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1 Introduction
In the past two decades, there has been tremendous interest in studying fractional differ-
ential equations (FDEs for short) due to their extensive applications in various fields of
engineering and scientific disciplines (see [1–8]). For example, in [8], Laskin proposed the
following fractional stochastic dynamic model for the considered market:

⎧
⎨

⎩

Dμ
0+x(t) = λx(t) + F(t), 0 < μ ≤ 1,

Dμ–1
0+ x(0) = x0,

where Dμ
0+ is the standard Riemann–Liouville fractional derivative of order μ, λ and F(t)

respectively denote the expected rate and the random force.
As an important issue for the theory of FDEs, the existence, uniqueness, and multiplicity

of solutions for the nonlinear fractional initial value problems (FIVPs for short) and frac-
tional boundary value problems (FBVPs for short) have attracted scholars’ attention. For
some recent work on the topic, see papers [9–19], monographs [1, 2, 20, 21], and the refer-
ences therein. In particular, many researchers focused on studying the FDEs with periodic
boundary conditions (PBCs for short) (see [22–30]).
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In [22], Cabada and Kisela discussed the following FDE with PBC:

⎧
⎨

⎩

Dα
0+u(t) – λu(t) = f (t, t1–αu(t)), 0 < α ≤ 1,

limt→0+ t1–αu(t) = u(1),

where λ �= 0(λ ∈ R), Dα
0+ is the standard Riemann–Liouville fractional derivative of order

α. The existence results were based on the fixed point theorems and monotone iterative
technique.

In [23], Staněk dealt with the following FDE with PBC:

⎧
⎨

⎩

cDαu(t) + q(t, u(t))cDβu(t) = f (t, u(t)), 0 < β < α ≤ 1,

u(0) = u(T), T > 0,

where cD(·) is the Caputo fractional derivative of fractional order. The existence, multiplic-
ity, and uniqueness results were proved by the Schauder fixed point theorem.

Recently, some scholars have considered very interesting aspects of IVPs and BVPs for
the implicit FDEs (see [29–39]). For example, Nieto, Ouahab, and Venktesh [32] investi-
gated a class of implicit FIVP:

⎧
⎨

⎩

cDαy(t) = f (t, y(t), cDαy(t)), t ∈ J , 0 < α < 1,

y(0) = y0,

where J = [0, b], b > 0, cDα is the Caputo fractional derivative of order α, and f : J ×R
2 →

R is a continuous function. By using fixed point theory and approximation method, the
existence and uniqueness results were obtained.

In [29], Benchohra, Bouriah, and Graef studied the following implicit FDE with PBC:

⎧
⎨

⎩

cDαy(t) = f (t, y(t), cDαy(t)), t ∈ J , 0 < α ≤ 1,

y(0) = y(T), T > 0,

where J = [0, T], cDα is the Caputo fractional derivative of order α and f : J × R
2 → R is

a continuous function. Applying the coincidence degree theory, an existence result was
given.

In [33], Ali, Zada, and Shah proved the existence and uniqueness of the solutions for the
following implicit FDEs with three-point BCs:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDpy(t) – f (t, z(t), cDpy(t)) = 0, p ∈ (2, 3], t ∈ [0, 1],
cDqz(t) – g(t, y(t), cDqz(t)) = 0, q ∈ (2, 3], t ∈ [0, 1],

y′(t)|t=0 = y′′(t)|t=0, y(t)|t=1 = λy(η), λ,η ∈ (0, 1),

z′(t)|t=0 = z′′(t)|t=0, z(t)|t=1 = λz(η), λ,η ∈ (0, 1),

where cD(·) is the Caputo fractional derivative of fractional order and f , g : J ×R
2 →R are

continuous functions. The results were accomplished by means of the Leray–Schauder
fixed point theorem and Banach contraction principle.
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Inspired by the above work, in this paper we are mainly concerned with the existence
and uniqueness of solutions for the following coupled system of nonlinear implicit FDEs
with PBCs:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+x(t) = f (t, t1–βy(t), Dβ

0+y(t)), t ∈ [0, 1], 0 < α,β ≤ 1,

Dβ
0+y(t) = g(t, t1–αx(t), Dα

0+x(t)),

limt→0+ t1–αx(t) = x(1), limt→0+ t1–βy(t) = y(1),

(1.1)

where D(·)
0+ is the standard Riemann–Liouville fractional derivative of fractional order, f , g :

[0, 1] ×R
2 → R are two continuous functions. To state our main results, we assume that

the nonlinear terms f and g satisfy the following general conditions:
(A1) There exist nonnegative continuous functions γi(t),ηi(t),ωi(t), i = 1, 2, such that, for

any t ∈ [0, 1], ui, vi ∈R, (i = 1, 2),

∣
∣f

(
t, t1–βu1, v1

)∣
∣ ≤ γ1(t)

∣
∣t1–βu1

∣
∣ + η1(t)|v1| + ω1(t),

∣
∣g

(
t, t1–αu2, v2

)∣
∣ ≤ γ2(t)

∣
∣t1–αu2

∣
∣ + η2(t)|v2| + ω2(t).

(A2) There exist nonnegative continuous functions pi(t), qi(t), i = 1, 2, such that, for any
t ∈ [0, 1], uij, vij ∈R, (i, j = 1, 2),

∣
∣f

(
t, t1–βu11, v11

)
– f

(
t, t1–βu12, v12

)∣
∣ ≤ p1(t)t1–β |u11 – u12| + q1(t)|v11 – v12|,

∣
∣g

(
t, t1–αu21, v21

)
– g

(
t, t1–αu22, v22

)∣
∣ ≤ p2(t)t1–α|u21 – u22| + q2(t)|v21 – v22|.

(A3) There exist constants a, c > 0, b, d ≥ 0 such that, for any t ∈ [0, 1], uij, vij ∈ R, (i, j =
1, 2),

∣
∣f

(
t, t1–βu11, v11

)
– f

(
t, t1–βu12, v12

)∣
∣ ≥ at1–β |u11 – u12| – b|v11 – v12|,

∣
∣g

(
t, t1–αu21, v21

)
– g

(
t, t1–αu22, v22

)∣
∣ ≥ ct1–α|u21 – u22| – d|v21 – v22|.

Remark 1.1 Condition (A2) implies condition (A1).

The objective of this paper is twofold. The first one is to study the existence solutions for
BVP (1.1), the other is to consider the uniqueness of solution for (1.1). Our work presented
in this paper has the following features. Firstly, this article generalizes the results of papers
[29, 30] into coupled systems. Secondly, compared with [29, 30], we not only discuss the
existence result but also establish the uniqueness result. In addition, the existence results
of papers [29, 30] are based on condition (A2), in our paper the existence result can also
be obtained under condition (A1). Thirdly, we present two prior estimation ways in using
Theorem 2.1 (see Sect. 2) to establish the existence results. It should be pointed out that a
number of papers by applying Theorem 2.1 to solve fractional resonance boundary value
problems usually used the second way (see Lemma 3.4 in Sect. 3) to estimate the prior
bounds. For example [40–43]. Our results show that the first way is better than the second.
We finally remark that our paper investigates the FBVP in the frame of Riemann–Liouville
fractional derivative which is more complicated than such a problem involving Caputo
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fractional derivative, and if α = β = 1, then BVP (1.1) can be reduced to the implicit first
order differential systems with PBCs.

The rest of this paper is built up as follows. We devote Sect. 2 to recalling some pre-
liminary definitions and lemmas. We establish the existence and uniqueness theorems for
problem (1.1) in Sect. 3. In order to fully explain our main results, we provide three exam-
ples in Sect. 4. Finally, we present some conclusions in Sect. 5.

2 Preliminaries
In this section, we recall some basic definitions, lemmas, and theorems which are used
throughout this paper. Firstly, we introduce some definitions and results on fractional cal-
culus [1, 2, 44].

Definition 2.1 The Riemann–Liouville fractional integral of order α > 0 for a function
x : R+ →R is given by

Iα
0+x(t) =

1
Γ (α)

∫ t

0
(t – s)α–1x(s) ds,

provided that the right-hand side integral is pointwise defined on (0, +∞).

Definition 2.2 The Riemann–Liouville fractional derivative of order α > 0 for a function
x : R+ →R is given by

Dα
0+x(t) =

dn

dtn In–α
0+ x(t) =

1
Γ (n – α)

dn

dtn

∫ t

0
(t – s)n–α–1x(s) ds,

where n = [α] + 1, provided that the right-hand side integral is pointwise defined on
(0, +∞).

Lemma 2.1 Let α > 0. If x, Dα
0+x ∈ L1(0, 1), then

Iα
0+Dα

0+x(t) = x(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where n = [α] + 1, ci ∈R(i = 1, 2, . . . , n) are arbitrary constants.

Lemma 2.2 Let α > β > 0. If x ∈ L1(0, 1), then

Iα
0+Iβ

0+x(t) = Iα+β
0+ x(t), Dβ

0+Iα
0+x(t) = Iα–β

0+ x(t),

in particular Dα
0+Iα

0+x(t) = x(t).

Lemma 2.3 (see [44]) If α > 0, λ > –1, t > 0, then

Iα
0+tλ =

Γ (λ + 1)
Γ (λ + 1 + α)

tα+λ, Dα
0+tλ =

Γ (λ + 1)
Γ (λ + 1 – α)

tλ–α ,

in particular Dα
0+tα–m = 0, m = 1, 2, . . . , n, where n = [α] + 1.
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We recall now the basic knowledge on the coincidence degree theory. For more details,
we refer the readers to [45–47].

