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Abstract
A Caputo–Fabrizio type fractional order mathematical model for the dynamics of pine
wilt disease (FPWD) is presented. The basic properties of the model are investigated.
The existence and uniqueness of the solution for the proposed FPWDmodel are
given via the fixed point theorem. The numerical simulations for the model are
obtained by using particular parameter values. The non-integer order derivative
provides more flexible and deeper information about the complexity of the dynamics
of the proposed FPWDmodel than the integer order models established before.
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1 Introduction
Mathematical models in epidemiology are used widely in order to understand better the
dynamics of an infectious disease [1, 2]. The application of the mathematical models is
not limited to only human diseases, but they are also widely applied in other phenomena
of biological sciences, such as ecology, forest, etc. In the human life, forest has an impor-
tant role, therefore, it is necessary to ensure the safety strategies to protect it from being
infected with diseases. The forest provides greenery to the environment and pleasant at-
mosphere for humans. The pine wilt disease (PWD) infects pine trees and is one of the
main threats to the ecosystem and forest. The PWD is considered to be the most destruc-
tive disease which damages pine trees in a short period of time, that is, a year or some-
times in a few months. The initial symptoms of the PWD include discoloration of needles,
which turn from yellow to green then to reddish brown. The main agent of the disease is
small worms, known as pinewood nematode (bursaphelenchus xylophilus), causing tree
decline [3]. As the trees begin to die, they are attacked by insects, known as sawyers, which
are species that transfer the nematode to healthy trees, which is one of the causes of pine
wilt disease [4–6]. Native to North America, the PW nematode was introduced while the
first epidemic of the PWD was accursed in Japan in 1905 [7], and it has spread in south-
ern China, Korea, Taiwan, and other regions of Europe since the early 1980s [4–6, 8]. The
PWD has three main organisms: the gymnosperm host, the pine wood nematode, and
the insect vector. At the stage of primary transmission, dauer juveniles (JIV stage) of bur-
saphelenchus xylophilus are carried vertically in the tracheae of their beetle host to young
twigs of susceptible trees, where they enter through resin canals in wounds made during
maturation feeding by the insect [8].
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Recently, some mathematical models have been presented to explore the dynamics of
PWD consisting of a system of nonlinear differential equations. Lee and Kwang [9] ex-
plored the stability analysis of PWD and proposed some suitable controlling strategies for
this disease. Khan et al. [10] introduced a model on PWD and its optimal control. A math-
ematical model with variable population and suggested optimal control was developed
in [11]. Most recently, in [12] the dynamics of PWD with saturated incidence rate was ex-
plored. All of the above PWD models are restricted to classical integer order differential
equations. In the present paper we consider a PWD model with saturated incidence rate
in fractional environment using the CF derivative. First, we give an overview of recently
published papers on fractional mathematical models using the CF derivative.

Fractional order models are more reliable and helpful in the real phenomena than the
classical models due to hereditary properties and the description of memory [13, 14]. Also,
in the real world explanation, the integer order derivative does not explore the dynamics
between two different points. To deal with such failures of classical local differentiation,
different concepts on differentiation with non-local or fractional orders have been devel-
oped in the existing literature. For instance, Riemann and Liouville introduced the concept
of fractional orders differentiation in [14]. Recently, Caputo and Fabrizio [15] introduced
a new derivative with fractional order based on the exponential kernel. The new CF frac-
tional order derivative has been used successfully in modeling of various real phenomena.
For example, a fractional Adams–Bashforth technique via the CF derivative was presented
in [16]. A study of magnetohydrodynamic electroosmotic flow of Maxwell fluids with CF
derivatives was carried out by Abdulh et al. [17]. In [18], the CF fractional derivative was
used for numerical approach of the Fokker–Planck equation using Ritz approximation.
A mathematical comparative analysis of RL and RC electrical circuits using AB and CF
fractional derivatives was recently done in [19]. Mustafa et al.[20] explored the dynamics
of the cancer treatment model with the CF fractional derivative. Recently, a new fractional
model of hepatitis B virus in the CF derivative sense was presented in [21].

The classical integer order mathematical model is useful for a local dynamic system with
no external forces. These models cannot therefore replicate the complexity of the dynam-
ics of the communicable disease like PWD as the model can sometimes have a crossover
behavior and this cannot be handled by the classical differential operators. Further, in the
literature fractional order models provide a better fit to the real data for different diseases
and other experimental work in fluid mechanics. For example, Diethelm [22] provided a
good agreement to the real data of the 2009 dengue outbreak in Cape Verde using a non-
integer order biological model instead of the ordinary one. A fractional order model for
Ebola epidemic was applied to provide a suitable approximation to the real data on Ebola
virus [23]. Makris et al. [24] used a fractional order Maxwell model to attain a better fit to
the experimental work.

