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Abstract
The purpose of this paper is to investigate the qualitative behavior of HIV dynamics
models with immune impairment. The HIV particles infect both CD4+ T cells and
macrophages. Both latently and actively infected cells are incorporated into the
models. The models consider multiple discrete or distributed delays to characterize
the time between an HIV contact of an uninfected target cell and the creation of
mature HIV. The existence and global stability of the steady states are determined by
the basic reproduction number. The global stability analysis of the steady states is
performed using Lyapunov method. We solve the system of delay differential
equations numerically to support the theoretical results.
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1 Introduction
In order to understand the Human Immunodeficiency Virus (HIV) dynamics within-host
and the drug therapy strategies, many mathematical models have been constructed and
developed (see [1–40]). Some of these models assume that HIV infects one category of tar-
get cells, that is, CD4+ T cells [1, 29, 40]. Among these models, the basic model which has
been developed by Nowak and Bangham [1] is considered the most popular. The model is
a three-dimensional system of ODEs which characterize the interaction between HIV (v),
uninfected CD4+ T cells (x), and infected CD4+ T cells (u). Other HIV dynamics models
assume that HIV has categories of target cells, CD4+ T cells and macrophages [30–40].
The basic model describing the HIV interaction with two categories of target cells is pre-
sented in [30] and [32] as:

ẋ1(t) = λ1 – d1x1(t) – β1x1(t)v(t), (1)

u̇1(t) = β1x1(t)v(t) – μ1u1(t), (2)

ẋ2(t) = λ2 – d2x2(t) – β2x2(t)v(t), (3)

u̇2(t) = β2x2(t)v(t) – μ2u2(t), (4)

v̇(t) = k1u1(t) + k2u2(t) – rv(t). (5)
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The variables describe the concentrations of xi, the uninfected and infected cells and
free HIV, respectively; i = 1 and i = 2 represent the CD4+ T cells and macrophages, re-
spectively; λi represents the generation rate of the uninfected cells; di are the death rate
constants; and βi are the infection rate constants. Equations (2) and (4) represent the
population dynamics of the activated infected cells and show that they die with the same
constant rate μi. The HIV particles are generated from infected CD4+ T cells and infected
macrophages at rates k1u1 and k2u2, respectively. The HIV particles are cleared at rate rv.

A lot of considerations have been added that aim to get the best representation of the
HIV infection. Most notable are latent HIV reservoirs which serve as a major barrier in
curing HIV infection. Despite the fact that the antiretroviral therapy significantly limits
the level of HIV in the blood, there is still a low viral load due to ongoing reactivation of
latent infected cells reservoirs. Variant models have been developed to study the dynamics
of HIV in the presence of latent reservoirs (see, e.g., [23–34]).

Cytotoxic T Lymphocyte (CTL) cells play a prominent role in achieving the best rep-
resentation of the HIV dynamics. CTL cells attack the HIV infected cells and hence try
to eliminate or control the infection. The first mathematical model describing the inter-
action between CTL immune response and viral infection had been presented by Nowak
and Bangham [1], since then many mathematical models have been presented to study
the effect of CTL immune response on virus dynamics (see, e.g., [41–44]). However, it has
been reported in [45] that during the infection, HIV causes an impairment in the CTL
job. Virus dynamics models with CTL immune impairment have been studied in many
papers (see, e.g., [45–52]). All the HIV dynamics models with CTL immune impairment
presented in the literature consider one category of target cells, CD4+ T cells.

In the present paper we investigate the global stability of an HIV dynamics model
with CTL immune impairment and two categories of target cells, CD4+ T cells and
macrophages. The importance of considering such a model is due to the observation of
Perleson el al. that after the rapid first phase of decay during the initial 1–2 weeks of an an-
tiretroviral treatment, plasma virus levels declined at a considerably slower rate [31]. This
second phase of viral decay was attributed to the turnover of a longer-lived virus reser-
voir of infected cell population. Therefore, the two target cells model is more accurate
than the one target cell model, and then more accurate drug efficacy is determined when
using the model with two classes of target cells. Moreover, a better understanding of the
mechanisms behind this immune impairment in HIV infection may help to devise better
therapeutic regimens and to identify patients more responsive to certain drugs [53]. We
consider both latently and actively infected cells. We incorporate multiple discrete or dis-
tributed time delays to describe the time between the HIV contacts of target cells and the
emission of new mature HIV particles. We study global stability of the two steady states
of the model using Lyapunov method. The theoretical results are supported by numerical
simulations.