Let (X,‖ · ‖X) and (Y ,‖ · ‖Y ) be two real Banach spaces. Suppose L : dom L ⊂ X → Y is a
Fredholm operator with index zero, then there exist two continuous projectors P : X → X
and Q : Y → Y such that

Im P = Ker L, Im L = Ker Q, X = Ker L ⊕ Ker P, Y = Im L ⊕ Im Q,

and L|domL ∩ Ker P : dom L → Im L is invertible. We denote by KP = (L|dom L∩Ker P)–1. Let
Ω be an open bounded subset of X and dom L ∩ Ω̄ �= ∅. The map N : X → Y is called
L-compact on Ω̄ if QN(Ω̄) is bounded and KP(I – Q)N : Ω̄ → X is compact.

Theorem 2.1 Let L : dom L ⊂ X → Y be a Fredholm operator of index zero and N : X → Y
be L-compact on Ω̄ . If the following conditions are satisfied:

(i) Lu �= λNu for any u ∈ (dom L\Ker L) ∩ ∂Ω , λ ∈ (0, 1);
(ii) Nu /∈ Im L for any u ∈ Ker L ∩ ∂Ω ;

(iii) deg{QN |Ker L,Ω ∩ Ker L, 0} �= 0;
then the equation Lx = Nx has at least one solution in dom L ∩ Ω̄ .

Theorem 2.2 Let L : dom L ⊂ X → Y be a Fredholm operator of index zero, Ω ⊂ X be
an open bounded set symmetric with 0 ∈ Ω and N : Ω̄ → Y is L-compact. If Lx – Nx �=
λ(–Lx–N(–x)) for all (λ, x) ∈ (0, 1]×dom L∩∂Ω , then Lx = Nx has a solution in dom L∩Ω̄ .

3 Main results
Take

X1 =
{

x : t1–αx, Dα
0+x ∈ C[0, 1]

}
, X2 =

{
y : t1–βy, Dβ

0+y ∈ C[0, 1]
}

,

endowed with the norms

‖x‖X1 =
∥
∥t1–αx

∥
∥∞ +

∥
∥Dα

0+x
∥
∥∞, ‖y‖X2 =

∥
∥t1–βy

∥
∥∞ +

∥
∥Dβ

0+y
∥
∥∞,

respectively, where ‖ · ‖∞ = maxt∈[0,1] | · |. We can easily check that (X1,‖ · ‖X1 ) and (X2,
‖ · ‖X2 ) are two Banach spaces. Let Z1 = C[0, 1] with norm ‖z‖Z1 = maxt∈[0,1] |z(t)|. Ac-
cording to the basic theory of functional analysis, we have X = X1 × X2 and Z = Z1 × Z1

are also Banach spaces, respectively, with the norms

∥
∥(x, y)

∥
∥

X = max
{‖x‖X1 ,‖y‖X2

}
,

∥
∥(u, v)

∥
∥

Z = max
{‖u‖Z1 ,‖v‖Z1

}
.

Define the linear operators Li : dom Li ⊂ Xi → Z1(i = 1, 2) and the nonlinear operators
N1 : X2 → Z1, N2 : X1 → Z1 by

L1x(t) = Dα
0+x(t), x(t) ∈ dom L1, N1y(t) = f

(
t, t1–βy(t), Dβ

0+y(t)
)
, y(t) ∈ X2,

L2y(t) = Dβ
0+y(t), y(t) ∈ dom L2, N2x(t) = g

(
t, t1–αx(t), Dα

0+x(t)
)
, x(t) ∈ X1,
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where

dom L1 =
{

x ∈ X1 : lim
t→0+

t1–αx(t) = x(1)
}

, dom L2 =
{

y ∈ X2 : lim
t→0+

t1–βy(t) = y(1)
}

.

Define the linear operator L : dom L ⊂ X → Z and the nonlinear operator N : X → Z by

L(x, y) = (L1x, L2y), (x, y) ∈ dom L,

N(x, y) = (N1y, N2x), (x, y) ∈ X,

where

dom L =
{

(x, y) ∈ X : x ∈ dom L1, y ∈ dom L2
}

.

Then the coupled system of BVP (1.1) is equivalent to the operator equation L(x, y) =
N(x, y), (x, y) ∈ dom L.

Lemma 3.1 The mapping L : dom L ⊂ X → Z is a Fredholm operator with index zero.

Proof First, we claim that the operator L satisfies

Ker L =
{

(x, y) ∈ dom L : x(t) = c1tα–1, y(t) = c2tβ–1, c1, c2 ∈ R
} ∼= R

2, (3.1)

Im L =
{

(u, v) ∈ Z :
∫ 1

0
(1 – s)α–1u(s) ds = 0,

∫ 1

0
(1 – s)β–1v(s) ds = 0

}

. (3.2)

In fact, by Lemma 2.1, it can easily be checked that (3.1) holds. For any (u, v) ∈ Im L,
there exists (x, y) ∈ dom L such that Dα

0+x(t) = u(t), Dβ
0+y(t) = v(t). Using Lemma 2.1 and

the boundary conditions in (1.1), we find

∫ 1

0
(1 – s)α–1u(s) ds = 0,

∫ 1

0
(1 – s)β–1v(s) ds = 0.

(3.3)

That is,

Im L ⊂
{

(u, v) ∈ Z :
∫ 1

0
(1 – s)α–1u(s) ds = 0,

∫ 1

0
(1 – s)β–1v(s) ds = 0

}

.

Conversely, for any (u, v) ∈ Z satisfying (3.3), take x(t) = Iα
0+u(t) and y(t) = Iβ

0+v(t), then we
have

lim
t→0+

t1–αx(t) = lim
t→0+

t1–αIα
0+u(t) = 0 = x(1) =

1
Γ (α)

∫ 1

0
(1 – s)α–1u(s) ds,

lim
t→0+

t1–βy(t) = lim
t→0+

t1–β Iβ
0+v(t) = 0 = y(1) =

1
Γ (β)

∫ 1

0
(1 – s)β–1v(s) ds,



Zhang et al. Advances in Difference Equations        (2018) 2018:413 Page 7 of 28

and

(x, y) ∈ X, L(x, y) = (L1x, L2y) = (u, v),

which shows (u, v) ∈ Im L. Therefore, (3.2) holds.
Second, we prove that ind L = dim Ker L – co dim Im L = 0. Define the linear operators

Qi : Z1 → Z1(i = 1, 2) and Q : Z → Z by

Q1u = α

∫ 1

0
(1 – s)α–1u(s) ds,

Q2v = β

∫ 1

0
(1 – s)β–1v(s) ds,

Q(u, v) = (Q1u, Q2v).

Evidently, Q1, Q2, Q are continuous operators and Im L = Ker Q. For any (u, v) ∈ Z, we have

Q2
1u = Q1(Q1u) = (Q1u)α

∫ 1

0
(1 – s)α–1 ds = Q1u,

Q2
2v = Q2(Q2v) = (Q2v)β

∫ 1

0
(1 – s)β–1 ds = Q2v,

Q2(u, v) = Q
(
Q(u, v)

)
= Q(Q1u, Q2v) =

(
Q2

1u, Q2
2v

)
= Q(u, v).

Thus, Q is a continuous linear projector. For (u, v) ∈ Z, set (u1, v1) = (u, v) – Q(u, v), then
Q(u1, v1) = Q(u, v) – Q2(u, v) = 0, i.e., (u1, v1) ∈ Ker Q = Im L. So, Z = Im L + Im Q. Besides,
for every (u, v) ∈ Im L ∩ Im Q, we have (u, v) = Q(u, v) = (0, 0). Therefore, Z = Im L ⊕ Im Q.
Furthermore, dim Ker L = dim Im Q = co dim Im L = 2, which means L is a Fredholm oper-
ator with index zero. �

Lemma 3.2 Define the linear operator KP : Im L → dom L ∩ Y by

KP(u, v) =
(
Iα

0+u, Iβ
0+v

)
, (u, v) ∈ Im L.

Then KP is the inverse of L|dom L∩Y and satisfies

∥
∥KP(u, v)

∥
∥

X ≤ �
∥
∥(u, v)

∥
∥

Z for all (u, v) ∈ Im L,

where

Y =
{

(x, y) ∈ X : lim
t→0+

t1–αx(t) = 0, lim
t→0+

t1–βy(t) = 0
}

,

� = max

{

1 +
1

Γ (α + 1)
, 1 +

1
Γ (β + 1)

}

.

Proof Define the linear operators Pi : Xi → Xi (i = 1, 2) and P : X → X by

P1x =
[

lim
t→0+

t1–αx(t)
]

tα–1,
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P2y =
[

lim
t→0+

t1–βy(t)
]
tβ–1,

P(x, y) = (P1x, P2y), (x, y) ∈ X.

We first claim that P is a continuous linear projector operator. In fact, for any (x, y) ∈ X,
we have

P2
1x = P1(P1x) =

[
lim

t→0+
t1–αP1x(t)

]
tα–1 =

[
lim

t→0+
t1–αx(t)

]
tα–1 = P1x,

P2
2y = P2(P2y) =

[
lim

t→0+
t1–βP2y(t)

]
tβ–1 =

[
lim

t→0+
t1–βy(t)

]
tβ–1 = P2y,

P2(x, y) = P
(
P(x, y)

)
= P(P1x, P2y) =

(
P2

1x, P2
2y

)
= (P1x, P2y) = P(x, y),

and

t1–αP1x = lim
t→0+

t1–αx(t), t1–βP2y = lim
t→0+

t1–βy(t).

By Lemma 2.3, we also have

Dα
0+P1x(t) = Dβ

0+P2y(t) = 0.