Therefore, motivated by the above work, in this paper, we aim to extend the recently
published PWD model [12] to a fractional case by using the newly established derivative
known as CF derivative of order τ ∈ (0, 1]. The details of the remaining sections of this pa-
per are as follows: The basic definition and results of fractional order derivative are stated
in Sect. 2. In Sect. 3, we explore the model formulation, model equilibria, and the basic
reproduction number. Section 4 deals with the existence of solution in the spread PWD
disease model via the fixed point theorem. Also, the uniqueness of a model solution is
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obtained. Numerical simulations are presented in Sect. 5. Finally, the concluding remarks
are given in Sect. 6.

2 Preliminaries
Here, we give some basic definitions of the fractional calculus that will be used in the
onward analysis of the model.

Definition 1 Let g ∈ H1(a, b), with b greater than a, τ ∈ [0, 1], then the CF fractional
derivative [15] is given as

Dτ
t
(
g(t)

)
=

M(τ )
1 – τ

∫ t

a
g ′(x) exp

[
–τ

t – x
1 – τ

]
dx. (1)

In Eq. (1) M(τ ) represents a normality with M(0) = M(1) = 1 [15]. However, if g /∈ H1(a, b),
then the following expression of the derivative is obtained:

Dτ
t
(
g(t)

)
=

τM(τ )
1 – τ

∫ t

a

(
g(t) – g(x)

)
exp

[
–τ

t – x
1 – τ

]
dx. (2)

Remark 1 If σ = 1–τ
τ

∈ [0,∞), τ = 1
1+σ

∈ [0, 1], then Eq. (2) gives the following form:

Dτ
t
(
g(t)

)
=

N(σ )
σ

∫ t

a
g ′(x) exp

[
–

t – x
σ

]
dx, N(0) = N(∞) = 1. (3)

Moreover,

lim
σ−→0

1
σ

exp

[
–

t – x
σ

]
= δ(x – t). (4)

Nieto and Losada [25] give the following definition of the integral.

Definition 2 Let 0 < τ < 1, then the fractional integral of the function g having order τ is
given below.

Iτ
t
(
g(t)

)
=

2(1 – τ )
(2 – τ )M(τ )

g(t) +
2τ

(2 – τ )M(τ )

∫ t

0
g(s) ds, t ≥ 0. (5)

Remark 2 From Definition 2, we have

2(1 – τ )
(2 – τ )M(τ )

+
2τ

(2 – τ )M(τ )
= 1, (6)

which implies M(τ ) = 2
2–τ

, 0 < τ < 1. In view of (6), a new Caputo derivative of order 0 <
τ < 1 is suggested by Nieto and Losada [25], given as follows:

Dτ
t
(
g(t)

)
=

1
1 – τ

∫ t

0
g ′(x) exp

[
τ

t – x
1 – τ

]
dx. (7)

The CF derivative [15], given in the above definitions, has been recently used in the
mathematical modeling of HBV [21], Maxwell fluid with slip effects [26], and diabetes
model [27].
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3 Model formulation
Here, in this section, we extend the PWD model [12] to fractional order using a CF deriva-
tive of order τ ∈ [0, 1]. The classical integer order PWD model is formulated by the fol-
lowing nonlinear system of differential equations:

dSH

dt
= ΠH –

K1SHIV

1 + θ1IV
–

K2ψSHIV

1 + θ1IV
– γH SH ,

dEH

dt
=

K1SHIV

1 + θ1IV
– γHEH – δHEH ,

dIH

dt
=

K2ψSHIV

1 + θ1IV
+ δH EH – γHIH ,

dSV

dt
= ΠV –

β1SV IH

1 + θ2IH
– γV SV ,

dEV

dt
=

β1SV IH

1 + θ2IH
– γV EV – δV EV ,

dIV

dt
= δV EV – γV IV .

(8)

In the above model (8), the total host population (pine trees) is denoted by NH (t). It is sub-
divided into three classes: susceptible SH (t), exposed EH (t), and infected IH (t) pine trees.
The total vector population (beetles) is further divided into three subclasses: susceptible
vector SV (t), exposed vectors EV (t), and infected vector IV (t). The recruitment rates of
pine trees and vector population are denoted by ΠH and ΠV , respectively. The rate of
contact between suspectable trees and infected vectors is K1, while K2 is the contact rate
between suspectable trees and infected vectors when the nematode is transmitted by the
infected vector at oviposition. The natural death rates of pine trees and vector population
are denoted by parameters γH and γH , respectively. The natural death rate of pine trees
which are uninfected through beetles is denoted by parameter ψ . The constants of sat-
uration are θ1 and θ2. The exposed pine trees join the infected class at the rate δH while
the transfer rate of an exposed vector to become an infected vector is denoted by δV . The
parameter β1 is the contact rate of a suspectable vector with infected pine trees. We re-
formulate the classical PWD model (8) by replacing the ordinary integer order derivative
by the new CF fractional derivative and it can be written as follows:

CF
0 Dτ

t SH = ΠH –
K1SHIV

1 + θ1IV
–

K2ψSHIV

1 + θ1IV
– γH SH ,

CF
0 Dτ

t EH =
K1SHIV

1 + θ1IV
– γHEH – δH EH ,

CF
0 Dτ

t IH =
K2ψSHIV

1 + θ1IV
+ δHEH – γHIH ,

CF
0 Dτ

t SV = ΠV –
β1SV IH

1 + θ2IH
– γV SV ,

CF
0 Dτ

t EV =
β1SV IH

1 + θ2IH
– γV EV – δV EV ,

CF
0 Dτ

t IV = δV EV – γV IV .

(9)
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The initial conditions involved in (9) are

SH (0) = c1, EH (0) = c2, IH (0) = c3, SV (0) = c4,

EV (0) = c5 and IV (0) = c6.

3.1 Equilibria and basic reproduction number
Model (9) has a disease free equilibrium E0 = (So

H , 0, 0, So
V , 0, 0) and is obtained by solving

the system

CF
0 Dτ

t SH = CF
0 Dτ

t EH = CF
0 Dτ

t IH = CF
0 Dτ

t C = CF
0 Dτ

t SV = CF
0 Dτ

t EV = CF
0 Dτ

t IV = 0,

and is given by

E0 =
(

ΠH

γH
, 0, 0,

ΠV

γV
, 0, 0

)
.

The model has a unique endemic equilibrium, denoted by E1, given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗
H = ΠH (1+θ1I∗V )

γH +I∗V (K1+K2ψ+γH θ1) ,

E∗
H = ΠH K1I∗V

(γH +δH )(K1I∗V +K2ψI∗V +γH +θ1γH I∗V ) ,

I∗
H = ΠH I∗V (K2ψγH +K1δH +K2ψδH )

γH (γH +δH )(K1I∗V +K2I∗V +γH +θ1γH I∗V ) ,

S∗
V = ΠV (1+θ2I∗H )

γV +I∗H (β1+θ2γV ) ,

E∗
V = ΠV β1I∗H

(γV +δV )(γV +I∗H (β1+θ2γV )) ,

I∗
V = ΠV β1δV I∗H

γV (γV +δV )(γV +I∗H (β1+θ2γV )) .

The basic reproduction number R0 is obtained by using the next generation technique
[28] and is given as follows:

R0 =

√
δV β1S0

HS0
V (K1δH + K2ψ(γH + δH ))

γHγV (γH + δH )(γV + δV )
.

Hence, we state the following theorem.

Theorem 1 The FPWD model (9) has a unique endemic equilibrium if R0 > 1.

4 Existence and uniqueness of FPWD model
This section describes the existence of model solutions by using fixed point theory. We
use the fractional integral operator in [25] on (9) to obtain

SH (t) – SH (0) = CF
0 Iτ

t

{
ΠH –

K1SHIV

1 + θ1IV
–

K2ψSHIV

1 + θ1IV
– γHSH

}
,

EH (t) – EH (0) = CF
0 Iτ

t

{
K1SHIV

1 + θ1IV
– γH EH – δH EH

}
,

IH (t) – IH (0) = CF
0 Iτ

t

{
K2ψSHIV

1 + θ1IV
+ δHEH – γH IH

}
,

SV (t) – SV (0) = CF
0 Iτ

t

{
ΠV –

β1SV IH

1 + θ2IH
– γV SV

}
,

(10)
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EV (t) – EV (0) = CF
0 Iτ

t

{
β1SV IH

1 + θ2IH
– γV EV – δV EV

}
,

IV (t) – IV (0) = CF
0 Iτ

t {δV EV – γV IV }.

Applying the idea used in [25], we obtain

SH (t) – SH(0) =
2(1 – τ )

(2 – τ )M(τ )

{
ΠH –

K1SHIV

1 + θ1IV
–

K2ψSHIV

1 + θ1IV
– γHSH

}

+
2τ

(2 – τ )M(τ )

∫ t

0

{
ΠH –

K1SHIV

1 + θ1IV
–

K2ψSHIV

1 + θ1IV
– γHSH

}
dy,

EH (t) – EH (0) =
2(1 – τ )

(2 – τ )M(τ )

{
K1SHIV

1 + θ1IV
– γHEH – δHEH

}

+
2τ

(2 – τ )M(τ )

∫ t

0

{
K1SHIV

1 + θ1IV
– γH EH – δH EH

}
dy,

IH (t) – IH (0) =
2(1 – τ )

(2 – τ )M(τ )

{
K2ψSHIV

1 + θ1IV
+ δHEH – γH IH

}

+
2τ

(2 – τ )M(τ )