2 HIV model with discrete delays
We study the following HIV model:

ẋ1(t) = λ1 – d1x1(t) – β1x1(t)v(t), (6)

ẏ1(t) = ρ1β1e–α1τ1 x1(t – τ1)v(t – τ1) – ay1(t) – δy1(t), (7)
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u̇1(t) = (1 – ρ1)β1e–α2τ2 x1(t – τ2)v(t – τ2) + δy1(t) – pu1(t)z(t) – μu1(t), (8)

ẋ2(t) = λ2 – d2x2(t) – β2x2(t)v(t), (9)

ẏ2(t) = ρ2β2e–α3τ3 x2(t – τ3)v(t – τ3) – ay2(t) – δy2(t), (10)

u̇2(t) = (1 – ρ2)β2e–α4τ4 x2(t – τ4)v(t – τ4) + δy2(t) – pu2(t)z(t) – μu2(t), (11)

v̇(t) = ke–α5τ5
(
u1(t – τ5) + u2(t – τ5)

)
– rv(t), (12)

ż(t) = c
(
u1(t) + u2(t)

)
– m

(
u1(t) + u2(t)

)
z(t) – bz(t). (13)

Here ui, yi and z are the concentrations of the latent infected, actively infected and CTL
cells, respectively. The fractions ρi and 1 – ρi with 0 < ρi < 1 where i = 1, 2 are the proba-
bilities that upon infection, uninfected cell will become either latently or actively infected.
Equations (7) and (10) describe the population dynamics of the latent infected CD4+ T
and macrophages cells and shows that they die with the same constant rate a and become
active with constant rate δyi. The actively infected cells are removed by the CTL at rate
puiz. The CTLs are proliferated at the rate of c(u1 + u2) and decay at rate of bz. The term
m(u1 + u2)z represents the immune impairment rate. Here τ1 and τ3 are the times between
HIV entry of CD4+ T cells and macrophages, respectively, to become latent infected; τ2

and τ4 are the times between HIV entry of CD4+ T cells and macrophages, respectively,
to produce immature HIV. The immature HIVs need time τ5 to become mature. The fac-
tors e–αjτj , j = 1, . . . , 5, represent the probability of surviving to the age of τi, where αj are
positive constants.

To ensure the uniqueness of the solution of system (6)–(13), we take the following initial
conditions [54]:

x1(η) = ω1(η), y1(η) = ω2(η), u1(η) = ω3(η),

x2(η) = ω4(η), y2(η) = ω5(η), u2(η) = ω6(η),

v(η) = ω7(η), z(η) = ω8(η), ωi(η) ≥ 0, η ∈ [–κ , 0], i = 1, . . . , 8,

(14)

where κ = max{τ1, τ2, τ3, τ4, τ5}, (ω1(η), . . . ,ω8(η)) ∈ C([–κ , 0],R8≥0), C is the Banach space
of continuous functions mapping the interval [–κ , 0] into R≥0.

2.1 Nonnegativity and boundedness
Proposition 1 The solutions of system (6)–(13) are nonnegative and ultimately bounded.

Proof From Eqs. (6)–(13) of the system, we have

xi(t) ≥ ω3i–2(0)e–
∫ t

0 (di+βiv(s)) ds, i = 1, 2,

yi(t) ≥ ω3i–1(0)e–(a+δ)t , i = 1, 2,

ui(t) ≥ ω3i(0)e–
∫ t

0 (μ+pz(s)) ds, i = 1, 2,

v(t) ≥ ω7(0)e–rt ,

z(t) ≥ ω8(0)e–
∫ t

0 (m(u1(s)+u2(s))+b) ds,

therefore xi(t), yi(t), ui(t), v(t),z(t) ≥ 0 for all t ≥ 0 and i = 1, 2.
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From Eqs. (6) and (9), we have supt→∞xi(t) ≤ λi
di

. Let us define

L1(t) = ρ1e–α1τ1 x1(t – τ1) + (1 – ρ1)e–α2τ2 x1(t – τ2) + ρ2e–α3τ3 x2(t – τ3)

+ (1 – ρ2)e–α4τ4 x2(t – τ4) + y1(t) + u1(t) + y2(t) + u2(t) +
μ

2c
z(t).

