≤ 1 at a neighborhood of a point a. Then g has the fractional power series expansion

g(x) =
s∑

k=0

(x – a)kα(Tα
a g)(k)(a)

αkk!
+

(x – a)(s+1)α(Tα
a g)(s+1)(ζ )

α(s+1)(s + 1)!
(11)

for all 0 < a ≤ ζ ≤ x < a + R 1
α , R > 0.

Next, following van der Corput [15], we define a neutrix as a class of negligible functions
defined in a domain, which satisfy the following two conditions:

(i) the neutrix is an additive group;
(ii) it does not contain any constant except 0.

Definition 9 ([15, 20]) Let N ′ be a nonempty set, and let N be a commutative, additive
group of functions mapping N ′ into a commutative, additive group N ′′. The group N is
called neutrix if the function which is identically equal to zero is the only constant function
occurring in N . The function which belongs to N is called negligible function in N .

Let N ′ be a set contained in a topological space with a limit point a not belonging to
N ′ and N be a commutative additive group of functions defined on N ′ with the following
property:

g ∈ N , lim
x→a

g(x) = l (constant) for x ∈ N ′, then l = 0.

Then this group N is a neutrix. Let g be a real-valued function defined on N ′, and suppose
that it is possible to find a constant l such that g(x) – l is negligible in N . Then l is called
the neutrix limit of g(x) as x tends to a and is denoted by

N- lim
x→a

g(x) = l.

In the following, we let N be the neutrix having domain N ′ = {1, 2, . . . , n, . . .}, the positive
integers and range N ′′ as the real numbers with negligible functions being finite linear
sums of the functions

nλ lnμ–1 n, lnμ n, λ > 0,μ = 1, 2, 3, . . . , (12)

and all being functions which converge to zero in the usual sense as n tends to infinity.
More mathematical properties of neutrices and the neutrix limit can be found in [15].
Note that taking the neutrix limit of a function g(n) is equivalent to taking the usual limit
of Hadamard’s finite part of g(n). In [9], the authors used the neutrix limit in order to define
the powers δ-function and its derivatives as

(
δr(x),φ(x)

)
= N- lim

n→∞
(
δr

n(x),φ(x)
)

(13)

for r ∈ (0, 1) and r = 2, 3, . . . .
E.L. Koh and C.K. Li [9] define (δr) and (δ′)r for the fixed δ-sequence and use the

Gaussian sequence to give meaning to the distributions (δr) and (δ′)r for r ∈ (0, 1) and
r = 2, 3, . . . , as follows.
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Theorem 10 ([9])
• δ0(x) = 1,
• δr(x) = 0 for 0 < r < 1,
• δ2k(x) = 0 for k = 1, 2, . . . ,
• δ2k+1(x) = Ckδ

(2k)(x), where Ck = 1

22k k!πk (2k+1)
2k+1

2
, for k = 0, 1, 2, . . . .

Theorem 11 ([9])
• (δ′)r(x) = 0 for r ∈ (0, 1

2 ),
• (δ′) 1

2 (x) =
√

2ei π
4 ( 2

π
) 1

4 Γ ( 3
4 )δ(x),

• (δ′)2k(x) = 0 for k = 1, 2, . . . ,
• (δ′)2k+1(x) = C′

kδ
(4k+1), where C′

k = 1×2×3×4×···×(6k+1)

2k k!π
k
2 (2k+1)

6k+3
2 (4k+1)!

, for k = 0, 1, 2, . . . .

In [10], the definition of the distribution (δ)r for negative integers was given by

δ–r(x) = 0 for r = 1, 2, . . . .

In [8], a definition for a product of distributions (δr) and (δ′)r , r ∈ R, is given using the
Gaussian sequence and the sequential Caputo fractional derivative.

Theorem 12 ([8])
• δ0(x) = 1,
• δr(x) = 0 for r < 1 and r 	= 0,
• (δr(x),φ(x)) = (1+(–1)r–1)Γ ( r

2 )
2Γ (r) ( 1

rπ )r/2(cD̂[r–1]
0 φ)(0) for r ≥ 1, where

cD̂[r–1]
0 ≡ (cD̂sα

0 ) = (cDα
0 )(cDα

0 ) · · · (cDα
0 ) (s times and s ∈ Z

+) is the sequential Caputo
derivative,

• δ2k(x) = 0 for k = 1, 2, . . . ,
• δ2k+1(x) = 1

22k (k!)(2k+1)
2k+1

2 πk
δ(2k)(x) for k = 0, 1, 2, . . . .

where

Γ

(
k +

1
2

)
=

1.3.5 · · · (2k – 1)
2k

√
π =

(2k)!
4kk!

√
π for k = 0, 1, 2, . . . .