∫ t

0

{
K2ψSHIV

1 + θ1IV
+ δHEH – γHIH

}
dy,

SV (t) – SV (0) =
2(1 – τ )

(2 – τ )M(τ )

{
ΠV –

β1SV IH

1 + θ2IH
– γV SV

}

+
2τ

(2 – τ )M(τ )

∫ t

0

{
ΠV –

β1SV IH

1 + θ2IH
– γV SV

}
dy,

EV (t) – EV (0) =
2(1 – τ )

(2 – τ )M(τ )

{
β1SV IH

1 + θ2IH
– γV EV – δV EV

}

+
2τ

(2 – τ )M(τ )

∫ t

0

{
β1SV IH

1 + θ2IH
– γV EV – δV EV

}
,

IV (t) – IV (0) =
2(1 – τ )

(2 – τ )M(τ )
{δV EV – γV IV }

+
2τ

(2 – τ )M(τ )

∫ t

0
{δV EV – γV IV }dy.

(11)

For simplicity, we replace as follows:

�1(t, SH ) = ΠH –
K1SHIV

1 + θ1IV
–

K2ψSHIV

1 + θ1IV
– γHSH ,

�2(t, EH ) =
K1SHIV

1 + θ1IV
– γHEH – δHEH ,

�3(t, IH ) =
K2ψSHIV

1 + θ1IV
+ δH EH – γHIH ,

�4(t, SV ) = ΠV –
β1SV IH

1 + θ2IH
– γV SV ,

�5(t, EV ) =
β1SV IH

1 + θ2IH
– γV EV – δV EV ,

�6(t, IV ) = δV EV – γV IV .

(12)
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Theorem 2 The kernels �1,�2,�3,�4,�5, and �6 fulfill the Lipschitz condition and con-
traction if the following inequality holds:

0 ≤ (K1 + K2ψ)e + γH < 1.

Proof Here, we start from �1. Suppose S and S1 are two functions, then we assess the
following:

∥∥�1(t, SH ) – �1(t, S1H)
∥∥

=
∥∥
∥∥–

K1IV

1 + θ1IV

{
SH (t) – SH (t1)

}
–

K2ψIV

1 + θ1IV

{
SH (t) – SH (t1)

}

– γH
{

SH (t) – SH (t1)
}
∥
∥∥
∥. (13)

Using the triangular inequality on Eq. (13), we obtain

∥∥�1(t, SH ) – �1(t, S1H)
∥∥

≤
∥∥
∥∥

K1IV

1 + θ1IV

{
SH(t) – SH (t1)

}
∥∥
∥∥ +

∥∥
∥∥

K2ψIV

1 + θ1IV

{
SH (t) – SH (t1)

}
∥∥
∥∥

+ γH
∥
∥{

SH (t) – SH (t1)
}∥∥

≤
{

K1

1 + θ1IV

∥∥IV (t)
∥∥ +

K2ψ

1 + θ1IV

∥∥IV (t)
∥∥ + γH

}∥∥{
SH (t) – SH (t1)

}∥∥

≤ (K1 + K2ψ)‖IV ‖ + γH )
∥∥{

SH (t) – SH (t1)
}∥∥

≤ (
(K1 + K2ψ)e + γH

)∥∥{
SH (t) – SH(t1)

}∥∥

≤ μ1
∥
∥{

S(t) – S(t1)
}∥∥. (14)

Taking μ1 = (K1 + K2ψ)e + γH , where ‖IH (t)‖ ≤ e is a bounded function, we get

∥∥�1(t, SH ) – �1(t, S1H)
∥∥ ≤ μ1

∥∥SH (t) – SH (t1)
∥∥. (15)

Hence, the Lipschitz condition is fulfilled for �1, and if in addition 0 ≤ (K1 + K2ψ)e + γH <
1, then it is also a contraction. For the remaining cases, in a similar way the Lipschitz
conditions are given as follows:

∥
∥�2(t, EH ) – �2(t, E1H)

∥
∥ ≤ μ2

∥
∥EH (t) – EH (t1)

∥
∥,

∥
∥�3(t, IH ) – �3(t, I1H )

∥
∥ ≤ μ3

∥
∥IH (t) – IH (t1)

∥
∥,

∥
∥�4(t, SV ) – �4(t, S1V )

∥
∥ ≤ μ4

∥
∥SV (t) – SV (t1)

∥
∥,

∥
∥�5(t, EV ) – �5(t, E1V )

∥
∥ ≤ μ5

∥
∥EV (t) – EV (t1)

∥
∥,

∥
∥�6(t, IV ) – �6(t, I1V )

∥
∥ ≤ μ6

∥
∥IV (t) – IV (t1)

∥
∥.