Then

L̇1(t) = ρ1e–α1τ1
[
λ1 – d1x1(t – τ1) – β1x1(t – τ1)v(t – τ1)

]

+ (1 – ρ1)e–α2τ2
[
λ1 – d1x1(t – τ2) – β1x1(t – τ2)v(t – τ2)

]

+ ρ2e–α3τ3
[
λ2 – d2x2(t – τ3) – β2x2(t – τ3)v(t – τ3)

]

+ (1 – ρ2)e–α4τ4
[
λ2 – d2x2(t – τ4) – β2x2(t – τ4)v(t – τ4)

]

+ ρ1β1e–α1τ1 x1(t – τ1)v(t – τ1) – ay1(t) – δy1(t)

+ (1 – ρ1)β1e–α2τ2 x1(t – τ2)v(t – τ2) + δy1(t) – pu1(t)z(t) – μu1(t)

+ ρ2β2e–α3τ3 x2(t – τ3)v(t – τ3) – ay2(t) – δy2(t)

+ (1 – ρ2)β2e–α4τ4 x2(t – τ4)v(t – τ4) + δy2(t) – pu2(t)z(t) – μu2(t)

+
μ

2
(
u1(t) + u2(t)

)
–

μm
2c

(
u1(t) + u2(t)

)
z(t) –

μb
2c

z(t)

= ρ1e–α1τ1λ1 + (1 – ρ1)e–α2τ2λ1 + ρ2e–α3τ3λ2 + (1 – ρ2)e–α4τ4λ2

–
(

p +
μm
2c

)
(
u1(t) + u2(t)

)
z(t) – ρ1e–α1τ1 d1x1(t – τ1)

– (1 – ρ1)e–α2τ2 d1x1(t – τ2)

– ρ2e–α3τ3 d2x2(t – τ3) – (1 – ρ2)e–α4τ4 d2x2(t – τ4) – ay1(t) – ay2(t)

–
μ

2
u1(t) –

μ

2
u2(t) –

μb
2c

z(t)

≤ λ1 + λ2 – δ1L1(t),

δ1 = min{d1, d2, a, μ

2 , b}. Hence lim supt→∞ L1(t) ≤ M1, lim supt→∞ yi(t) ≤ M1,
lim supt→∞ ui(t) ≤ M1 and lim supt→∞ z(t) ≤ M2, for all t ≥ 0 where i = 1, 2, where,
M1 = λ1+λ2

δ1
and M2 = 2c

μ
. From Eq. (12) we have

v̇(t) = ke–α5τ5
(
u1(t – τ5) + u2(t – τ5)

)
– rv(t)

≤ 2kM1 – rv(t),

which yields lim supt→∞ v(t) ≤ M3 where M3 = 2kM1
r . �

2.2 Steady states
The basic reproduction number of system (6)–(13) is given as:

R0 =
δk

μr(a + δ)
(
γ1β1x0

1 + γ2β2x0
2
)
,
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where

γ1 = ρ1e–α1τ1–α5τ5 +
(a + δ)

δ
(1 – ρ1)e–α2τ2–α5τ5 ,

γ2 = ρ2e–α3τ3–α5τ5 +
(a + δ)

δ
(1 – ρ2)e–α4τ4–α5τ5 ,

x0
1 =

λ1

d1
, x0

2 =
λ2

d2
.

Lemma 1 For system (6)–(13) (i) if R0 ≤ 1, then there exists an infection-free steady state
E0, and (ii) if R0 > 1, then there exist two steady states, E0 and a chronic steady state E∗.

Proof The steady states of model (6)–(13) satisfy

λ1 – d1x1 – β1x1v = 0, (15)

ρ1β1e–α1τ1 x1v – ay1 – δy1 = 0, (16)

(1 – ρ1)β1e–α2τ2 x1v + δy1 – pu1z – μu1 = 0, (17)

λ2 – d2x2 – β2x2v = 0, (18)

ρ2β2e–α3τ3 x2v – ay2 – δy2 = 0, (19)

(1 – ρ2)β2e–α4τ4 x2v + δy2 – pu2z – μu2 = 0, (20)

ke–α5τ5 (u1 + u2) – rv = 0, (21)

c(u1 + u2) – m(u1 + u2)z – bz = 0. (22)

One solution of Eqs. (15)–(22) yields an infection-free steady state E0 = (x0
1, 0, 0, x0

2, 0, 0,
0, 0). Moreover, we have

A1v3 + B1v2 + C1v + D1 = 0,

where

A1 = β1β2(μm + pc)r2,

B1 = β1β2μrbke–α5τ5 + (β1d2 + β2d1)(μm + pc)r2 –
β1β2mrδk

a + δ
(λ1γ1 + λ2γ2),

C1 = μrbke–α5τ5 (β1d2 + β2d1) + μmr2d1d2(1 – R0) + pcr2d1d2

–
β1β2bk2δe–α5τ5

a + δ
(λ1γ1 + λ2γ2),

D1 = μrbkd1d2e–α5τ5 (1 – R0).

Let

Ψ1(v) = A1v3 + B1v2 + C1v + D1 = 0.