Theorem 13 ([8])
• (δ′)0(x) = 1,
• (δ′)r(x) = 0 for r < 1

2 and r 	= 0,
• (δ′) 1

2 (x) =
√

2ei π
4 ( 2

π
) 1

4 Γ ( 3
4 )δ(x),

• ((δ′)r(x),φ(x)) = ((–1)r+(–1)2r–1)Γ ( 3r
2 )

21–rrrΓ (2r) ( 1
rπ )r/2(cD̂[2r–1]

0 φ)(0) for r > 1/2,
• (δ′)2k(x) = 0 for k = 1, 2, . . . ,
• (δ′)2k+1(x) = 1.3.5···(6k+1)

2kπk (2k+1)
6k+3

2 (4k+1)!
δ(4k+1) for k = 0, 1, 2, . . . .

In [11], a definition for a product of distributions (δr) and (δ′)r , r ∈ R is given using the
Orentzian sequence and the sequential Caputo derivative.

Theorem 14 ([11])
• δ0(x) = 1,
• δr(x) = 0 for 1

2 < r < 1 and r 	= 0,
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• (δr(x),φ(x)) = (1+(–1)r–1)Γ 2( r
2 )

2π rΓ 2(r) (cD̂[r–1]
0 φ)(0) for r ≥ 1, where

cD̂[r–1]
0 ≡ (cD̂sα

0 ) = (cDα
0 )(cDα

0 ) · · · (cDα
0 ) (s times and s ∈ Z

+) is the sequential Caputo
derivative,

• δ2k(x) = 0 for k = 1, 2, . . . ,
• δ2k+1(x) = 1

24k (k!)2π2k δ(2k)(x) for k = 0, 1, 2, . . . .

Theorem 15 ([11])
• (δ′)r(x) = 1 for r = 0,
• (δ′)r(x) = 0 for 1

3 < r < 1
2 ,

• (δ′) 1
2 (x) = (i + 1) Γ ( 3

4 )Γ ( 1
4 )√

2π
δ(x),

• ((δ′)r(x),φ(x)) = ((–1)r+(–1)2r–1)Γ ( 3r
2 )Γ ( r

2 )
21–r (π )rΓ 2(2r) (cD̂[2r–1]

0 φ)(0) for r > 1/2,
• (δ′)2k(x) = 0 for k = 1, 2, . . . ,
• (δ′)2k+1(x) = 22k+1Γ (k+ 1

2 )Γ (3k+ 3
2 )

π2k+1[(4k+1)!]2 δ(4k+1) for k = 0, 1, 2, . . . .

3 Defining δr(x) for all r ∈R using the conformable derivatives
In this section, we define (δ)r for all r ∈ R using the δ-sequence defined in (5) and the
conformable derivatives in the following theorem.

Theorem 16 For any positive integer m, we have
1. δ0(x) = 1,
2. δr(x) = 0 for r < 1, r 	= 0,

3. (δr(x),φ(x)) = (1+(–1)r–1)
2 ( 1

r )(m+1/2)r( Γ ((m+1/2)r)
(Γ (m+1/2))r ) (Tα

0 φ)[ r–1
α ](0)

α[ r–1
α ][ r–1

α ]!
for r > 1, where Tα

0 is the

conformable derivative at a = 0 and [r] is the smallest integer greater than or equal
to r.

In particular, when α = 1, we have, for k = 1, 2, . . . , δ2k(x) = 0, and for k = 0, 1, 2, . . . ,

δ2k+1(x) =
((–1)2k + 1)

2(2k)!(2k + 1)(2k+1)(m+1/2)
Γ ((2k + 1)(m + 1/2))

(Γ (m + 1/2))2k+1 δ(2k)(x).

Proof For all r ∈R,

(
δr(x),φ(x)

)
= N- lim

n→∞
(
δr

n(m, x),φ(x)
)

= N- lim
n→∞

∫ +∞

–∞

(
1

22m+1Γ (m + 1/2)
nm+1/2x2me–nx2/4

)
)rφ(x) dx, (14)

where N is the neutrix defined by (12).
Case 1. For r < 0,we make the substitution x =

√
–4
rn y in (14), and since φ(x) ∈D(R), hence

(
δr(x),φ(x)

)
= N- lim

n→∞
(
Qnm+1/2)r

(
–4
rn

) 2mr+1
2

∫ b
√

–4
rn

a
√

–4
rn

y2mrey2
φ

(√
–4
rn

y
)

dy, (15)

where

Q =
1

22m+1Γ (m + 1/2)
.
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When n tends to infinity, one has n r–1
2 → 0, and suppφ ∈ [a, b]. Thus, in view of (15),

δr(x) = 0 for all r < 0.
Case 2. For r = 0, it is obvious that

(
δ0(x),φ(x)

)
= N- lim

n→∞
(
δ0

n(x),φ(x)
)

= N- lim
n→∞

∫ +∞

–∞
φ(x) dx

=
∫ +∞

–∞
φ(x) dx =

(
1,φ(x)

)
. (16)

Thus, in view of (16), δ0 = 1.
Case 3. For 0 < r < 1, making the substitution x =

√
4
rn y in (14), we obtain

(
δr

n(x),φ(x)
)

=
(
Qnm+1/2)r

(
4
rn

) 2mr+1
2

∫ +∞

–∞
y2mre–y2

φ

(√
4
rn

y
)

dy.