Then

∥
∥P(x, y)

∥
∥

X =
∥
∥(P1x, P2y)

∥
∥

X = max
{‖P1x‖X1 ,‖P2y‖X2

}

= max
{∣
∣
∣ lim
t→0+

t1–αx(t)
∣
∣
∣,

∣
∣
∣ lim
t→0+

t1–βy(t)
∣
∣
∣

}
.

Thus, P : X → X is a bounded linear projector operator, and it is evident that Im P =
Ker L, Y = Ker P.

Next, we show that KP = (L|dom L∩Ker P)–1. In fact, for any (u, v) ∈ Im L, by the definition
of KP , we can check that KP(u, v) ∈ dom L ∩ Ker P, that is, KP is well defined on Im L. On
the one hand, by Lemma 2.2, we have

(LKP)
(
u(t), v(t)

)
=

(
Dα

0+Iα
0+u(t), Dβ

0+Iβ
0+v(t)

)
=

(
u(t), v(t)

)
.

On the other hand, for every (x(t), y(t)) ∈ dom L ∩ Ker P, by Lemma 2.1, we get

(KPL)
(
x(t), y(t)

)
=

(
Iα

0+Dα
0+x(t), Iβ

0+Dβ
0+y(t)

)

=
(
x(t) + c1tα–1, y(t) + c2tβ–1), (c1, c2) ∈R

2.

Because (KPL)(x(t), y(t)) ∈ Ker P and (c1tα–1, c2tβ–1) ∈ Ker L = Im P, we can obtain

(0, 0) = P
[
(KPL)

(
x(t), y(t)

)]
= P

(
x(t) + c1tα–1, y(t) + c2tβ–1)

=
(
P1x(t) + c1tα–1, P2y(t) + c2tβ–1) =

(
c1tα–1, c2tβ–1).
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Thus, (KPL)(x(t), y(t)) = (x(t), y(t)). Therefore, KP = (L|dom L∩Ker P)–1. Again by Lemma 2.2,
for all (u, v) ∈ Im L, we have

∥
∥KP(u, v)

∥
∥

X = max
{∥
∥Iα

0+u
∥
∥

X1
,
∥
∥Iβ

0+v
∥
∥

X2

}

= max
{∥
∥t1–αIα

0+u
∥
∥∞ + ‖Dα

0+Iα
0+u‖∞,‖t1–β Iβ

0+v‖∞ + ‖Dβ
0+Iβ

0+v‖∞
}

≤ max

{(

1 +
1

Γ (1 + α)

)

‖u‖∞,
(

1 +
1

Γ (1 + β)

)

‖v‖∞
}

≤ max
{
�‖u‖∞,�‖v‖∞

}
= �

∥
∥(u, v)

∥
∥

Z .

This completes the proof of Lemma 3.2. �

Lemma 3.3 Assume that (A2) holds, Ω ⊂ X is an open bounded subset with dom L∩Ω̄ �= ∅.
Then N is L-compact on Ω̄ .

Proof Since f , g : [0, 1] × R
2 → R are continuous and satisfy (A2), we claim that QN(Ω̄)

and (I – Q)N(Ω̄) are uniformly bounded. In fact, for Ω is bounded in X, there exists a con-
stant r > 0 such that ‖(x, y)‖X ≤ r, ∀(x, y) ∈ Ω̄ , by (A2), we have the following inequalities:

∣
∣N1y(t)

∣
∣ ≤ ∣

∣f
(
t, t1–βy(t), Dβ

0+y(t)
)

– f (t, 0, 0)
∣
∣ +

∣
∣f (t, 0, 0)

∣
∣

≤ ρ +
(
p1(t)t1–β

∣
∣y(t)

∣
∣ + q1(t)

∣
∣Dβ

0+y(t)
∣
∣
)

≤ ρ + (p1 + q1)r := r1,

∣
∣Q1N1y(t)

∣
∣ ≤ α

∫ 1

0
(1 – s)α–1∣∣N1y(s)

∣
∣ds

≤ r1α

∫ 1

0
(1 – s)α–1 ds = r1,

where ρ = supt∈[0,1] f (t, 0, 0), p1 = supt∈[0,1] p1(t), q1 = supt∈[0,1] q1(t). In the same way, we
have

∣
∣N2x(t)

∣
∣ ≤ 
 + (p2 + q2)r := r2,

∣
∣Q2N2x(t)

∣
∣ ≤ r2,

where 
 = supt∈[0,1] g(t, 0, 0), p2 = supt∈[0,1] p2(t), q2 = supt∈[0,1] q2(t). So we get that

∥
∥QN(x, y)

∥
∥

Z = max
{‖Q1N1y‖Z1 ,‖Q2N2x‖Z1

} ≤ max{r1, r2},
∥
∥(I – Q)N(x, y)

∥
∥

Z ≤ ∥
∥N(x, y)

∥
∥

Z +
∥
∥QN(x, y)

∥
∥

Z ≤ 2 max{r1, r2}.
(3.4)

Use of Lemma 3.2 yields

∥
∥KP(I – Q)N(x, y)

∥
∥

X ≤ �
∥
∥(I – Q)N(x, y)

∥
∥

Z ≤ 2�max{r1, r2}. (3.5)

From (3.4), (3.5) it follows that QN(Ω̄), KP(I – Q)N(Ω̄) are uniformly bounded. Now, we
are going to prove that KP(I – Q)N(x, y) is equicontinuous for all (x, y) ∈ Ω̄ . In fact, take
(x, y) ∈ Ω̄ and 0 ≤ t1 < t2 ≤ 1. Since tα , t are uniformly continuous on [t1, t2] and f (t, u, v),
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g(t, u, v) are uniformly continuous on [t1, t2] × [–r, r] × [–r, r], we have

∣
∣Iα

0+(I – Q1)N1y(t)|t=t1 – Iα
0+(I – Q1)N1y(t)|t=t2

∣
∣

=
1

Γ (α)

∣
∣
∣
∣

∫ t1

0
(t1 – s)α–1(I – Q1)N1y(s) ds –

∫ t2

0
(t2 – s)α–1(I – Q1)N1y(s) ds

∣
∣
∣
∣

≤ 1
Γ (α)

∣
∣
∣
∣

∫ t1

0

[
(t1 – s)α–1 – (t2 – s)α–1](I – Q1)N1y(s) ds

∣
∣
∣
∣

+
1

Γ (α)

∣
∣
∣
∣

∫ t2

t1

(t2 – s)α–1(I – Q1)N1y(s) ds
∣
∣
∣
∣

≤ 2r1

Γ (α)

∫ t1

0

[
(t1 – s)α–1 – (t2 – s)α–1]ds +

2r1

Γ (α)

∫ t2

t1

(t2 – s)α–1 ds

≤ 2r1

Γ (α + 1)
[(

tα
1 – tα

2
)

+ 2(t2 – t1)α
] → 0 as t1 → t2,

and

∣
∣Dα

0+Iα
0+(I – Q1)N1y(t)|t=t1 – Dα

0+Iα
0+(I – Q1)N1y(t)|t=t2

∣
∣

=
∣
∣f

(
t1, t1–β

1 y(t1), Dβ
0+y(t1)

)
– f

(
t2, t1–β

2 y(t2), Dβ
0+y(t2)

)∣
∣ → 0 as t1 → t2.

Similarly, it has

∣
∣Iβ

0+(I – Q2)N2x(t)|t=t1 – Iβ
0+(I – Q2)N2x(t)|t=t2

∣
∣

≤ 2r2

Γ (β + 1)
[(

tβ
1 – tβ

2
)

+ 2(t2 – t1)β
] → 0 as t1 → t2,

and

∣
∣Dβ

0+Iβ
0+(I – Q2)N2x(t)|t=t1 – Dβ

0+Iβ
0+(I – Q2)N2x(t)|t=t2

∣
∣

=
∣
∣g

(
t1, t1–α

1 x(t1), Dα
0+x(t1)

)
– g

(
t2, t1–α

2 x(t2), Dα
0+x(t2)

)∣
∣ → 0 as t1 → t2.

To summarize, we can conclude that {KP(I – Q)N(x, y) : (x, y) ∈ Ω̄} is equicontinuous. By
the Ascoli–Arzelà theorem, it is immediate that KP(I – Q)N : Ω̄ → X is compact. Using a
similar argument, we can also get N is L-compact if condition (A1) holds. �

In what follows, we shall give several existence results for BVP (1.1). For simplicity of
presentation, we let

ρ1 =
ω2 + ω1η2

1 – η1η2
, ρ2 =

γ2

1 – η1η2
, ρ3 =

γ1η2

1 – η1η2
,

σ1 =
ω1 + ω2η1

1 – η1η2
, σ2 =

γ2η1

1 – η1η2
, σ3 =

γ1

1 – η1η2
,

where γi = maxt∈[0,1] |γ (t)|, ηi = maxt∈[0,1] |γ (t)|, ωi = maxt∈[0,1] |γ (t)|, i = 1, 2. First, we sup-
pose that the following conditions are satisfied:

(A4) For (x, y) ∈ dom L, there exist constants Bi > 0, i = 1, 2, such that, for all t ∈ [0, 1], if
either |t1–αx(t)| > B1 or |t1–βy(t)| > B2, then QN(x, y) �= (0, 0).
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(A5) For (c1tα–1, c2tβ–1) ∈ Ker L, there exist constants Gi > 0, i = 1, 2, such that for any
(c1, c2) ∈R

2 satisfying either
⎧
⎨

⎩

c1N2(c1tα–1) > 0, if |c1| > G1,

c2N1(c2tβ–1) > 0, if |c2| > G2,
(3.6)

or
⎧
⎨

⎩

c1N2(c1tα–1) < 0, if |c1| > G1,

c2N1(c2tβ–1) < 0, if |c2| > G2.
(3.7)

Lemma 3.4 Let (A1) and (A4) hold, set

{
Ω1 = (x, y) ∈ dom L\Ker L : L(x, y) = λN(x, y),λ ∈ (0, 1)

}
.