If R0 > 1, then Ψ1(0) = D1 < 0; moreover, limv→∞Ψ1(v) = ∞, which implies that there ex-
ists v∗ > 0 such that Ψ1(v∗) = 0. Thus a chronic steady state E∗ = (x∗

1, y∗
1, u∗

1, x∗
2, y∗

2, u∗
2, v∗, z∗)
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exists when R0 > 1, where

x∗
i =

λi

di + βiv∗ , i = 1, 2,

y∗
1 =

ρ1β1e–α1τ1 x∗
1v∗

a + δ
, y∗

2 =
ρ2β2e–α3τ3 x∗

2v∗

a + δ
,

u∗
i =

γiβix∗
i v∗δ

e–α5τ5 (μ + pz∗)(a + δ)
,

2∑

i=1

u∗
i =

rv∗

e–α5τ5 k
,

z∗ =
crv∗

bke–α5τ5 + mrv∗ . �

2.3 Global stability
We use Lyapunov method to investigate the global stability of the steady states. Let f (η) =
η – 1 – ln(η) and (x1, y1, u1, x2, y2, u2, v, z) = (x1(t), y1(t), u1(t), x2(t), y2(t), u2(t), v(t), z(t)).

Theorem 1 If R0 ≤ 1, then E0 for system (6)–(13) is globally asymptotically stable.

Proof We consider W1(x1, y1, u1, x2, y2, u2, v, z) as

W1 =
2∑

i=1

[
γix0

i f
(

xi

x0
i

)
+ e–α5τ5 yi +

a + δ

δ
e–α5τ5 ui

]
+

μ(a + δ)
δk

v +
p(a + δ)

2δc
e–α5τ5 z2

+ ρ1e–α1τ1–α5τ5

∫ τ1

0
β1x1(t – ϑ)v(t – ϑ) dϑ

+
(a + δ)

δ
(1 – ρ1)e–α2τ2–α5τ5

∫ τ2

0
β1x1(t – ϑ)v(t – ϑ) dϑ

+ ρ2e–α3τ3–α5τ5

∫ τ3

0
β2x2(t – ϑ)v(t – ϑ) dϑ

+
(a + δ)

δ
(1 – ρ2)e–α4τ4–α5τ5

∫ τ4

0
β2x2(t – ϑ)v(t – ϑ) dϑ

+
μ(a + δ)

δ
e–α5τ5

∫ τ5

0

[
u1(t – ϑ) + u2(t – ϑ)

]
dϑ .

It is seen that W1 > 0 for all x1, y1, u1, x2, y2, u2, v, z > 0, and W1(x0
1, 0, 0, x0

2, 0, 0, 0, 0) = 0. Cal-
culating Ẇ1 along system (6)–(13), we obtain

Ẇ1 =
2∑

i=1

[
γi

(
1 –

x0
i

xi

)
ẋi + e–α5τ5 ẏi +

a + δ

δ
e–α5τ5 u̇i

]

+
μ(a + δ)

δk
v̇ +

p(a + δ)
δc

e–α5τ5 zż

+ ρ1e–α1τ1–α5τ5β1
[
x1v – x1(t – τ1)v(t – τ1)

]

+
(a + δ)(1 – ρ1)

δ
e–α2τ2–α5τ5β1

[
x1v – x1(t – τ2)v(t – τ2)

]

+ ρ2e–α3τ3–α5τ5β2
[
x2v – x2(t – τ3)v(t – τ3)

]

+
(a + δ)(1 – ρ2)

δ
e–α4τ4–α5τ5β2

[
x2v – x2(t – τ4)v(t – τ4)

]
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+
μ(a + δ)

δ
e–α5τ5

[
u1 + u2 – u1(t – τ5) – u2(t – τ5)

]
. (23)

Equation (23) can be simplified as

Ẇ1 =
2∑

i=1

[
γi

(
1 –

x0
i

xi

)
(λi – dixi – βixiv)

]
–

μ(a + δ)
δk

rv

+
p(a + δ)

δc
e–α5τ5 z

[
–m(u1 + u2)z – bz

]
+ γ1β1x1v + γ2β2x2v.

Since λi = dix0
i ,

Ẇ1 =
2∑

i=1

[
γi

(
1 –

x0
i

xi

)
(
dix0

i – dixi
)

– γiβixiv
(

1 –
x0

i
xi

)
+ γiβixiv

]
–

μ(a + δ)
δk

rv

–
pm(a + δ)

δc
e–α5τ5 (u1 + u2)z2 –

pb(a + δ)
δc

e–α5τ5 z2

=
2∑

i=1

–diγi(xi – x0
i )2

xi
+

μr(a + δ)
δk

(R0 – 1)v

–
pm(a + δ)e–α5τ5

δc

2∑

i=1

uiz2 –
pb(a + δ)e–α5τ5

δc
z2.