(16)
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Using notations for kernels, Eq. (11) becomes

SH (t) = SH (0) +
2(1 – τ )

(2 – τ )M(τ )
�1(t, SH ) +

2τ

(2 – τ )M(τ )

∫ t

0

(
�1(y, SH )

)
dy,

EH (t) = EH (0) +
2(1 – τ )

(2 – τ )M(τ )
�2(t, EH ) +

2τ

(2 – τ )M(τ )

∫ t

0

(
�2(y, EH )

)
dy,

IH (t) = IH (0) +
2(1 – τ )

(2 – τ )M(τ )
�3(t, IH ) +

2τ

(2 – τ )M(τ )

∫ t

0

(
�3(y, IH )

)
dy,

SV (t) = SV (0) +
2(1 – τ )

(2 – τ )M(τ )
�4(t, SV ) +

2τ

(2 – τ )M(τ )

∫ t

0

(
�4(y, SV )

)
dy,

EV (t) = EV (0) +
2(1 – τ )

(2 – τ )M(τ )
�5(t, EV ) +

2τ

(2 – τ )M(τ )

∫ t

0

(
�5(y, EV )

)
dy,

IV (t) = IV (0) +
2(1 – τ )

(2 – τ )M(τ )
�6(t, IV ) +

2τ

(2 – τ )M(τ )

∫ t

0

(
�6(y, IV )

)
dy.

(17)

The following recursive formula is presented:

SHn(t) =
2(1 – τ )

(2 – τ )M(τ )
�1(t, SH(n–1)) +

2τ

(2 – τ )M(τ )

∫ t

0

(
�1(y, SH(n–1))

)
dy,

EHn(t) =
2(1 – τ )

(2 – τ )M(τ )
�2(t, EH(n–1)) +

2τ

(2 – τ )M(τ )

∫ t

0

(
�2(y, EH(n–1))

)
dy,

IHn(t) =
2(1 – τ )

(2 – τ )M(τ )
�3(t, IH(n–1)) +

2τ

(2 – τ )M(τ )

∫ t

0

(
�3(y, IH(n–1))

)
dy,

SVn(t) =
2(1 – τ )

(2 – τ )M(τ )
�4(t, SV (n–1)) +

2τ

(2 – τ )M(τ )

∫ t

0

(
�4(y, SV (n–1))

)
dy,

EVn(t) =
2(1 – τ )

(2 – τ )M(τ )
�5(t, EV (n–1)) +

2τ

(2 – τ )M(τ )

∫ t

0

(
�5(y, EV (n–1))

)
dy,

IVn(t) =
2(1 – τ )

(2 – τ )M(τ )
�6(t, IV (n–1)) +

2τ

(2 – τ )M(τ )

∫ t

0

(
�6(y, IV (n–1))

)
dy

(18)

with the initial conditions given below

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S0
H(t) = SH (0),

E0
H(t) = EH (0),

I0
H (t) = IH (0),

S0
V (t) = SV (0),

E0
V (t) = EV (0),

I0
V (t) = IV (0).

(19)

The difference of the successive terms is calculated as follows:

ω1n(t) = SHn(t) – SH(n–1)(t)

=
2(1 – τ )

(2 – τ )M(τ )
(
�1(t, SH(n–1)) – �1(t, SH(n–2))

)
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+
2τ

(2 – τ )M(τ )

∫ t

0

(
�1(y, SH(n–1)) – �1(y, SH(n–2))

)
dy,

ω2n(t) = EHn(t) – EH(n–1)(t)

=
2(1 – τ )

(2 – τ )M(τ )
(
�2(t, SH(n–1)) – �2(t, SH(n–2))

)

+
2τ

(2 – τ )M(τ )

∫ t

0

(
�2(y, EH(n–1)) – �2(y, EH(n–2))

)
dy,

ω3n(t) = IHn(t) – IH(n–1)(t)

=
2(1 – τ )

(2 – τ )M(τ )
(
�3(t, IH(n–1)) – �3(t, IH(n–2))

)

+
2τ

(2 – τ )M(τ )

∫ t

0

(
�3(y, IH(n–1)) – �3(y, IH(n–2))

)
dy,

ω4n(t) = SVn(t) – SV (n–1)(t)

=
2(1 – τ )

(2 – τ )M(τ )
(
�4(t, SV (n–1)) – �4(t, SV (n–2))

)

+
2τ

(2 – τ )M(τ )

∫ t

0

(
�4(y, SV (n–1)) – �4(y, SV (n–2))

)
dy,

(20)

ω5n(t) = EVn(t) – EV (n–1)(t)

=
2(1 – τ )

(2 – τ )M(τ )
(
�5(t, EV (n–1)) – �5(t, EV (n–2))

)

+
2τ

(2 – τ )M(τ )

∫ t

0

(
�5(y, EV (n–1)) – �5(y, EV (n–2))

)
dy,

ω6n(t) = IVn(t) – IV (n–1)(t)

=
2(1 – τ )

(2 – τ )M(τ )
(
�6(t, IV (n–1)) – �6(t, IV (n–2))

)

+
2τ

(2 – τ )M(τ )

∫ t

0

(
�6(y, IV (n–1)) – �6(y, IV (n–2))

)
dy.