Then Ω1 is bounded provided that

η1η2 < 1, Γ (α + 1) > 2σ2, Γ (β + 1) > 2ρ3,
(
Γ (α + 1) – 2σ2

)(
Γ (β + 1) – 2ρ3

)
> 4ρ2σ3,

(3.8)

or

2
Γ (α + 1)

(γ1 + η1) + �(γ2 + η2) < 1,
(

2
Γ (α + 1)

+ �

)

(γ1 + η1) < 1,

2
Γ (β + 1)

(γ2 + η2) + �(γ1 + η1) < 1,
(

2
Γ (β + 1)

+ �

)

(γ2 + η2) < 1.
(3.9)

Proof For (x, y) ∈ Ω1, we have N(x, y) ∈ Im L = Ker Q. Then QN(x, y) = (0, 0). On the one
hand, according to hypothesis (A4), it follows that

|t1–α
2 x(t2)| ≤ B1, |t1–β

1 y(t1)| ≤ B2. (3.10)

Since

Iα
0+Dα

0+x(t) = x(t) + c1tα–1, c1 ∈R, Iβ
0+Dβ

0+y(t) = y(t) + c2tβ–1, c2 ∈R. (3.11)

By substituting (3.10) into (3.11), we obtain

c1 = t1–αIα
0+Dα

0+x(t)|t=t2 – t1–α
2 x(t2), c2 = t1–βIβ

0+Dβ
0+y(t)|t=t1 – t1–β

1 y(t1). (3.12)

From (3.10), (3.11), and (3.12) we have

∣
∣t1–αx(t)

∣
∣ ≤ B1 +

2
Γ (α + 1)

∥
∥Dα

0+x
∥
∥∞,

∣
∣t1–βy(t)

∣
∣ ≤ B2 +

2
Γ (β + 1)

∥
∥Dβ

0+y
∥
∥∞. (3.13)

On the other hand, by (A1), we have

∣
∣Dα

0+x
∣
∣ =

∣
∣f

(
t, t1–βy, Dβ

0+y
)∣
∣ ≤ γ1(t)

∣
∣t1–βy

∣
∣ + η1(t)

∣
∣Dβ

0+y
∣
∣ + w1(t)

≤ γ1
∣
∣t1–βy

∣
∣ + η1

∣
∣Dβ

0+y
∣
∣ + ω1, (3.14)
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∣
∣Dβ

0+y
∣
∣ =

∣
∣g

(
t, t1–αx, Dα

0+x
)∣
∣ ≤ γ2(t)

∣
∣t1–αx

∣
∣ + η2(t)

∣
∣Dα

0+x
∣
∣ + w2(t)

≤ γ2
∣
∣t1–αx

∣
∣ + η2

∣
∣Dα

0+x
∣
∣ + ω2. (3.15)

We now estimate Ω1 is bounded under conditions (3.8) and (3.9), respectively.
First. We show that Ω1 is bounded if condition (3.8) holds. In fact, (3.14) and (3.15) imply

that

∣
∣Dα

0+x
∣
∣ ≤ σ1 + σ2

∣
∣t1–αx

∣
∣ + σ3

∣
∣t1–βy

∣
∣,

∣
∣Dβ

0+y
∣
∣ ≤ ρ1 + ρ2

∣
∣t1–αx

∣
∣ + ρ3

∣
∣t1–βy

∣
∣. (3.16)

If we plug (3.16) back into (3.13), we get

∣
∣t1–αx

∣
∣ ≤ B1 +

2
Γ (α + 1)

(
σ1 + σ2

∣
∣t1–αx

∣
∣ + σ3

∣
∣t1–βy

∣
∣
)
,

∣
∣t1–βy

∣
∣ ≤ B2 +

2
Γ (β + 1)

(
ρ1 + ρ2

∣
∣t1–αx

∣
∣ + ρ3

∣
∣t1–βy

∣
∣
)
.

So that

∣
∣t1–αx

∣
∣ ≤ B1Γ (α + 1) + 2σ1

Γ (α + 1) – 2σ2
+

2σ3

Γ (α + 1) – 2σ2

∣
∣t1–βy

∣
∣ := �1 + �2

∣
∣t1–βy

∣
∣, (3.17)

∣
∣t1–βy

∣
∣ ≤ B2Γ (β + 1) + 2ρ1

Γ (β + 1) – 2ρ3
+

2ρ2

Γ (β + 1) – 2ρ3

∣
∣t1–αx

∣
∣ := δ1 + δ2

∣
∣t1–αx

∣
∣. (3.18)

It follows from (3.17) and (3.18) that

∣
∣t1–βy

∣
∣ ≤ δ1 + δ2�1

1 – δ2�2
:= τ ,

∣
∣t1–αx

∣
∣ ≤ �1 + �2τ . (3.19)

Substituting (3.19) into (3.16), we obtain

∣
∣Dα

0+x
∣
∣ ≤ σ1 + σ2(�1 + �2τ ) + σ3τ ,

∣
∣Dβ

0+y
∣
∣ ≤ ρ1 + ρ2(�1 + �2τ ) + ρ3τ .

Thus, Ω1 is bounded.
Second. We prove that Ω1 is bounded under condition (3.9). In such a case, by

Lemma 3.2, one has

∥
∥(I – P)(x, y)

∥
∥

X =
∥
∥KPL(I – P)(x, y)

∥
∥

X ≤ �
∥
∥L(x, y)

∥
∥

Z

= �max
{∥
∥Dα

0+x
∥
∥∞,

∥
∥Dβ

0+y
∥
∥∞

}
.

Therefore, from (3.13)–(3.15), we can derive that

∥
∥(x, y)

∥
∥

X ≤ ∥
∥P(x, y)

∥
∥

X +
∥
∥(I – P)(x, y)

∥
∥

X

≤ max
{∥
∥t1–βy

∥
∥∞,

∥
∥t1–αx

∥
∥∞

}
+ �max

{∥
∥Dα

0+x
∥
∥∞,

∥
∥Dβ

0+y
∥
∥∞

}

≤ max

{

B2 +
2

Γ (β + 1)
∥
∥Dβ

0+y
∥
∥∞, B1 +

2
Γ (α + 1)

∥
∥Dα

0+x
∥
∥∞

}

+ �max
{∥
∥Dα

0+x
∥
∥∞,

∥
∥Dβ

0+y
∥
∥∞

}
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≤ max

{

B1 +
2

Γ (α + 1)
∥
∥Dα

0+x
∥
∥∞ + �

∥
∥Dβ

0+y
∥
∥∞,

B1 +
(

2
Γ (α + 1)

+ �

)
∥
∥Dα

0+x
∥
∥∞,

B2 +
2

Γ (β + 1)
∥
∥Dβ

0+y
∥
∥∞ + �

∥
∥Dα

0+x
∥
∥∞,

B2 +
(

2
Γ (β + 1)

+ �

)
∥
∥Dβ

0+y
∥
∥∞

}

.

Next, we separate the proof into four cases.
Case 1. ‖(x, y)‖X ≤ B1 + 2

Γ (α+1)‖Dα
0+x‖∞ + �‖Dβ

0+y‖∞ because

max
{∥
∥t1–αx

∥
∥∞,

∥
∥Dα

0+x
∥
∥∞,

∥
∥t1–βy

∥
∥∞,

∥
∥Dβ

0+y
∥
∥∞

} ≤ ∥
∥(x, y)

∥
∥

X . (3.20)

By (3.14) and (3.15), one gets

∥
∥(x, y)

∥
∥

X ≤ B1 +
2

Γ (α + 1)
∥
∥Dα

0+x
∥
∥∞ + �

∥
∥Dβ

0+y
∥
∥∞

≤ B1 +
2

Γ (α + 1)
[
(γ1 + η1)

∥
∥(x, y)

∥
∥

X + ω1
]

+ �
[
(γ2 + η2)

∥
∥(x, y)

∥
∥

X + ω2
]
,

that is,

∥
∥(x, y)

∥
∥

X ≤ B1 + (2ω1/Γ (α + 1)) + �ω2

1 – [(2(γ1 + η1)/Γ (α + 1)) + �(γ2 + η2)]
.

Case 2. ‖(x, y)‖X ≤ B1 + ( 2
Γ (α+1) + �)‖Dα

0+x‖∞. By (3.14) and (3.20), we have

∥
∥(x, y)

∥
∥

X ≤ B1 +
(

2
Γ (α + 1)

+ �

)
∥
∥Dα

0+x
∥
∥∞

≤ B1 +
(

2
Γ (α + 1)

+ �

)
[
(γ1 + η1)

∥
∥(x, y)

∥
∥

X + ω1
]
,

which implies that

∥
∥(x, y)

∥
∥

X ≤ B1 + ((2/Γ (α + 1)) + �)ω1

1 – ((2/Γ (α + 1)) + �)(γ1 + η1)
.

Case 3. ‖(x, y)‖X ≤ B2 + 2
Γ (β+1)‖Dβ

0+y‖∞ + �‖Dα
0+x‖∞. Using a similar proof as that in

Case 1, we can get

∥
∥(x, y)

∥
∥

X ≤ B2 + (2ω2/Γ (β + 1)) + �ω1

1 – [(2(γ2 + η2)/Γ (β + 1)) + �(γ1 + η1)]
.