Since φ ∈D(R), there exists a positive real number M1 such that supx∈R |φ(x)| = M1,
we have

∣∣(δr
n(x),φ(x)

)∣∣ ≤ M1
(
Qnm+1/2)r

(
4
rn

) 2mr+1
2

∫ +∞

–∞
y2mre–y2

dy

≤ M1Qr
(

4
r

) 2mr+1
2

n
r–1

2
1
2
(
1 + (–1)2mr)Γ (mr + 1/2), (17)

where
∫ +∞

–∞
y2mre–y2

dy =
1
2
(
1 + (–1)2mr)Γ (mr + 1/2).

The right-hand side of (17) tends to zero as n tends to infinity because n r–1
2 → 0, hence

δr(x) = 0 for all 0 < r < 1.

Case 4. For r = 1, it is easily seen that

(
δ1(x),φ(x)

)
= N- lim

n→∞
(
δ1

n(x),φ(x)
)

=
(
δ(x),φ(x)

)
.

Therefore, we have δ1 = δ.
Case 5. For r > 1, we have

(
δr(x),φ(x)

)
= N- lim

n→∞

∫ +∞

–∞
δr

n(m, x)φ(x) dx

= N- lim
n→∞

(∫ +∞

0
δr

n(m, x)φ(x) dx +
∫ 0

–∞
δr

n(m, x)φ(x) dx
)

= N- lim
n→∞

(∫ +∞

0
δr

n(m, x)φ(x) dx +
∫ +∞

0
δr

n(m, –x)φ(–x) dx
)

= N- lim
n→∞(I1 + I2). (18)
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Using the generalized Taylor’s formula from (11), we have

φ(x) =
s–1∑
k=0

ckxkα + csxsα +
(Tα

0 φ)(s+1)(ζ )
α(s+1)(s + 1)!

x(s+1)α , 0 < ζ ≤ x, (19)

where

ck =
(Tα

0 φ)(k)(0)
αkk!

, k = 0, . . . , s.

We denote sα = r – 1 and let 0 < α ≤ 1. Utilizing (18) gives

I1 =
∫ ∞

0

(
1

22m+1Γ (m + 1/2)
nm+1/2x2m exp

(
–nx2/4

))r

φ(x) dx

=
∫ ∞

0
δr

n(m, x)

[ s–1∑
k=0

ckxkα + csxsα +
(Tα

0 φ)(s+1)(ζ )
α(s+1)(s + 1)!

x(s+1)α

]
dx

:= I11 + I12 + I13. (20)

Setting x =
√

4
rn y and interchanging the order of integration and summation, we get

I11 =
s–1∑
k=0

ck
(
Qnm+1/2)r

(
4
rn

) 2mr+kα+1
2

∫ ∞

0
y2mr+kαe–y2

dy, (21)

I12 = cs
(
Qnm+1/2)r

(
4
rn

) 2mr+sα+1
2

∫ ∞

0
y2mr+sαe–y2

dy, (22)

I13 =
(
Qnm+1/2)r

(
4
rn

) 2mr+(s+1)α+1
2

∫ ∞

0

(Tα
0 φ)(s+1)(ζ )

α(s+1)(s + 1)!
y2mr+(s+1)αe–y2

dy, (23)

where

∫ ∞

0
y2mr+sαe–y2

dy =
1
2
Γ

(
mr +

sα + 1
2

)
.

It follows immediately that

I11 =
s–1∑
k=0

ck

(
1

22m+1Γ (m + 1/2)

)r

nr–kα–1
(

4
r

) 2mr+kα+1
2

∫ ∞

0
y2mr+kαe–y2

dy.

Now taking the neutrix limit with

μ = 1, λ = r – kα – 1 > 0 for all k = 0, . . . , s – 1,

we conclude that

N- lim
n→∞ I11 = 0. (24)
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Since φ(x) ∈D(R), there exists M2 > 0 such that supx∈R |(Tα
0 φ)(s+1)(x)| ≤ M2. Thus, it is not

difficult to see that

|I13| ≤ M2

α(s+1)(s + 1)!
(
Qnm+1/2)r

(
4
rn

) 2mr+(s+1)α+1
2

∫ ∞

0
y2mr+(s+1)αe–y2

dy,

and therefore

|I13| → 0 as n → ∞, N- lim
n→∞ I13 = 0.