Notice that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SHn(t) =
∑n

i=1 ω1i(t),

EHn(t) =
∑n

i=1 ω2i(t),

IHn(t) =
∑n

i=1 ω3i(t),

SVn(t) =
∑n

i=1 ω4i(t),

EVn(t) =
∑n

i=1 ω5i(t),

IVn(t) =
∑n

i=1 ω6i(t).

(21)

On continuing the same process, we assess

∥
∥ω1n(t)

∥
∥ =

∥
∥SHn(t) – SH(n–1)(t)

∥
∥

=
∥∥
∥∥

2(1 – τ )
(2 – τ )M(τ )

(
�1(t, SH(n–1)) – �1(t, SH(n–2))

)
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+
2τ

(2 – τ )M(τ )

∫ t

0

(
�1(y, SH(n–1)) – �1(y, SH(n–2))

)
dy

∥
∥∥
∥. (22)

Using the triangular inequality, Eq. (22) is simplified to

∥
∥SHn(t) – SH(n–1)(t)

∥
∥ ≤ 2(1 – τ )

(2 – τ )M(τ )
∥
∥(
�1(t, SH(n–1)) – �1(t, SH(n–2))

)∥∥

+
2τ

(2 – τ )M(τ )

∥
∥∥
∥

∫ t

0

(
�1(y, SH(n–1)) – �1(y, SH(n–2))

)
dy

∥
∥∥
∥. (23)

As the kernel fulfills the Lipschitz condition, then we have

∥
∥Sn(t) – Sn–1(t)

∥
∥ ≤ 2(1 – τ )

(2 – τ )M(τ )
μ1‖SH(n–1) – SH(n–2)‖ +

2τ

(2 – τ )M(τ )
μ1

×
∫ t

0
‖SH(n–1) – SH(n–2)‖dy. (24)

Then we have

∥∥ω1n(t)
∥∥ ≤ 2(1 – τ )

(2 – τ )M(τ )
μ1

∥∥ω1(n–1)(t)
∥∥ +

2τ

(2 – τ )M(τ )
μ1

∫ t

0

∥∥ω1(n–1)(y)
∥∥dy. (25)

Similarly, we get the following results:

∥∥ω2n(t)
∥∥ ≤ 2(1 – τ )

(2 – τ )M(τ )
μ2

∥∥ω2(n–1)(t)
∥∥ +

2τ

(2 – τ )M(τ )
μ2

∫ t

0

∥∥ω2(n–1)(y)
∥∥dy,

∥
∥ω3n(t)

∥
∥ ≤ 2(1 – τ )

(2 – τ )M(τ )
μ3

∥
∥ω3(n–1)(t)

∥
∥ +

2τ

(2 – τ )M(τ )
μ1

∫ t

0

∥
∥ω3(n–1)(y)

∥
∥dy,

∥∥ω4n(t)
∥∥ ≤ 2(1 – τ )

(2 – τ )M(τ )
μ4

∥∥ω4(n–1)(t)
∥∥ +

2τ

(2 – τ )M(τ )
μ4

∫ t

0

∥∥ω4(n–1)(y)
∥∥dy,

∥
∥ω5n(t)

∥
∥ ≤ 2(1 – τ )

(2 – τ )M(τ )
μ5

∥
∥ω5(n–1)(t)

∥
∥ +

2τ

(2 – τ )M(τ )
μ5

∫ t

0

∥
∥ω5(n–1)(y)

∥
∥dy,

∥∥ω6n(t)
∥∥ ≤ 2(1 – τ )

(2 – τ )M(τ )
μ6

∥∥ω6(n–1)(t)
∥∥ +

2τ

(2 – τ )M(τ )
μ6

∫ t

0

∥∥ω6(n–1)(y)
∥∥dy.

(26)

�

Now we state the theorem below.

Theorem 3 The FPWD model (9) has exact coupled solutions if the conditions below hold.
That is, we can find t0 such that

2(1 – τ )
(2 – τ )M(τ )

μ1 +
2τ

(2 – τ )M(τ )
μ1t0 < 1.