It follows that Ẇ1 ≤ 0 if R0 ≤ 1. Therefore, Ẇ1 = 0 implies that xi = x0
i , v = 0 and z = 0. One

can easily show that the largest invariant set Ω0 ⊆ Ω = {(x1, y1, u1, x2, y2, u2, v, z)|Ẇ1 = 0} is
the singleton {E0}. By LaSalle’s invariance principle, E0 is globally asymptotically stable. �

Theorem 2 If R0 > 1, then E∗ for system (6)–(13) is globally asymptotically stable.

Proof Consider W2(x1, y1, u1, x2, y2, u2, v, z) as

W2 =
2∑

i=1

[
γix∗

i f
(

xi

x∗
i

)
+ e–α5τ5 y∗

i f
(

yi

y∗
i

)
+

(a + δ)
δ

e–α5τ5 u∗
i f

(
ui

u∗
i

)]

+
(a + δ)(μ + pz∗)

δk
v∗f

(
v
v∗

)

+
p(a + δ)

2δ(c – mz∗)
e–α5τ5

(
z – z∗)2 + ρ1β1e–α1τ1–α5τ5 x∗

1v∗
∫ τ1

0
f
(

x1(t – ϑ)v(t – ϑ)
x∗

1v∗

)
dϑ

+
(a + δ)

δ
(1 – ρ1)β1e–α2τ2–α5τ5 x∗

1v∗
∫ τ2

0
f
(

x1(t – ϑ)v(t – ϑ)
x∗

1v∗

)
dϑ

+ ρ2β2e–α3τ3–α5τ5 x∗
2v∗

∫ τ3

0
f
(

x2(t – ϑ)v(t – ϑ)
x∗

2v∗

)
dϑ

+
(a + δ)

δ
(1 – ρ2)β2e–α4τ4–α5τ5 x∗

2v∗
∫ τ4

0
f
(

x2(t – ϑ)v(t – ϑ)
x∗

2v∗

)
dϑ

+
(a + δ)(μ + pz∗)

δ
e–α5τ5

∫ τ5

0

[
u∗

1f
(

u1(t – ϑ)
u∗

1

)
+ u∗

2f
(

u2(t – ϑ)
u∗

2

)]
dϑ .
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Calculating Ẇ2 along system (6)–(13), we obtain

Ẇ2 =
2∑

i=1

[
γi

(
1 –

x∗
i

xi

)
ẋi + e–α5τ5

(
1 –

y∗
i

yi

)
ẏi +

(a + δ)
δ

e–α5τ5

(
1 –

u∗
i

ui

)
u̇i

]

+
(a + δ)(μ + pz∗)

δk

(
1 –

v∗

v

)
v̇

+
p(a + δ)

δ(c – mz∗)
e–α5τ5

(
z – z∗)ż

+ ρ1β1e–α1τ1–α5τ5 x∗
1v∗

[
x1v
x∗

1v∗ –
x1(t – τ1)v(t – τ1)

x∗
1v∗ + ln

x1(t – τ1)v(t – τ1)
x1v

]

+
(a + δ)

δ
(1 – ρ1)β1e–α2τ2–α5τ5 x∗

1v∗

×
[

x1v
x∗

1v∗ –
x1(t – τ2)v(t – τ2)

x∗
1v∗ + ln

x1(t – τ2)v(t – τ2)
x1v

]

+ ρ2β2e–α3τ3–α5τ5 x∗
2v∗

[
x2v
x∗

2v∗ –
x2(t – τ3)v(t – τ3)

x∗
2v∗ + ln

x2(t – τ3)v(t – τ3)
x2v

]

+
(a + δ)

δ
(1 – ρ2)β2e–α4τ4–α5τ5 x∗

2v∗

×
[

x2v
x∗

2v∗ –
x2(t – τ4)v(t – τ4)

x∗
2v∗ + ln

x2(t – τ4)v(t – τ4)
x2v

]

+
(a + δ)(μ + pz∗)

δ
e–α5τ5

[
u∗

1

(
u1

u∗
1

–
u1(t – τ5)

u∗
1

+ ln
u1(t – τ5)

u1

)

+ u∗
2

(
u2

u∗
2

–
u2(t – τ5)

u∗
2

+ ln
u2(t – τ5)

u2

)]
.