Now, we have

N- lim
n→∞ I1 =

2(sα–r)

r(mr+ sα+1
2 )

Γ (mr + sα+1
2 )

Γ (m + 1/2)rαss!
(
Tα

0 φ
)(s)(0)

=
(

1
2

)(
1
r

)(m+1/2)r(
Γ ((m + 1/2)r)
(Γ (m + 1/2))r

)
(Tα

0 φ)[ r–1
α ](0)

α[ r–1
α ][ r–1

α
]!

. (25)

Similarly, we have

N- lim
n→∞ I2 = N- lim

n→∞

(∫ +∞

0
δr

n(m, –x)φ(–x) dx
)

, (26)

where

I2 =
∫ ∞

0

(
1

22m+1Γ (m + 1/2)
nm+1/2x2m exp

(
–nx2/4

))r

φ(–x) dx

=
∫ ∞

0
δr

n(m, x)

[ s–1∑
k=0

ck(–1)kαxkα + cs(–1)sαxsα + (–1)(s+1)α (Tα
0 φ)(s+1)(ζ )

α(s+1)(s + 1)!
x(s+1)α

]
dx.

Using similar arguments, we derive that

N- lim
n→∞ I2 = (–1)r–12(2m+1)r

(
1
2

)r+1
Γ ((m + 1/2)r)

(22mΓ (m + 1/2))r

(
1
r

)(m+1/2)r (Tα
0 φ)[ r–1

α ](0)
α[ r–1

α ][ r–1
α

]!
. (27)

Further, it is easily seen that from (18), (25), and (27), we have

(
δr(x),φ(x)

)
= N- lim

n→∞(I1 + I2)

=
(1 + (–1)r–1)
2(r)(m+1/2)r

(
Γ ((m + 1/2)r)
(Γ (m + 1/2))r

)
(Tα

0 φ)[ r–1
α ](0)

α[ r–1
α ][ r–1

α
]!

. (28)

In particular, for r = 1, α = 1,we have

(
δ1(x),φ(x)

)
= φ(0).

For r = 2k, we have

δ2k(x) = 0.
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For r = 2k + 1,

δ2k+1(x) =
((–1)2k + 1)

2(2k)!(2k + 1)(2k+1)(m+1/2)

(
Γ ((2k + 1)(m + 1/2))

(Γ (m + 1/2))2k+1

)
δ(2k)(x)

for all k = 0, 1, 2, . . . . This completes the proof. �

Remark 17 We would like to point out that Theorem 16 is a generalization of Theorem 10
obtained in [9], where the case for r ∈ R is mainly discussed. In both theorems, the even
powers of δ(x) turn out to be zero, while the odd powers are expressible as a constant
multiple of a derivative of δ(x).

We conclude this section by the following example.

Example 18 The choice of α ∈ (0, 1], r, and m in Theorem 16, we have

√
δ(x) = 0, δ2(x) = 0,

and if r = 3, then

δ3(x) =
1

33m+ 3
2

(
Γ (3(m + 1/2))
(Γ (m + 1/2))3

)
(Tα

0 φ)[ 2
α ](0)

α[ 2
α ][ 2

α
]!

.

Using the asymptotic formula (see [21, p. 257])

Γ (pz + q) � √
2πe–pz(pz)pz+q–1/2 for all p > 0, q ∈R, | arg z| < π , (29)

with z = 1, we have

δ3(x) =
m

2π
√

3
(Tα

0 φ)[ 2
α ](0)

α[ 2
α ][ 2

α
]!

.

When α = 1,

δ3(x) =
m

4π
√

3
φ′′(0), m ∈ N.

If r = 3
2 , we have

δ
3
2 (x) = (1 + i)

(
2 3

2 m– 1
4

3 3
2 (m+1/2)

)(
Γ ( 3

2 (m + 1/2))

(Γ (m + 1/2)) 3
2

)
(Tα

0 φ)[ 1
2α ](0)

α[ 1
2α ][ 1

2α
]!

.

From (29), we conclude that

δ
3
2 (x) = (1 + i)

(
1

2
√

3

)(
2m
π

)1/4 (Tα
0 φ)[ 1

2α ](0)
α[ 1

2α ][ 1
2α

]!
.
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4 Defining (δ′)r(x) for all r ∈ R

In this section, we give a definition of (δ′)r(x) for any r ∈ R.