Proof Since all the functions SH (t), EH (t), IH (t) and SV (t), EV (t), IV (t) are bounded, we
have shown that the kernels fulfill the Lipschitz condition, thus on using of Eqs. (25) and
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(26) and by using the recursive method, we obtain the succeeding relation as follows:

∥∥ω1n(t)
∥∥ ≤ ∥∥SHn(0)

∥∥
[(

2(1 – τ )
(2 – τ )M(τ )

μ1

)
+

(
2τ

(2 – τ )M(τ )
μ1t

)]n

,

∥∥ω2n(t)
∥∥ ≤ ∥∥EHn(0)

∥∥
[(

2(1 – τ )
(2 – τ )M(τ )

μ2

)
+

(
2τ

(2 – τ )M(τ )
μ2t

)]n

,

∥∥ω3n(t)
∥∥ ≤ ∥∥IHn(0)

∥∥
[(

2(1 – τ )
(2 – τ )M(τ )

μ3

)
+

(
2τ

(2 – τ )M(τ )
μ3t

)]n

,

∥
∥ω4n(t)

∥
∥ ≤ ∥

∥SVn(0)
∥
∥
[(

2(1 – τ )
(2 – τ )M(τ )

μ4

)
+

(
2τ

(2 – τ )M(τ )
μ4t

)]n

,

∥
∥ω5n(t)

∥
∥ ≤ ∥

∥EVn(0)
∥
∥
[(

2(1 – τ )
(2 – τ )M(τ )

μ5

)
+

(
2τ

(2 – τ )M(τ )
μ5t

)]n

,

∥∥ω6n(t)
∥∥ ≤ ∥∥IVn(0)

∥∥
[(

2(1 – τ )
(2 – τ )M(τ )

μ6

)
+

(
2τ

(2 – τ )M(τ )
μ6t

)]n

.

(27)

Hence, the existence and continuity of the said solutions is proved. Furthermore, to ensure
that the above function is a solution of Eq. (9), we proceed as follows:

SH (t) – SH (0) = SHn(t) – Bn(t),

EH (t) – EH (0) = EHn(t) – Cn(t),

IH (t) – IH (0) = IHn(t) – Dn(t),

SV (t) – SV (0) = SVn(t) – Fn(t),

EV (t) – EV (0) = EVn(t) – Gn(t),

IV (t) – IV (0) = IVn(t) – Hn(t).

(28)

Therefore, we have

∥
∥Bn(t)

∥
∥ =

∥∥
∥∥

2(1 – τ )
(2 – τ )M(τ )

(
�1(t, SHn) – �1(t, SH(n–1))

)
+

2τ

(2 – τ )M(τ )

×
∫ t

0

(
�1(y, SHn) – �1(y, SH(n–1))

)
dy

∥∥∥
∥

≤ 2(1 – τ )
(2 – τ )M(τ )

∥
∥(�1(t, SHn) –

(
�1(t, SH(n–1))

)∥∥ +
2τ

(2 – τ )M(τ )

×
∫ t

0

∥
∥(
�1(y, SH ) – �1(y, SH(n–1))

)∥∥dy

≤ 2(1 – τ )
(2 – τ )M(τ )

μ1‖SH – SH(n–1)‖ +
2τ

(2 – τ )M(τ )
μ1‖SH – SH(n–1)‖t. (29)

Using the process in a recursive manner gives

∥∥Bn(t)
∥∥ ≤

(
2(1 – τ )

(2 – τ )M(τ )
+

2τ

(2 – τ )M(τ )
t
)n+1

μn+1
1 a. (30)
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Then at t0 we have

∥
∥Bn(t)

∥
∥ ≤

(
2(1 – τ )

(2 – τ )M(τ )
+

2τ

(2 – τ )M(τ )
t0

)n+1

μn+1
1 a. (31)

By applying the limit on Eq. (31) as n tends to infinity, we get

∥∥Bn(t)
∥∥ −→ 0.

Similarly, we get

∥∥Cn(t)
∥∥ −→ 0,

∥∥Dn(t)
∥∥ −→ 0,

∥∥Fn(t)
∥∥ −→ 0,

∥
∥Gn(t)

∥
∥ −→ 0,

∥
∥Hn(t)

∥
∥ −→ 0. �

For the uniqueness system (9) solution, we take on contrary that there exists another so-
lution of (9) given by S1H(t), E1H(t), IH1(t), S1V (t), E1V (t), and I1V (t). Then

SH (t) – S1H (t) =
2(1 – τ )

(2 – τ )M(τ )
(
�1(t, SH ) – �1(t, S1H)

)
+

2τ

(2 – τ )M(τ )

×
∫ t

0

(
�1(y, SH ) – �1(y, S1H)

)
dy. (32)

Taking norm on Eq. (32), we get

∥∥SH (t) – S1H(t)
∥∥ ≤ 2(1 – τ )

(2 – τ )M(τ )
∥∥�1(t, SH) – �1(t, S1H)

∥∥ +
2τ

(2 – τ )M(τ )

×
∫ t

0

∥
∥�1(y, SH ) – U1(y, S1H )

∥
∥dy. (33)

By applying the Lipschitz condition of kernel, we have

∥
∥SH (t) – S1H(t)

∥
∥ ≤ 2(1 – τ )