Case 4. ‖(x, y)‖X ≤ B2 + ( 2
Γ (β+1) + �)‖Dβ

0+y‖∞. By applying a method similar to Case 2,
we can obtain

∥
∥(x, y)

∥
∥

X ≤ B2 + ((2/Γ (β + 1)) + �)ω2

1 – ((2/Γ (β + 1)) + �)(γ2 + η2)
.

To summarize, Ω1 is bounded and the proof is completed. �
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Remark 3.1 If α = β , then condition (3.8) can be derived by (3.9).

In fact, from

2
Γ (α + 1)

(γ1 + η1) + �(γ2 + η2) < 1,
2

Γ (β + 1)
(γ2 + η2) + �(γ1 + η1) < 1,

we can obtain

γ1 + η1 < 1, γ2 + η2 < 1, 2η1 < Γ (α + 1), 2η2 < Γ (β + 1). (3.21)

On the other hand, by

(
2

Γ (α + 1)
+ �

)

(γ1 + η1) < 1,
(

2
Γ (β + 1)

+ �

)

(γ2 + η2) < 1,

we have
(

2
Γ (α + 1)

+ 1
)

(γ1 + η1) < 1,
(

2
Γ (β + 1)

+ 1
)

(γ2 + η2) < 1.

Using the fact α = β , we also have

(
2

Γ (β + 1)
+ 1

)

(γ1 + η1) < 1,
(

2
Γ (α + 1)

+ 1
)

(γ2 + η2) < 1.

Then it follows that

(
2 + Γ (α + 1)

)
ζ < Γ (α + 1),

(
2 + Γ (β + 1)

)
ζ < Γ (β + 1), (3.22)

where ζ = max{γ1,η1,γ2,η2}. From (3.21) and (3.22), we have

Γ (α + 1)η1η2 + 2γ2η1 = η1
(
Γ (α + 1)η2 + 2γ2

)
< 2η1(η2 + γ2) < 2η1 < Γ (α + 1),

Γ (β + 1)η1η2 + 2γ1η2 = η2
(
Γ (β + 1)η1 + 2γ1

)
< 2η2(η1 + γ1) < 2η2 < Γ (β + 1),

2σ2 + 2ρ2 =
2γ2η1

1 – η1η2
+

2γ2

1 – η1η2
=

2γ2(1 + η1)
1 – η1η2

<
2ζ (1 + ζ )

1 – ζ 2 =
2ζ

1 – ζ
< Γ (α + 1),

2σ3 + 2ρ3 =
2γ1

1 – η1η2
+

2γ1η2

1 – η1η2
=

2γ1(1 + η2)
1 – η1η2

<
2ζ (1 + ζ )

1 – ζ 2 =
2ζ

1 – ζ
< Γ (β + 1).

According to the above inequalities, it follows (3.8) holds.

Lemma 3.5 Let (A4) hold, set

Ω2 =
{

(x, y) ∈ Ker L : N(x, y) ∈ Im L
}

.

Then Ω2 is bounded.

Proof For (x, y) ∈ Ker L, then we can write x = c1tα–1, y = c2tβ–1, (c1, c2) ∈ R
2, and

N(c1tα–1, c2tβ–1) ∈ Im L = Ker Q, that is, QN(c1tα–1, c2tβ–1) = (0, 0). By (A4), there exist
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t3, t4 ∈ [0, 1] such that |t1–α
3 x(t3)| = |c1| ≤ B1, |t1–β

4 y(t4)| = |c2| ≤ B2. Therefore,

∥
∥(x, y)

∥
∥

X = max
{‖x‖X1 ,‖y‖X2

}
= max

{|c1|, |c2|
} ≤ max{B1, B2}.

The proof is completed. �

Lemma 3.6 Let (A5) hold, set

Ω3 =
{

(x, y) ∈ Ker L : ϑλJ(x, y) + (1 – λ)QN(x, y) = (0, 0),λ ∈ [0, 1]
}

.

Then Ω3 is bounded, where

ϑ =

⎧
⎨

⎩

1, if (3.6) holds,

–1, if (3.7) holds,

and J : Ker L → Im Q is the linear isomorphism given by

J
(
c1tα–1, c2tβ–1) = (c2, c1), ∀c1, c2 ∈R

2, t ∈ [0, 1].

Proof Without loss of generality, we suppose that (3.7) holds, then for (x, y) ∈ Ω3, we have

λc2 = (1 – λ)α
∫ 1

0
(1 – s)α–1f (s, c2, 0) ds,

λc1 = (1 – λ)β
∫ 1

0
(1 – s)β–1g(s, c1, 0) ds.

By the preceding lemma, it suffices to show that |c1|, |c2| are bounded. In fact, if λ = 1, then
c1 = c2 = 0. Otherwise, for λ ∈ [0, 1), we get

0 ≤ λc2
2 = (1 – λ)α

∫ 1

0
(1 – s)α–1c2f (s, c2, 0) ds,

0 ≤ λc2
1 = (1 – λ)β

∫ 1

0
(1 – s)β–1c1g(s, c1, 0) ds.

If |c1| > G1 or |c2| > G2, by (3.7), it is easy to verify that at least one of the above equations is
not true. Therefore, |c1|, |c2| are bounded, which completes the proof of Lemma 3.6. �

Lemma 3.7 Let (A2) hold, set

Ω4 =
{

(x, y) ∈ dom L\Ker L : L(x, y) – N(x, y) = –λ
(
L(x, y) + N(–x, –y)

)
,λ ∈ (0, 1]

}
.

Then Ω4 is bounded provided that

Γ (α + 1)Γ (β + 1) >
(
1 + Γ (α + 1)

)(
1 + Γ (β + 1)

)
(p1 + q1)(p2 + q2), (3.23)

where pi = supt∈[0,1] pi(t), qi = supt∈[0,1] qi(t), i = 1, 2.
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Proof For (x, y) ∈ Ω4, we have

L(x, y) =
1

1 + λ
N(x, y) –

λ

1 + λ
N(–x, –y),

that is,

L1x =
1

1 + λ
N1y –

λ

1 + λ
N1(–y), (3.24)

L2y =
1

1 + λ
N2x –

λ

1 + λ
N2(–x). (3.25)

From (3.24) it follows that, for any t ∈ [0, 1],

|L1x| =
∣
∣Dα

0+x
∣
∣ ≤ 1

1 + λ
|N1y| +

λ

1 + λ

∣
∣N1(–y)

∣
∣

=
1

1 + λ

∣
∣f

(
t, t1–βy(t), Dβ

0+y(t)
)∣
∣ +

λ

1 + λ

∣
∣f

(
t, –t1–βy(t), –Dβ

0+y(t)
)∣
∣

≤ 1
1 + λ

[∣
∣f

(
t, t1–βy(t), Dβ

0+y(t)
)

– f (t, 0, 0)
∣
∣ + ρ

]

+
λ

1 + λ

[∣
∣f

(
t, –t1–βy(t), –Dβ

0+y(t)
)

– f (t, 0, 0)
∣
∣ + ρ

]

≤ ρ + p1
∣
∣t1–βy(t)

∣
∣ + q1

∣
∣Dβ

0+y(t)
∣
∣

≤ ρ + p1
∥
∥t1–βy

∥
∥∞ + q1

∥
∥Dβ

0+y
∥
∥∞, (3.26)

and

∣
∣t1–αx(t)

∣
∣ =

1
1 + λ

∣
∣t1–αIα

0+N1y – λt1–αIα
0+N1(–y)

∣
∣

≤ ρ

Γ (α + 1)
+

t1–α

(1 + λ)Γ (α)

∫ t

0
(t – s)α–1∣∣f

(
s, s1–βy(s), Dβ

0+y(s)
)

– f (t, 0, 0)
∣
∣ds

+
λt1–α

(1 + λ)Γ (α)

∫ t

0
(t – s)α–1∣∣f

(
s, –s1–βy(s), –Dβ

0+y(s)
)

– f (t, 0, 0)
∣
∣ds

≤ 1
Γ (α + 1)

[
p1

∥
∥t1–βy

∥
∥∞ + q1

∥
∥Dβ

0+y
∥
∥∞

]
+

ρ

Γ (α + 1)
. (3.27)

Taking account of (3.26) and (3.27), we derive

∥
∥Dα

0+x
∥
∥∞ ≤ ρ + p1

∥
∥t1–βy

∥
∥∞ + q1

∥
∥Dβ

0+y
∥
∥∞, (3.28)

∥
∥t1–αx

∥
∥∞ ≤ 1

Γ (α + 1)
[
p1

∥
∥t1–βy

∥
∥∞ + q1

∥
∥Dβ

0+y
∥
∥∞ + ρ

]
. (3.29)

Similarly, by (3.25), it can be shown that, for any t ∈ [0, 1],

∥
∥Dβ

0+y
∥
∥∞ ≤ 
 + p2

∥
∥t1–αx

∥
∥∞ + q2

∥
∥Dα

0+x
∥
∥∞, (3.30)

∥
∥t1–βy

∥
∥∞ ≤ 1

Γ (β + 1)
[
p2

∥
∥t1–αx

∥
∥∞ + q2

∥
∥Dα

0+x
∥
∥∞ + 


]
. (3.31)
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According to (3.28)–(3.31), we get

‖x‖X1 ≤ 1 + Γ (α + 1)
Γ (α + 1)

[
p1

∥
∥t1–βy

∥
∥∞ + q1

∥
∥Dβ

0+y
∥
∥∞ + ρ

]

≤ 1 + Γ (α + 1)
Γ (α + 1)

[
(p1 + q1)‖y‖X2 + ρ

]
, (3.32)

‖y‖X2 ≤ 1 + Γ (β + 1)
Γ (β + 1)

[
p2

∥
∥t1–αx

∥
∥∞ + q2

∥
∥Dα

0+x
∥
∥∞ + 


]

≤ 1 + Γ (β + 1)
Γ (β + 1)

[
(p2 + q2)‖x‖X1 + 


]
. (3.33)

Now, by using (3.32) and (3.33), we obtain

‖y‖X2 ≤ (1 + Γ (α + 1))(1 + Γ (β + 1))(p2 + q2)ρ + Γ (α + 1)(1 + Γ (β + 1))

Γ (α + 1)Γ (β + 1) – (1 + Γ (α + 1))(1 + Γ (β + 1))(p1 + q1)(p2 + q2)

:= m1,

‖x‖X1 ≤ 1 + Γ (α + 1)
Γ (α + 1)

[
(p1 + q1)m1 + ρ

]
:= m2.