Theorem 19 For any positive integer m, the distribution (δ′)r(x) for r ∈ R is defined by
1. For r = 0 : (δ′)(x) = 1.
2. For r < 1

2 and r 	= 0 : (δ′)r(x) = 0.
3. For r ≥ 1

2 :

(
δ′)r(x) =

(1 + (–1)3r–1)
(Γ (m + 1/2))r

(
1
r

)(m+1/2)r( (Tα
0 φ)[ 2r–1

α ](0)
α[ 2r–1

α ][ 2r–1
α

]!

)
J (r, m), 0 < α ≤ 1,

where J (r, m) is defined below by (36) and Tα
0 is the conformable derivative at a = 0.

In particular, when α = 1, we have for k = 1, 2, . . . (δ′)2k(x) = 0 and

(
δ′)2k+1(x) =

((–1)6k+2 + 1)
(4k + 1)!(Γ (m + 1/2))2k+1

(
1

2k + 1

)(m+1/2)(2k+1)(
δ(4k+1)(x)

)
J (2k + 1, m).

Proof Considering the derivative of the δ-sequence (5), we have

δ′
n(m, x) =

1
22m+1Γ (m + 1/2)

nm+1/2
(

2m –
n
2

x2
)

x2m–1e–nx2/4.

For all r ∈ R, we have

((
δ′)r(x),φ(x)

)
= N- lim

n→∞

∫ +∞

–∞

(
Qnm+1/2)r

(
2m –

n
2

x2
)r

x(2m–1)re–nx2/4φ(x) dx. (30)

Case 1. For r < 0, making the substitution x =
√

– 4
nr y in (30), we have

((
δ′)r ,φ

)
= N- lim

n→∞
(
Qnm+1/2)r

(
–4
rn

) (2m–1)r+1
2

×
∫ b

√
–4
rn

a
√

–4
rn

(
2m –

n
2

(
–4
nr

)
y2

)r

y(2m–1)rey2
φ

(√
–4
rn

y
)

dy.

When n tends to ∞, one has n 2r–1
2 → 0, suppφ ∈ [a, b]. Thus, ((δ′)r(x),φ(x)) = 0. Therefore,

(
δ′)r(x) = 0 for all r < 0.

Case 2. For r = 0, clearly, we have

((
δ′)0(x),φ(x)

)
= N- lim

n→∞

∫ +∞

–∞
φ(x) dx =

(
1,φ(x)

)
.

Thus,

(
δ′)0(t) = 1.
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Case 3. For 0 < r < 1
2 ,

((
δ′)r(x),φ(x)

)
= N- lim

n→∞

∫ +∞

–∞

(
Qnm+1/2)r

(
2m –

n
2

x2
)r

x(2m–1)re–nrx2/4(x) dx.

By making the substitution x =
√

4
nr y, it follows that

((
δ′)r ,φ

)
= N- lim

n→∞
((

δ′
n
)r(x),φ(x)

)

= N- lim
n→∞

(
Qnm+1/2)r

(
4
rn

) (2m–1)r+1
2

×
∫ b

√
4
nr

a
√

4
nr

(
2m –

2
r

y2
)r

y(2m–1)re–y2
φ

(√
4
rn

y
)

dy.

Since

∣∣((δ′
n
)r(x),φ(x)

)∣∣ ≤ M3Q
(

4
r

) (2m–1)r+1
2

nr– 1
2

∫ b
√

4
nr

a
√

4
nr

(
2m –

2
r

y2
)r

y(2m–1)re–y2
dy → 0,

as n → ∞,where M3 = supx∈R |φ(x)|, we deduce that

(
δ′)r(x) = 0 for all 0 < r <

1
2

.

Case 4. For r ≥ 1
2 ,

(
δ′)r(x),φ(x)) = N- lim

n→∞
(
δ′

n
)r(x),φ(x)) = N- lim

n→∞

∫ +∞

–∞

(
δ′

n
)r(x)φ(x) dx

= N- lim
n→∞

(∫ +∞

0

(
δ′

n
)r(x)φ(x) dx +

∫ 0

–∞

(
δ′

n
)r(x)φ(x) dx

)

= N- lim
n→∞

(∫ +∞

0

(
δ′

n
)r(x)φ(x) dx +

∫ +∞

0

(
δ′

n
)r(–x)φ(–x) dx

)

= N- lim
n→∞(J1 + J2), (31)

where

J1 =
∫ +∞

0

(
δ′

n
)r(x)φ(x) dx

=
∫ +∞

0

(
Qnm+1/2)r

(
2m –

n
2

x2
)r

x(2m–1)re–nrx2/4φ(x) dx.