(2 – τ )M(τ )
μ1

∥
∥SH (t) – S1H (t)

∥
∥ +

2τ

(2 – τ )M(τ )

×
∫ t

0
μ1t

∥∥SH (t) – S1H (t)
∥∥dy. (34)

It gives

∥∥SH (t) – S1H(t)
∥∥
(

1 –
2(1 – τ )

(2 – τ )M(τ )
μ1 –

2τ

(2 – τ )M(τ )
μ1t

)
≤ 0. (35)

Theorem 4 The model (9) solution will be unique if

(
1 –

2(1 – τ )
(2 – τ )M(τ )

μ1 –
2τ

(2 – τ )M(τ )
μ1t

)
> 0. (36)

Proof If condition (36) holds, then (35) implies that

∥∥SH (t) – S1H(t)
∥∥ = 0. (37)
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Figure 1 Simulations of pine tree population (a)–(c) and vector population (d)–(f) of the FPWDmodel (9) for
τ = 1. (a): Susceptible pine tree; (b): Exposed pine tree; (c): Infected pine tree; (d): Susceptible vector;
(e): Exposed vector; (f): Infected vector

Hence, we get

SH (t) = S1H (t). (38)

On employing the same procedure, we get

EH (t) = E1H (t),

IH (t) = I1H(t),

SV (t) = S1V (t),

EV (t) = E1V (t),

IV (t) = I1V (t).

(39)

�
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Figure 2 Simulations of pine tree population (a)–(c) and vector population (d)–(f) of the FPWDmodel (9) for
τ = 0.8. (a): Susceptible pine tree; (b): Exposed pine tree; (c): Infected pine tree; (d): Susceptible vector;
(e): Exposed vector; (f): Infected vector

5 Numerical results
The present section aims to find the numerical simulations of the extended fractional or-
der PWD model (9) by variation of the non-integer derivative of order τ ∈ [0, 1]. The val-
ues of the parameters used in the numerical simulation are ΠH = 0.3, K1 = 0.00022, K2 =
0.00043, θ1 = 0.01, γH = 0.00048, δH = 0.00317, ψ = 0.0000083, θ2 = 0.001, γV = 0.0028,
δV = 0.002, ΠV = 0.8, β1 = 0.003183. The behavior of the individuals of model (9) for
τ = 1, 0.80, 0.60, 0.40, 0.20 is simulated in Figs. 1–5, respectively. In each Figure, the be-
havior of host population (pine trees) is shown by sub-plots (a)–(c), while the graphical
behavior of vector population (beetles) is given by sub-plots (d)–(f ). Also in each case the
solid blue line represents the model simulations plot for τ = 1, and the doted red line is
the behavior of the model for distinct values of τ other than 1. From the numerical re-
sults in Figs. 1–5, it is clear that when we decrease the order of fractional derivative τ , the
number of both susceptible pine trees and beetles increases, while the exposed and in-
fected pine trees and beetles decrease significantly. From the graphical results we can say
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Figure 3 Simulations of pine tree population (a)–(c) and vector population (d)–(f) of the FPWDmodel (9) for
τ = 0.6. (a): Susceptible pine tree; (b): Exposed pine tree; (c): Infected pine tree; (d): Susceptible vector;
(e): Exposed vector; (f): Infected vector

that the model depends notably on the fractional order derivative, which provides more
biologically reasonable results.

6 Conclusion
In the present work, we extended the PWD model [12] to fractional order using the
Caputo–Fabrizio fractional derivative. The model equilibria and basic reproduction num-
ber are explored. The existence and uniqueness of the solution for the FPWD model with
CF derivative are proved in detail. Some numerical simulations are carried out to explore
the effect of fractional order. From numerical simulations one can see that when fractional
order of derivative τ decreases, the CF derivative provides more biologically feasible be-
havior about the dynamic of pine wilt disease. Therefore, we concluded that the newly
fractional derivative is very useful for modeling such phenomena. Also, from the graphi-
cal behavioral we conclude that the proposed fractional order model provides richer and
more flexible results when compared with the corresponding integer order PWD model.
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Figure 4 Simulations of pine tree population (a)–(c) and vector population (d)–(f) of the FPWDmodel (9) for
τ = 0.4. (a): Susceptible pine tree; (b): Exposed pine tree; (c): Infected pine tree; (d): Susceptible vector;
(e): Exposed vector; (f): Infected vector

Thus, we suggest that this new fractional model gives more effective results which could
be implemented for the elimination of the pine tree infection.
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Figure 5 Simulations of pine tree population (a)–(c) and vector population (d)–(f) of the FPWDmodel (9) for
τ = 0.2. (a): Susceptible pine tree; (b): Exposed pine tree; (c): Infected pine tree; (d): Susceptible vector;
(e): Exposed vector; (f): Infected vector
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