So we get that

∥
∥(x, y)

∥
∥

X = max
{‖x‖X1 ,‖y‖X2

} ≤ max{m1, m2}

=
1
2
(
m1 + m2 + |m1 – m2|

)
:= m.

This completes the proof of the lemma. �

Theorem 3.1 Assume that (A1), (A4), (A5), and (3.8) hold or (A1), (A4), (A5), and (3.9)
hold. Then BVP (1.1) has at least one solution in X.

Proof Set Ω be a bounded open set of X such that
⋃3

i=1 Ω̄i ⊂ Ω . By Lemma 3.3, N is L-
compact on Ω̄ . Lemmas 3.4 and 3.5 imply that (i) and (ii) of Theorem 2.1 are satisfied.
In order to achieve the thesis, we have to prove that condition (iii) of Theorem 2.1 holds.
Define the homotopy mapping as follows:

H
(
(x, y),λ

)
= ϑλJ(x, y) + (1 – λ)QN(x, y).

By Lemma 3.6, we get H((x, y),λ) �= (0, 0) for all (x, y) ∈ Ker L ∩ ∂Ω . Using the homotopy
invariance of the topological degree,

deg
{

QN |Ker L,Ω ∩ Ker L, (0, 0)
}

= deg
{

H(·, 0),Ω ∩ Ker L, (0, 0)
}

= deg
{

H(·, 1),Ω ∩ Ker L, (0, 0)
}

= deg
{
ϑJ ,Ω ∩ Ker L, (0, 0)

} �= 0.

Then, by Theorem 2.1, BVP (1.1) has at least one solution in X. Thus the theorem is
proved. �

Theorem 3.2 If (A2) and (3.23) hold, then BVP (1.1) has at least one solution in X.
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Proof Set Ω = {(x, y) ∈ X : ‖(x, y)‖X < m + 1}. Obviously, Ω is symmetric with (0, 0) ∈ Ω

and X ∩ Ω̄ �= ∅. By Lemma 3.7, we get, for every (x, y) ∈ ∂Ω and λ ∈ (0, 1],

L(x, y) – N(x, y) �= –λ
(
L(x, y) + N(–x, –y)

)
,

which together with Theorem 2.2 yields that problem (1.1) has at least one solution
in X. �

Theorem 3.3 If (A2), (A3), and (3.23) hold, then BVP (1.1) has exactly one solution in X
provided that

max
{

(κ + �)(p1 + q1),κ(p1 + q1) + �(p2 + q2),

μ(p2 + q2) + �(p1 + q1), (μ + �)(p2 + q2)
}

< 1, (3.34)

where

κ =
(

2
Γ (α + 1)

+
d
c

)

, μ =
(

2
Γ (β + 1)

+
b
a

)

.

Proof By Theorem 3.2, we obtain that BVP (1.1) has at least one solution in X. Now, we
prove the uniqueness result. Suppose that BVP (1.1) has two solutions (x1, y1), (x2, y2) ∈
dom L. Then, for i = 1, 2, we have

Dα
0+xi(t) = f

(
t, t1–βyi(t), Dβ

0+yi(t)
)
,

Dβ
0+yi(t) = g

(
t, t1–αxi(t), Dα

0+xi(t)
)
,

and

lim
t→0+

t1–αxi(t) = xi(1), lim
t→0+

t1–βyi(t) = yi(1).

Let x = x1 – x2, y = y1 – y2. Then x, y satisfy the equations

Dα
0+x(t) = f

(
t, t1–βy1(t), Dβ

0+y1(t)
)

– f
(
t, t1–βy2(t), Dβ

0+y2(t)
)
, (3.35)

Dβ
0+y(t) = g

(
t, t1–αx1(t), Dα

0+x1(t)
)

– g
(
t, t1–αx2(t), Dα

0+x2(t)
)
. (3.36)

Noting that Im L = Ker Q, we have

∫ 1

0
(1 – s)α–1[f

(
s, s1–βy1(s), Dβ

0+y1(s)
)

– f
(
s, s1–βy2(s), Dβ

0+y2(s)
)]

ds = 0,

∫ 1

0
(1 – s)β–1[g

(
s, s1–αx1(s), Dα

0+x1(s)
)

– g
(
s, s1–αx2(s), Dα

0+x2(s)
)]

ds = 0,

which imply there exist t5, t6 ∈ [0, 1] such that

f
(
t5, t1–β

5 y1(t5), Dβ
0+y1(t5)

)
– f

(
t5, t1–β

5 y2(t5), Dβ
0+y2(t5)

)
= 0,

g
(
t6, t1–α

6 x1(t6), Dα
0+x1(t6)

)
– g

(
t6, t1–α

6 x2(t6), Dα
0+x2(t6)

)
= 0.
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Basing on condition (A3), we conclude that

∣
∣t1–β

5 y(t5)
∣
∣ ≤ b

a
∥
∥Dβ

0+y
∥
∥∞,

∣
∣t1–α

6 x(t6)
∣
∣ ≤ d

c
∥
∥Dα

0+x
∥
∥∞. (3.37)

Considering that

Iα
0+Dα

0+x(t) = x(t) + c1tα–1, c1 ∈R, Iβ
0+Dβ

0+y(t) = y(t) + c2tβ–1, c2 ∈R,

thus,

c1 = t1–αIα
0+Dα

0+x(t)|t=t6 – t1–α
6 x(t6), c2 = t1–βIβ

0+Dβ
0+y(t)|t=t5 – t1–β

5 y(t5).

Therefore, we can draw a fact

∣
∣t1–αx(t)

∣
∣ ≤ κ

∥
∥Dα

0+x
∥
∥∞,

∣
∣t1–βy(t)

∣
∣ ≤ μ

∥
∥Dβ

0+y
∥
∥∞. (3.38)

On the other hand, using hypothesis (A2) and (3.35)–(3.36), we find that

∣
∣Dα

0+x(t)
∣
∣ ≤ p1

∣
∣t1–βy(t)

∣
∣ + q1

∣
∣Dβ

0+y(t)
∣
∣,

∣
∣Dβ

0+y(t)
∣
∣ ≤ p2

∣
∣t1–αx(t)

∣
∣ + q2

∣
∣Dα

0+x(t)
∣
∣.

Consequently, we infer that

∣
∣Dα

0+x(t)
∣
∣ ≤ p1

∥
∥t1–βy

∥
∥∞ + q1

∥
∥Dβ

0+y
∥
∥∞,

∣
∣Dβ

0+y(t)
∣
∣ ≤ p2

∥
∥t1–αx

∥
∥∞ + q2

∥
∥Dα

0+x
∥
∥∞.

(3.39)

By Lemma 3.2, we obtain

∥
∥(I – P)(x, y)

∥
∥

X =
∥
∥KPL(I – P)(x, y)

∥
∥

X ≤ �
∥
∥L(x, y)

∥
∥

Z

= �max
{∥
∥Dα

0+x
∥
∥∞,

∥
∥Dβ

0+y
∥
∥∞

}
. (3.40)

From (3.38)–(3.40), one has

∥
∥(x, y)

∥
∥

X ≤ ∥
∥P(x, y)

∥
∥

X +
∥
∥(I – P)(x, y)

∥
∥

X

≤ max
{∥
∥t1–βy

∥
∥∞,

∥
∥t1–αx

∥
∥∞

}
+ �max

{∥
∥Dα

0+x
∥
∥∞,

∥
∥Dβ

0+y
∥
∥∞

}

≤ max
{
μ

∥
∥Dβ

0+y
∥
∥∞,κ

∥
∥Dα

0+x
∥
∥∞

}
+ �max

{∥
∥Dα

0+x
∥
∥∞,

∥
∥Dβ

0+y
∥
∥∞

}

= max
{
κ
∥
∥Dα

0+x
∥
∥∞ + �

∥
∥Dβ

0+y
∥
∥∞,(κ + �)

∥
∥Dα

0+x
∥
∥∞,

μ
∥
∥Dβ

0+y
∥
∥∞ + �

∥
∥Dα

0+x
∥
∥∞, (μ + �)

∥
∥Dβ

0+y
∥
∥∞

}
. (3.41)

Proceeding as in the proof of Lemma 3.4, we divide the proof in four cases.
Case 1. ‖(x, y)‖X ≤ κ‖Dα

0+x‖∞ + �‖Dβ
0+y‖∞. By (3.20) and (3.39), we get

∥
∥(x, y)

∥
∥

X ≤ κ
∥
∥Dα

0+x
∥
∥∞ + �

∥
∥Dβ

0+y
∥
∥∞

≤ κ
(
p1

∥
∥t1–βy

∥
∥∞ + q1

∥
∥Dβ

0+y
∥
∥∞

)
+ �

(
p2

∥
∥t1–αx

∥
∥∞ + q2

∥
∥Dα

0+x
∥
∥∞

)
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≤ κ
(
p1

∥
∥t1–βy

∥
∥∞ + q1

∥
∥(x, y)

∥
∥

X

)
+ �(p2 + q2)

∥
∥(x, y)

∥
∥

X ,

and

∥
∥(x, y)

∥
∥

X ≤ κ
∥
∥Dα

0+x
∥
∥∞ + �

∥
∥Dβ

0+y
∥
∥∞

≤ κ
(
p1

∥
∥t1–βy

∥
∥∞ + q1

∥
∥Dβ

0+y
∥
∥∞

)
+ �

(
p2

∥
∥t1–αx

∥
∥∞ + q2

∥
∥Dα

0+x
∥
∥∞

)

≤ κ(p1 + q1)
∥
∥(x, y)

∥
∥

X + �p2
∥
∥t1–αx

∥
∥∞ + �q2

∥
∥(x, y)

∥
∥

X .