Using the following chronic steady state conditions:

λi = dix∗
i + βix∗

i v∗, (a + δ)y∗
1 = ρ1β1e–α1τ1 x∗

1v∗,

λi = dix∗
i + βix∗

i v∗, (a + δ)y∗
1 = ρ1β1e–α1τ1 x∗

1v∗,

(a + δ)y∗
2 = ρ2β2e–α3τ3 x∗

2v∗, (a + δ)
(
μ + pz∗)e–α5τ5 u∗

i = δγiβix∗
i v∗,

rv∗ = ke–α5τ5
(
u∗

1 + u∗
2
)
, c

(
u∗

1 + u∗
2
)

= m
(
u∗

1 + u∗
2
)
z∗ + bz∗,

we can simplify:

p
(c – mz∗)

(
z – z∗)ż

=
p(z – z∗)
(c – mz∗)

(
c(u1 + u2) – m(u1 + u2)z – bz

)

=
p(z – z∗)
(c – mz∗)

(
c(u1 + u2) – m(u1 + u2)z – bz – c

(
u∗

1 + u∗
2
)

+ m
(
u∗

1 + u∗
2
)
z∗ + bz∗)

= –
pb

(c – mz∗)
(
z – z∗)2 –

pm(u1 + u2)
(c – mz∗)

(
z – z∗)2

+ p
(
u1 – u∗

1
)(

z – z∗) + p
(
u2 – u∗

2
)(

z – z∗)
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= p

[ 2∑

i=1

u∗
i z∗ –

2∑

i=1

u∗
i z –

2∑

i=1

uiz∗ +
2∑

i=1

uiz –
[b + m(u1 + u2)]

(c – mz∗)
(
z – z∗)2

]

.

Due to steady state conditions, we can rewrite

Ẇ2 =
2∑

i=1

–γidi(xi – x∗
i )2

xi
+ ρ1β1e–α1τ1–α5τ5 x∗

1v∗
[

4 –
x∗

1
x1

–
y∗

1x1(t – τ1)v(t – τ1)
y1(t)x∗

1v∗

–
y1u∗

1
y∗

1u1
–

u1(t – τ5)v∗

u∗
1v

+ ln
x1(t – τ1)v(t – τ1)

x1v
+ ln

u1(t – τ5)
u1

]

+
(a + δ)

δ
(1 – ρ1)β1e–α2τ2–α5τ5 x∗

1v∗
[

3 –
x∗

1
x1

–
u1(t – τ5)v∗

u∗
1v

–
u∗

1x1(t – τ2)v(t – τ2)
u1x∗

1v∗ + ln
x1(t – τ2)v(t – τ2)

x1v
+ ln

u1(t – τ5)
u1

]

+ ρ2β2e–α3τ3–α5τ5 x∗
2v∗

[
4 –

x∗
2

x2
–

y∗
2x2(t – τ3)v(t – τ3)

y2x∗
2v∗ –

y2u∗
2

y∗
2u2

–
u2(t – τ5)v∗

u∗
2v

+ ln
x2(t – τ3)v(t – τ3)

x2v
+ ln

u2(t – τ5)
u2

]

+
(a + δ)

δ
(1 – ρ2)β2e–α4τ4–α5τ5 x∗

2v∗
[

3 –
x∗

2
x2

–
u2(t – τ5)v∗

u∗
2v

–
u∗

2x2(t – τ4)v(t – τ4)
u2x∗

2v∗

+ ln
u2(t – τ5)

u2
+ ln

x2(t – τ4)v(t – τ4)
x2v

]

–
(a + δ)

δ
e–α5τ5

p[b + m(u1 + u2)]
(c – mz∗)

(
z – z∗)2.

Consider the following relations:

ln

(
x1(t – τ1)v(t – τ1)

x1v

)
+ ln

(
u1(t – τ5)

u1

)

= ln

(
x∗

1
x1

)
+ ln

(
y∗

1x1(t – τ1)v(t – τ1)
y1x∗

1v∗

)
+ ln

(
y1u∗

1
y∗

1u1

)
+ ln

(
u1(t – τ5)v∗

u∗
1v

)
,

ln

(
x1(t – τ2)v(t – τ2)

x1v

)
+ ln

(
u1(t – τ5)

u1

)

= ln

(
x∗

1
x1

)
+ ln

(
x1(t – τ2)v(t – τ2)u∗

1
x∗

1v∗u1

)
+ ln

(
u1(t – τ5)v∗

u∗
1v

)
.

Using similar relations for the terms containing τ3 and τ4, we finally obtain

Ẇ2 =
2∑

i=1

[
–γidi(xi – x∗

i )2

xi

– γiβix∗
i v∗f

(
x∗

i
xi

)]
– ρ1β1e–α1τ1–α5τ5 x∗

1v∗
[

f
(

y∗
1x1(t – τ1)v(t – τ1)

y1x∗
1v∗

)
+ f

(
y1u∗

1
y∗

1u1

)