By the generalized Taylor’s formula from (11), we obtain

J1 =
∫ +∞

0

(
δ′)r(x)

[ s–1∑
k=0

ckxkα + csxsα +
(Tα

0 φ)(s+1)(ζ )
α(s+1)(s + 1)!

x(s+1)α

]
dx

:= J11 + J12 + J13. (32)
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Setting x =
√

4
rn y again, we get

J11 =
s–1∑
k=0

ck
(
Qnm+1/2)r

(
4
rn

) (2m–1)r+kα+1
2

∫ +∞

0

(
2m –

2
r

y2
)r

y(2m–1)r+kαe–y2
dy, (33)

J12 = cs
(
Qnm+1/2)r

(
4
rn

) (2m–1)r+sα+1
2

∫ ∞

0

(
2m –

2
r

y2
)r

y(2m–1)r+sαe–y2
dy, (34)

J13 =
(
Qnm+1/2)r

(
4
rn

) β+1
2

∫ ∞

0

(
2m –

2
r

y2
)r (Tα

0 φ)(s+1)(ζ )
α(s+1)(s + 1)!

yβe–y2
dy, (35)

where

β = (2m – 1)r + (s + 1)α.

When sα = 2r – 1, we define the function

J (r, m) =
∫ ∞

0

(
2m –

2
r

y2
)r

y(2m+1)r–1e–y2
dy = 23+re–mrmr v1 + v2 + v3

v0
, (36)

where

v1 = r
(

–
1

mr

) 1
2 +r

Γ (–r)Γ
(
(m + 3/2)r

)((
3
4

+ m
)

r – m –
1
2

)(
1 + (m + 3/2)

)
h1,

h1 = hypergeom
([

1 – (m + 1/2)r
]
,
[
3 – (m + 3/2)r

]
, mr

)
,

and

v2 =
1
4

(
–

1
mr

) 1
2 –(2m+1)r

Γ
(
–(m + 3/2)r

)((
(3 + 2m)r

)2 – 6(3 + 2m)r + 8
)
[h21 + h22],

where

h21 = r(m + 1)Γ
(
(m + 1/2)r

)
hypergeom

(
[1 + r],

[
2 + (m + 3/2)r

]
, mr

)
,

h22 =
(
1 + (m + 1/2)r

)
Γ

(
(m + 1/2)r

)
hypergeom

(
[r],

[
2 + (m + 3/2)r

]
, mr

)
,

and

v3 =
3
2

(
–

1
mr

) 1
2 +r

Γ (–r)Γ
(
(m + 3/2)r

)(
r –

2
3

)(
1 + (m + 3/2)r

)
(r – 2)h3,

h3 = hypergeom
([

–(m + 1/2)r
]
,
[
3 – (m + 3/2)r

]
, mr

)
,

and

v0 =
(

–
1

mr

) 1
2
Γ (–r)

(
2
(
(3 + 2m)r

)3 – 8
(
(3 + 2m)r

)2 – 8(3 + 2m)r + 32
)
.
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From (33), we have

J11 =
s–1∑
k=0

ckQrnr– kα+1
2

(
4
r

) (2m–1)r+kα+1
2

∫ ∞

0

(
2m –

2
r

y2
)r

y(2m–1)r+kαe–y2
dy. (37)

Using the neutrix limit, we have

N- lim
n→∞ J11 = 0, (38)

when μ = 1 and λ = 2r – kα – 1 > 0. Since φ(x) ∈D(R), there exists a positive real M4 such
that supx∈R+ |(Tα

0 φ)(s+1)(x)| ≤ M4. Note that if y is fixed and n tends to infinity, we have

|J13| ≤ M4

α(s+1)(s + 1)!
(
Qnm+1/2)r

(
4
rn

) β+1
2

∫ ∞

0

(
2m –

2
r

y2
)r

yβe–y2
dy

=
M4Qr( 4

r )
β+1

2

α(s+1)(s + 1)!
nr– (s+1)α+1

2

∫ ∞

0

(
2m –

2
r

y2
)r

yβe–y2
dy → 0,

with sα = 2r – 1, s ∈ Z+, and 0 < α ≤ 1. Thus, we conclude that

N- lim
n→∞ J13 = 0. (39)

For J12, we use formula (36) to imply that

J12 = cs
(
Qnm+1/2)r

(
4
rn

) (2m–1)r+sα+1
2

J (sα + 1, m). (40)

Thus,

J12 =
(

1
22m+1Γ (m + 1/2)

)r(4
r

) (2m–1)r+sα+1
2

(
(Tα

0 φ)[ 2r–1
α ](0)

α[ 2r–1
α ][ 2r–1

α
]!

)
J (sα + 1, m). (41)

It follows from (32), (38), (39), and (41) that

N- lim
n→∞ J1 =

(
1

22m+1Γ (m + 1/2)

)r(4
r

) (2m–1)r+2r
2

(
(Tα

0 φ)[ 2r–1
α ](0)

α[ 2r–1
α ][ 2r–1

α
]!