Again, by (3.20), we obtain

∥
∥t1–βy

∥
∥∞ ≤ κp1

1 – [κq1 + �(p2 + q2)]
∥
∥t1–βy

∥
∥∞,

∥
∥t1–αx

∥
∥∞ ≤ �p2

1 – [κ(p1 + q1) + �q2]
∥
∥t1–αx

∥
∥∞.

In view of condition (3.34), we have

∥
∥t1–αx

∥
∥∞ = 0,

∥
∥t1–βy

∥
∥∞ = 0.

As a result, we get x1 = x2, y1 = y2.
Case 2. ‖(x, y)‖X ≤ (κ + �)‖Dα

0+x‖∞. Then (3.39) and (3.20) imply

∥
∥(x, y)

∥
∥

X ≤ (κ + �)
∥
∥Dα

0+x
∥
∥∞

≤ (κ + �)
[
p1

∥
∥t1–βy

∥
∥∞ + q1

∥
∥Dβ

0+y
∥
∥∞

]

≤ (κ + �)p1
∥
∥t1–βy

∥
∥∞ + q1(κ + �)

∥
∥(x, y)

∥
∥

X ,

and

∥
∥(x, y)

∥
∥

X ≤ (κ + �)
∥
∥Dα

0+x
∥
∥∞

≤ (κ + �)
[
p1

∥
∥t1–βy

∥
∥∞ + q1p2

∥
∥t1–αx

∥
∥∞ + q1q2

∥
∥Dα

0+x
∥
∥∞

]

≤ (κ + �)q1p2
∥
∥t1–αx

∥
∥∞ + (κ + �)(p1 + q1q2)

∥
∥(x, y)

∥
∥

X .

Using (3.20), we derive

∥
∥t1–βy

∥
∥∞ ≤ (κ + �)p1

1 – (κ + �)q1

∥
∥t1–βy

∥
∥∞,

∥
∥t1–αx

∥
∥∞ ≤ (κ + �)q1p2

1 – (κ + �)(p1 + q1q2)
∥
∥t1–αx

∥
∥∞.

According to assumption (3.34), we obtain

∥
∥t1–αx

∥
∥∞ = 0,

∥
∥t1–βy

∥
∥∞ = 0.

Consequently, x1 = x2, y1 = y2.
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Case 3. ‖(x, y)‖X ≤ μ‖Dβ
0+y‖∞ + �‖Dα

0+x‖∞. By a method similar to that used in Case 1,
we can conclude that

∥
∥t1–βy

∥
∥∞ ≤ �p1

1 – [�q1 + μ(p2 + q2)]
∥
∥t1–βy

∥
∥∞,

∥
∥t1–αx

∥
∥∞ ≤ μp2

1 – [�(p1 + q1) + μq2]
∥
∥t1–αx

∥
∥∞.

(3.42)

Case 4. ‖(x, y)‖X ≤ (μ + �)‖Dβ
0+y‖∞. Similar to the analysis in Case 2, we can deduce

that

∥
∥t1–βy

∥
∥∞ ≤ (μ + �)p1q2

1 – (μ + �)(p2 + q1q2)
∥
∥t1–βy

∥
∥∞,

∥
∥t1–αx

∥
∥∞ ≤ (μ + �)p2

1 – (μ + �)q2

∥
∥t1–αx

∥
∥∞.

(3.43)

From (3.34), (3.42), and (3.43), we also obtain that

∥
∥t1–αx

∥
∥∞ = 0,

∥
∥t1–βy

∥
∥∞ = 0,

that is, x1 = x2, y1 = y2. In summary, BVP (1.1) has a unique continuous solution in X. �

4 Example
Example 4.1 Consider the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

D1/2
0+ x(t) = f (t, t1/2y(t), D1/2

0+ y(t)), t ∈ [0, 1],

D1/2
0+ y(t) = g(t, t1/2x(t), D1/2

0+ x(t)),

limt→0+ t1/2x(t) = x(1), limt→0+ t1/2y(t) = y(1).

(4.1)

Corresponding to problem (1.1), here

α = β =
1
2

,

f
(
t, t1/2y(t), D1/2

0+ y(t)
)

=

⎧
⎨

⎩

11
50 t2 sin |t1/2y(t)| + t

2 sin D1/2
0+ y(t) + 4

5 , |t1/2y(t)| ≤ 3,
11
50 t2 sin 3 + t

2 sin D1/2
0+ y(t) + 4

5 , |t1/2y(t)| ≥ 3,

g
(
t, t1/2x(t), D1/2

0+ x(t)
)

=

⎧
⎨

⎩

1
5 t2|t1/2x(t)| + t

2 sin D1/2
0+ x(t) + 2

3 , |t1/2y(t)| ≤ 1,
1
5 t2 + t

2 sin D1/2
0+ x(t) + 2

3 , |t1/2y(t)| ≥ 1.

Let

γ1(t) =
11
50

t2, η1(t) =
t
2

, ω1(t) =
4
5

,

γ2(t) =
1
5

t2, η2(t) =
t
2

, ω2(t) =
2
3

.

Then (A1) holds and

γ1 =
11
50

, η1 = η2 =
1
2

, ω1 =
4
5

, γ2 =
1
5

, ω2 =
2
3

,
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σ2 =
γ2η1

1 – η1η2
=

2
15

, ρ3 =
γ1η2

1 – η1η2
=

11
75

, ρ2 =
γ2

1 – η1η2
=

4
15

,

σ3 =
γ1

1 – η1η2
=

22
75

.

Accordingly,

η1η2 =
1
4

< 1, Γ (α + 1) =
√

π

2
> 2σ2 =

4
15

, Γ (β + 1) =
√

π

2
> 2ρ3 =

22
75

,

(
Γ (α + 1) – 2σ2

)(
Γ (β + 1) – 2ρ3

)
=

(√
π

2
–

4
15

)(√
π

2
–

22
75

)

>
352

1125
= 4ρ2σ3.

Consequently, (3.8) holds. Since

N1y =

⎧
⎨

⎩

11
50 t2 sin |t1/2y(t)| + t

2 sin D1/2
0+ y(t) + 4

5 , |t1/2y(t)| ≤ 3,
11
50 t2 sin 3 + t

2 sin D1/2
0+ y(t) + 4

5 , |t1/2y(t)| ≥ 3,

N2x =

⎧
⎨

⎩

1
5 t2|t1/2x(t)| + t

2 sin D1/2
0+ x(t) + 2

3 , |t1/2y(t)| ≤ 1,
1
5 t2 + t

2 sin D1/2
0+ x(t) + 2

3 , |t1/2y(t)| ≥ 1,

and

N1
(
c2tβ–1) = N1

(
c2t–1/2) =

⎧
⎨

⎩

11
50 t2 sin |c2| + 4

5 , |c2| ≤ 3,
11
50 t2 sin 3 + 4

5 , |c2| ≥ 3,

N2
(
c1tα–1) = N1

(
c1t–1/2) =

⎧
⎨

⎩

1
5 t2|c1| + 2

3 , |c1| ≤ 1,
1
5 t2 + 2

3 , |c1| ≥ 1.

So if we put B1 = G1 = 1, B2 = G2 = 3, then we have

N1y =
11
50

t2 sin 3 +
t
2

sin D1/2
0+ y(t) +

4
5

≥ 2
25

> 0,
∣
∣t1/2y(t)

∣
∣ ≥ 3,

N1
(
c2tβ–1) = N1

(
c2t–1/2) =

11
50

t2 sin 3 +
4
5

≥ 29
50

> 0, |c2| ≥ 3,

N2x =
1
5

t2 +
t
2

sin D1/2
0+ x(t) +

2
3

≥ 1
6

> 0,
∣
∣t1/2y(t)

∣
∣ ≥ 1,

N2
(
c1tα–1) = N1

(
c1t–1/2) =

1
5

t2 +
2
3

≥ 2
3

> 0, |c1| ≥ 1.

Therefore, (A4) and (A5) hold. By Theorem 3.1, we can conclude that BVP (4.1) has at least
one solution.

Remark 4.1 Obviously, for BVP (4.1), condition (A2) is not valid and (3.9) does not hold.

In fact, we can obtain that

2
Γ (α + 1)

(γ1 + η1) + �(γ2 + η2) =
4√
π

· 18
25

+
π + 2

√
π

π
· 7

10
> 1.