+ f
(

u1(t – τ5)v∗

u∗
1v

)]
–

(a + δ)
δ

(1 – ρ1)β1e–α2τ2–α5τ5 x∗
1v∗

×
[

f
(

x1(t – τ2)v(t – τ2)u∗
1

x∗
1v∗u1

)
+ f

(
u1(t – τ5)v∗

u∗
1v

)]
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– ρ2β2e–α3τ3–α5τ5 x∗
2v∗

[
f
(

y∗
2x2(t – τ3)v(t – τ3)

y2(t)x∗
2v∗

)
+ f

(
y2u∗

2
y∗

2u2

)
+ f

(
u2(t – τ5)v∗

u∗
2v

)]

–
(a + δ)

δ
(1 – ρ2)β2e–α4τ4–α5τ5 x∗

2v∗
[

f
(

x2(t – τ4)v(t – τ4)u∗
2

x∗
2v∗u2

)
+ f

(
u2(t – τ5)v∗

u∗
2v

)]

–
(a + δ)

δ

p[b + m(u1 + u2)]
(c – mz∗)

e–α5τ5
(
z – z∗)2. (24)

It follows that Ẇ2 ≤ 0. Now LaSalle’s invariance principle implies that E∗ is globally asymp-
totically stable. �

3 HIV model with distributed delays
We study the HIV infection model with distributed time delays:

ẋ1(t) = λ1 – d1x1(t) – β1x1(t)v(t), (25)

ẏ1(t) = ρ1β1

∫ s1

0
h1(τ )e–m1τ x1(t – τ )v(t – τ ) dτ – ay1(t) – δy1(t), (26)

u̇1(t) = (1 – ρ1)β1

∫ s2

0
h2(τ )e–m2τ x1(t – τ )v(t – τ ) dτ

+ δy1(t) – pu1(t)z(t) – μu1(t), (27)

ẋ2(t) = λ2 – d2x2(t) – β2x2(t)v(t), (28)

ẏ2(t) = ρ2β2

∫ s3

0
h3(τ )e–m3τ x2(t – τ )v(t – τ ) dτ – ay2(t) – δy2(t), (29)

u̇2(t) = (1 – ρ2)β2

∫ s4

0
h4(τ )e–m4τ x2(t – τ )v(t – τ ) dτ

+ δy2(t) – pu2(t)z(t) – μu2(t), (30)

v̇(t) = k
∫ s5

0
g(τ )e–nτ

(
u1(t – τ ) + u2(t – τ )

)
dτ – rv(t), (31)

ż(t) = c
(
u1(t) + u2(t)

)
– m

(
u1(t) + u2(t)

)
z(t) – bz(t). (32)

The factors h2i–1(τ )e–m2i–1τ , i = 1, 2 are the probabilities that uninfected cells contacted
by HIV at time t –τ survived τ time units and become latently infected at time t, where i =
1 and i = 2 represent the CD4+ T cells and macrophages, respectively; h2i(τ )e–m2iτ , i = 1, 2
are the probabilities that the uninfected cells contacted by HIV at time t –τ survived τ time
units and become actively infected at time t; g(τ )e–nτ is the probability that an immature
pathogen at time t – τ survived τ time units to become mature at time t. The probability
distribution function hi(τ ), i = 1, . . . , 4 and g(τ ) are assumed to satisfy hi(τ ) > 0, i = 1, . . . , 4
and g(τ ) > 0, as well as

∫ sj

0
hj(τ ) dτ =

∫ s5

0
g(τ ) dτ = 1,

∫ sj

0
hj(τ )eεr dr < ∞,

∫ s5

0
g(τ )eεr dr < ∞, i = 1, . . . , 4, ε > 0.
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Let

Hj =
∫ sj

0
hj(τ )e–mjτ dτ =, G =

∫ s5

0
g(τ )e–nτ dτ = G, j = 1, . . . , 4.

Then 0 < Hj ≤ 1 and 0 < G ≤ 1,j = 1, . . . , 4.
The initial conditions for system (25)–(32) are the same as given by (14) where κ =

max{s1, s2, s3, s4, s5}.

3.1 Nonnegativity and boundedness
Proposition 2 The solutions of system (25)–(32) are nonnegative and ultimately bounded.

Proof The nonnegativity can be shown as in Proposition 1. To show the boundedness, let
us define

U1(t) = ρ1

∫ s1

0
h1(τ )e–m1τ x1(t – τ ) dτ + (1 – ρ1)

∫ s2

0
h2(τ )e–m2τ x1(t – τ ) dτ

+ ρ2

∫ s3

0
h3(τ )e–m3τ x2(t – τ ) dτ + (1 – ρ2)

∫ s4

0
h4(τ )e–m4τ x2(t – τ ) dτ

+ y1(t) + u1(t) + y2(t) + u2(t) +
μ

2c
z(t).