)
J (r, m). (42)

A similar treatment for

J2 =
∫ +∞

0

(
δ′)r(–x)

[ s–1∑
k=0

ck(–x)kα + csα
s (–x)s +

(Tα
0 φ)(s+1)(ζ )

α(s+1)(s + 1)!
(–x)(s+1)α

]
dx. (43)

The proof of (43) is similar to the one of (42).

N- lim
n→∞ J2 = (–1)sα

(
1

22m+1Γ (m + 1/2)

)r(4
r

) (2m–1)r+sα+1
2

×
(

(Tα
0 φ)[ 2r–1

α ](0)
α[ 2r–1

α ][ 2r–1
α

]!

)
J (sα + 1, m). (44)
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Finally, from (42) and (44), we have

(
δ′)r(x),φ(x)) = N- lim

n→∞
(
δ′

n
)r(x),φ(x))

=
(1 + (–1)3r–1)

(22m+1Γ (m + 1/2))r

(
4
r

) (2m+1)r
2

(
(Tα

0 φ)[ 2r–1
α ](0)

α[ 2r–1
α ][ 2r–1

α
]!

)
J (r, m). (45)

In particular, for r = 1 and α = 1, we have

((
δ′)(x),φ(x)

)
=

(
(1 + (–1)3–1)

22m+1Γ (m + 1/2)

)(
4

(2m+1)
2

)(
–

1
2
Γ (m + 1/2)

)
φ′(0)

= –φ′(0).

It follows that

(
δ′)2k(x) = 0 for k = 1, 2, . . . .

When α = 1, we have

(
δ′)2k+1(x) =

((–1)6k+2 + 1)
(4k + 1)!(Γ (m + 1/2))2k+1

(
1

2k + 1

)(m+1/2)(2k+1)(
δ(4k+1)(x)

)
J (2k + 1, m)

for all k = 0, 1, 2, . . . . This completes the proof. �

Remark 20 We should note that Theorem 19 is the generalization of Theorem 11 in [9],
where the case for r ∈R is mainly considered. In both theorems, the even powers of δ′(x)
turn out to be zero, while the odd powers are expressible as a constant multiple of a deriva-
tive of δ(x).

We end this section by the following example.

Example 21 The choice of α ∈ (0, 1], r, and m in Theorem 19, we have

(
δ′)3(x) =

2
(Γ (m + 1/2))3

(
1
3

)3(m+1/2)( (Tα
0 φ)[ 5

α ](0)
α[ 5

α ][ 5
α

]!

)
J (3, m).

Using formula (29) with z = 1, we have

δ′)3(x) = –
m(52m + 35)

18π
√

3

(
(Tα

0 φ)[ 5
α ](0)

α[ 5
α ][ 5

α
]!

)
.

When α = 1,

(
δ′)3(x) = –

m(52m + 35)
2160π

√
3

δ(5)(x).
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5 Defining δr(xλ) for all r ∈R, λ ∈R
∗
+

Theorem 22 (Generalization of Theorem 10) For any positive integer m and λr – ρ ≥ 0:

(
δr(xλ

)
,φ

(
xρ

))
=

ρ2(1 + (–1)
λr–ρ

ρ )
2λ2(2m+1)r

Γ ((m + 1/2)r)
(Γ (m + 1/2))r

(
4
r

)(m+1/2)r (Tα
0 φ)[ λr–ρ

αρ ](0)

(αρ)[ λr–ρ
αρ ][ λr–ρ

αρ
]!

,

where λ,ρ ∈ R
∗
+, α ∈ (0, 1] and Tα

0 is the conformable derivative at a = 0 and [r] is the
smallest integer greater than or equal to r. In particular, for r = 1, ρ = 1, α = 1, we have
when λ = 2k, δ(x2k) = 0 for k = 1, 2, . . . and when λ = 2k + 1, for k = 0, 1, 2, . . . ,

δ
(
x2k+1) =

1
(2k + 1)(2k)!

φ(2k)(0).

Proof For all r,λ,ρ ∈R
∗
+,

(
δr(xλ

)
,φ

(
xρ

))
= N- lim

n→∞
(
δr

n
(
m, xλ

)
,φ

(
xρ

))

= N- lim
n→∞

∫ +∞

–∞

(
nm+1/2

22m+1Γ (m + 1/2)
x2λme–nx2λ/4

)r

φ
(
xρ

)
dx. (46)

Setting

y = xρ ,

we obtain

(
δr(xλ

)
,φ

(
xρ

))
= N- lim

n→∞

∫ +∞

–∞
ρ

(
nm+1/2

22m+1Γ (m + 1/2)

)r

y
2λmr+sαρ+ρ–1

ρ e– nr
4 y

2λ
ρ )φ(y) dy.