So that (3.9) is not true.
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Example 4.2 Consider the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

D1/2
0+ x(t) = t2

5 sin t1/2y(t) + 4t
15 sin D1/2

0+ y(t) + 1
2 , t ∈ [0, 1],

D1/2
0+ y(t) = t2

7 sin t1/2x(t) + 2t
7 sin D1/2

0+ x(t) + 1
2 ,

limt→0+ t1/2x(t) = x(1), limt→0+ t1/2y(t) = y(1).

(4.2)

Corresponding to problem (1.1), here

α = β =
1
2

,

f
(
t, t1–βy(t), Dβ

0+y(t)
)

=
t2

5
sin t1/2y(t) +

4t
15

sin D1/2
0+ y(t) +

1
2

,

g
(
t, t1–αx(t), Dα

0+x(t)
)

=
t2

7
sin t1/2x(t) +

2t
7

sin D1/2
0+ x(t) +

1
2

.

Let

p1(t) =
t2

5
, q1(t) =

4t
15

, p2(t) =
t2

7
, q2(t) =

2t
7

,

then p1 = 1
5 , q1 = 4

15 , p2 = 1
7 , q2 = 2

7 . We can easily check that (A2) holds and

Γ (α + 1)Γ (β + 1)

=
π

4
>

(2 +
√

π )2

20
=

(
1 + Γ (α + 1)

)(
1 + Γ (β + 1)

)
(p1 + q1)(p2 + q2).

By Theorem 3.2, BVP (4.2) has at least one solution. If we let

γ1(t) =
t2

5
, η1(t) =

4t
15

, ω1(t) =
1
2

,

γ2(t) =
t2

7
, η2(t) =

2t
7

, ω2(t) =
1
2

,

then (A1) holds and

γ1 =
1
5

, η1 =
4

15
, ω1 = ω2 =

1
2

, γ2 =
1
7

, η2 =
2
7

,

σ2 =
γ2η1

1 – η1η2
=

4
97

, ρ3 =
γ1η2

1 – η1η2
=

6
97

, ρ2 =
γ2

1 – η1η2
=

15
97

,

σ3 =
γ1

1 – η1η2
=

21
97

.

Therefore,

η1η2 =
8

105
< 1, Γ (α + 1) =

√
π

2
> 2σ2 =

8
97

, Γ (β + 1) =
√

π

2
> 2ρ3 =

12
97

,

(
Γ (α + 1) – 2σ2

)(
Γ (β + 1) – 2ρ3

)
=

(√
π

2
–

8
97

)(√
π

2
–

12
97

)

>
1260
9409

= 4ρ2σ3,
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that is, (3.8) holds. Since

N1y =
t2

5
sin t1/2y(t) +

4t
15

sin D1/2
0+ y(t) +

1
2

≥ 1
30

> 0,

N1
(
c2tβ–1) = N1

(
c2t–1/2) =

t2

5
sin c2 +

1
2

≥ 3
10

> 0,

N2x =
t2

7
sin t1/2x(t) +

2t
7

sin D1/2
0+ x(t) +

1
2

≥ 1
14

> 0,

N2
(
c1tα–1) = N1

(
c1t–1/2) =

t2

7
sin c1 +

1
2

≥ 4
15

> 0.

Then, for any Bi > 0 and Gi > 0, (i = 1, 2), we have (A4) and (A5) hold. By Theorem 3.1, we
can also obtain that BVP (4.2) has at least one solution.

Remark 4.2 The existence result of BVP (4.2) cannot be obtained by verifying conditions
(A1), (A4), (A5), and (3.9) of Theorem 3.1.

In fact, we can check that

2
Γ (α + 1)

(γ1 + η1) + �(γ2 + η2) =
4√
π

· 7
15

+
√

π + 2√
π

· 3
7

=
286 + 45

√
π

105
√

π
> 1.

This implies that (3.9) does not hold.

Example 4.3 Consider the following fractional boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

D1/2
0+ x(t) = t2+3

30 sin t1/2y(t) + t
20 sin D1/2

0+ y(t) + 1
4 , t ∈ [0, 1],

D1/2
0+ y(t) = t2+1

14 sin t1/2x(t) + t
28 sin D1/2

0+ x(t) + 1
5 ,

limt→0+ t1/2x(t) = x(1), limt→0+ t1/2y(t) = y(1).

(4.3)

Corresponding to problem (1.1), here

α = β =
1
2

,

f
(
t, t1–βy(t), Dβ

0+y(t)
)

=
t2 + 3

30
sin t1/2y(t) +

t
20

sin D1/2
0+ y(t) +

1
4

,

g
(
t, t1–αx(t), Dα

0+x(t)
)

=
t2 + 1

14
sin t1/2x(t) +

t
28

sin D1/2
0+ x(t) +

1
5

.

Let

p1(t) =
1

30
t2 +

1
10

, q1(t) =
1

20
t, p2(t) =

1
14

t2 +
1

14
, q2(t) =

1
28

t.

Then

p1 =
2

15
, q1 =

1
20

, p2 =
1
7

, q2 =
1

28
, � =

π + 2
√

π

π
,

p1 + q1 =
11
60

>
5

28
= p2 + q2.
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Choose a = 1
10 , b = 1

20 , c = 1
14 , d = 1

28 . It is easy to show that (A2) and (A3) hold. Since

Γ (α + 1)Γ (β + 1) =
π

4
>

11
1344

(2 +
√

π )2

=
(
1 + Γ (α + 1)

)(
1 + Γ (β + 1)

)
(p1 + q1)(p2 + q2).

By Theorem 3.2, BVP (4.3) has at least one solution. We also can check that

(κ + �)(p1 + q1) =
(

2
Γ (3/2)

+
1
2

+
π + 2

√
π

π

)(
2

15
+

1
20

)

=
11

√
π + 44

40
√

π
:= Ξ < 1,

κ(p1 + q1) + �(p2 + q2) < Ξ < 1,

μ(p2 + q2) + �(p1 + q1) = κ(p2 + q2) + �(p1 + q1) < Ξ < 1,

(μ + �)(p2 + q2) = (κ + �)(p2 + q2) < Ξ < 1.

By Theorem 3.3, BVP (4.3) has a unique solution. If we let

γ1(t) =
t2 + 3

30
, η1(t) =

t
20

, ω1(t) =
1
4

,

γ2(t) =
t2 + 1

14
, η2(t) =

t
28

, ω2(t) =
1
5

,

then (A1) holds and

γ1 =
2

15
, η1 =

1
20

, ω1 =
1
4

, γ2 =
1
7

, η2 =
1

28
, ω2 =

1
5

,

γ2 + η2 =
5

28
<

11
60

= γ1 + η1,

σ2 =
γ2η1

1 – η1η2
=

4
559

, ρ3 =
γ1η2

1 – η1η2
=

8
1677

, ρ2 =
γ2

1 – η1η2
=

80
559

,

σ3 =
γ1

1 – η1η2
=

224
1677

.

Thus,

η1η2 =
1

560
< 1, Γ (α + 1) =

√
π

2
> 2σ2 =

8
559

, Γ (β + 1) =
√

π

2
> 2ρ3 =

16
1677

,
(
Γ (α + 1) – 2σ2

)(
Γ (β + 1) – 2ρ3

)

=
(√

π

2
–

8
559

)(√
π

2
–

16
1677

)

>
71,680

937,443
= 4ρ2σ3,

and

2
Γ (α + 1)

(γ1 + η1) + �(γ2 + η2) ≤
(

2
Γ (α + 1)

+ �

)

(γ1 + η1)

=
(

2
Γ (3/2)

+
π + 2

√
π

π

)(
2

15
+

1
20

)

< Ξ < 1,
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2
Γ (β + 1)

(γ2 + η2) + �(γ1 + η1) ≤ 2
Γ (α + 1)

(γ1 + η1) + �(γ2 + η2) < 1,

(
2

Γ (β + 1)
+ �

)

(γ2 + η2) ≤
(

2
Γ (α + 1)

+ �

)

(γ1 + η1) < 1.

That is, both (3.8) and (3.9) hold because

N1y =
t2 + 3

30
sin t1/2y(t) +

t
20

sin D1/2
0+ y(t) +

1
4

≥ 1
15

> 0,

N1
(
c2tβ–1) = N1

(
c2t–1/2) =

t2 + 3
30

sin c2 +
1
4

≥ 7
60

> 0,

N2x =
t2 + 1

14
sin t1/2x(t) +

t
28

sin D1/2
0+ x(t) +

1
5

≥ 3
140

> 0,

N2
(
c1tα–1) = N1

(
c1t–1/2) =

t2 + 1
14

sin c1 +
1
5

≥ 2
35

> 0.

Therefore, for any Bi > 0 and Gi > 0, (i = 1, 2) (A4) and (A5) hold, which means the existence
result of BVP (4.3) can be obtained by Theorem 3.1.

5 Conclusion
In the present paper, we investigate the existence and uniqueness of solutions for the
coupled systems of nonlinear implicit fractional periodic boundary value problems in
the frame of Riemann–Liouville fractional derivative. By using Theorems 2.1 and 2.2,
the new existence and uniqueness results are established. The results in papers [29, 30]
are improved and extended in this paper. First, we extend the results of [29, 30] to cou-
pled systems; second, in [29, 30], the authors only studied the existence results based on
Lemma 2.1 and established existence theorems under condition (A2). Our results show
that the existence results can also be obtained under condition (A1). Besides, compared
with [40–43], we used a different technique to prove that Ω1 is bounded (see Lemma 3.4,
the first way). By Remark 3.1, we show that the first way is superior to the second way used
by [40–43]. Finally, our main results are well illustrated with the aid of several interesting
examples.
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