Making the change of variables

nr
4

y
2λ
ρ = z

2λ
ρ 
⇒ y =

(
4
nr

) ρ
2λ

z,

we get

(
δr(xλ

)
,φ

(
xρ

))
= N- lim

n→∞

∫ +∞

–∞
ρ

(
nm+1/2

22m+1Γ (m + 1/2)

)r

z
2λmr+sαρ+ρ–1

ρ e–z
2λ
ρ )φ(z) dz. (47)

Setting

sα =
λr – 2ρ + 1

ρ
,

we obtain

∫ +∞

0
z

2mλr+sαρ+ρ–1
ρ e–z2λ

dz =
ρ

2λ
Γ

(
(m + 1/2)r

)
. (48)
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Using the arguments similar to those in the proofs of the previous theorems, we reach

(
δr(xλ

)
,φ

(
xρ

))
=

ρ2(1 + (–1)
λr–ρ

ρ )
2λ2(2m+1)r

Γ ((m + 1/2)r)
(Γ (m + 1/2))r

(
4
r

)(m+1/2)r (Tα
0 φ)[ λr–ρ

αρ ](0)

(αρ)[ λr–ρ
αρ ][ λr–ρ

αρ
]!

.

In particular, for r = 1, λ = 1, α = 1, ρ = 1, we have

(
δ1(x),φ(x)

)
= φ(0),

for λ = 2k, it reads

δr(x2k) = 0,

and for λ = 2k + 1,

(
δr(x2k+1),φ(x)

)
=

ρ2(1 + (–1)
(2k+1)r–ρ

ρ )
2(2k + 1)2(2m+1)r

Γ ((m + 1/2)r)
(Γ (m + 1/2))r

(
4
r

)(m+1/2)r

× (Tα
0 φ)[ (2k+1)r–ρ

αρ ](0)

(αρ)[ (2k+1)r–ρ
αρ ][ (2k+1)r–ρ

αρ
]!

for all k = 0, 1, 2, . . . . �

Example 23 Using formula (29) with z = 1,we have

(
δr(xλ

)
,φ

(
xρ

))
=

ρ2(1 + (–1)
λr–ρ

ρ )
2λ2(2m+1)r

Γ ((m + 1/2)r)
(Γ (m + 1/2))r

(
4
r

)(m+1/2)r (Tα
0 φ)[ λr–ρ

αρ ](0)

(αρ)[ λr–ρ
αρ ][ λr–ρ

αρ
]!

.

If r = 1, λ = 1, ρ = 1,

(
δ(x),φ(x)

)
= φ(0).

If r = 1, λ = 2, ρ = 1,

(
δ
(
x2),φ(x)

)
= 0. (49)

If r = 1, λ = 3, ρ = 1, α = 1,

(
δ
(
x3),φ(x)

)
=

1
3

(Tα
0 φ)[ λr–ρ

αρ ](0)

(αρ)[ λr–ρ
αρ ][ λr–ρ

αρ
]!

=
1
6
φ′′(0). (50)

If r = 1, λ = 3, ρ = 3, α = 1,

(
δ
(
x3),φ

(
x3)) = 3φ(0).

Remark 24 (49) was found in [8] and [22], and (50) was found in [22].
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Remark 25 We would like to point out that Theorem 22 is the generalization of Theo-
rem 10 obtained in [9], where the case for r ∈R is mainly discussed.

We would like to mention that one can also find ln(δ(x)) using the δ-sequence and the
neutrix limit to derive the following identity:

ln δ(x) = ln

(
1

22m+1Γ (m + 1/2)

)
+ ln x2m. (51)

Indeed,

(
ln δ(x),φ(x)

)

= N- lim
n→∞

(
ln δn(x),φ(x)

)

= N- lim
n→∞

(
ln

(
1

22m+1Γ (m + 1/2)
nm+1/2x2me–nx2/4

)
,φ(x)

)

= N- lim
n→∞

((
ln

(
1

22m+1Γ (m + 1/2)

)
+ ln nm+1/2 + ln x2m + ln e–nx2/4

)
,φ(x)

)

= N- lim
n→∞

(
ln

(
1

22m+1Γ (m + 1/2)

)
+ ln x2m,φ(x)

)

=
(

ln

(
1

22m+1Γ (m + 1/2)

)
+ ln x2m,φ(x)

)
.

6 Conclusion
The powers of the delta function and its derivatives have potential applications in ele-
mentary physics and quantum mechanics. In addition, finding such powers is a difficult
task. In this manuscript we used a certain δ-sequence, neutrix limits, and the conformable
derivatives to define powers of the δ function and its derivatives. Some results obtained
in the manuscript are generalizations of some results found in the literature. However, it
might be very interesting if the recently introduced fractional derivatives with nonsingular
kernels were used to define the powers of δ-function.
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