Then

U̇1(t) = ρ1H1λ1 + (1 – ρ1)H2λ1 + ρ2H3λ2 + (1 – ρ2)H4λ2

–
(

p +
μm
2c

)(
u1(t) + u2(t)

)
z(t) – ρ1e–α1τ1 d1x1(t – τ1)

– (1 – ρ1)e–α2τ2 d1x1(t – τ2)

– ρ2e–α3τ3 d2x2(t – τ3) – (1 – ρ2)e–α4τ4 d2x2(t – τ4) – ay1(t) – ay2(t)

–
μ

2
u1(t) –

μ

2
u2(t) –

μb
2c

z(t)

≤ λ1 + λ2 – δ1U1(t).

Then lim supt→∞ xi(t) ≤ M1, lim supt→∞ yi(t) ≤ M1, lim supt→∞ ui(t) ≤ M1,
lim supt→∞ z(t) ≤ M2 and lim supt→∞ v(t) ≤ M3, where M1, M2 and M3 are defined in
the previous section. �

3.2 Steady states
The basic reproduction number R0 for system (25)–(32) is as follows:

R0 =
δkG

μr(a + δ)
(
ξ1β1x0

1 + ξ2β2x0
2
)
,

where

ξ1 = ρ1H1 +
(a + δ)

δ
(1 – ρ1)H2, ξ2 = ρ2H3 +

(a + δ)
δ

(1 – ρ2)H4.
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Lemma 2 For system (25)–(32) (i) if R0 ≤ 1, then there exists an infection-free steady state
E0, and (ii) if R0 > 1, then there exist two steady states, E0 and a chronic steady state E∗.

Proof The steady states of model (25)–(32) satisfy:

λ1 – d1x1 – β1x1v = 0, (33)

ρ1β1H1x1v – ay1 – δy1 = 0, (34)

(1 – ρ1)β1H2x1v + δy1 – pu1z – μu1 = 0, (35)

λ2 – d2x2 – β2x2v = 0, (36)

ρ2β2H3x2v – ay2 – δy2 = 0, (37)

(1 – ρ2)β2H4x2v + δy2 – pu2z – μu2 = 0, (38)

kG(u1 + u2) – rv = 0, (39)

c(u1 + u2) – m(u1 + u2)z – bz = 0. (40)

We find that system (25)–(32) admits an infection-free steady state E0 = (x0
1, 0, 0, x0

2, 0, 0,
0, 0) where x0

1 = λ1
d1

, x0
2 = λ2

d2
. In addition, from Eqs. (33)–(40) we get

A2v3 + B2v2 + C2v + D2 = 0,

where

A2 = β1β2(μm + pc)r2,

B2 = β1β2μrbGk + (β1d2 + β2d1)(μm + pc)r2 –
β1β2mrδGk

a + δ
(λ1ξ1 + λ2ξ2),

C2 = μrbGk(β1d2 + β2d1) + μmr2d1d2(1 – R0) + pcr2d1d2 –
β1β2δbG2k2

a + δ
(λ1ξ1 + λ2ξ2),

D2 = μrbkd1d2G(1 – R0).

Let

Ψ2(v) = A2v3 + B2v2 + C2v + D2 = 0.

If R0 > 1, then Ψ2(0) = D2 < 0; moreover, limv→∞Ψ2(v) = ∞. Then there exits v∗ ∈ (0,∞)
such that Ψ2(v∗) = 0. Therefore, a chronic steady state E∗ = (x∗

1, y∗
1, u∗

1, x∗
2, y∗

2, u∗
2, v∗, z∗) exists

if R0 > 1, where

x∗
i =

λi

di + βiv∗ , i = 1, 2,

y∗
1 =

ρ1β1H1x∗
1v∗

a + δ
, y∗

2 =
ρ2β2H3x∗

2v∗

a + δ
,

u∗
i =

ξiβix∗
i v∗δ

(μ + pz∗)(a + δ)
,

2∑

i=1

u∗
i =

rv∗

Gk
,

z∗ =
crv∗

bkG + mrv∗ . �
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3.3 Global stability
Theorem 3 If R0 ≤ 1, then E0 for system (25)–(32) is globally asymptotically stable.

Proof Define

V1 =
2∑

i=1

[
ξix0

i f
(

xi

x0
i

)
+ yi +

a + δ

δ
ui

]
+

μ(a + δ)
δGk

v +
p(a + δ)

2δc
z2

+ ρ1β1

∫ s1

0
h1(τ )e–m1τ

∫ τ

0
x1(t – ϑ)v(t – ϑ) dϑ dτ

+
(a + δ)

δ
(1 – ρ1)

∫ s2

0
h2(τ )e–m2τ

∫ τ

0
β1x1(t – ϑ)v(t – ϑ) dϑ dτ

+ ρ2β2

∫ s3

0
h3(τ )e–m3τ

∫ τ

0
x2(t – ϑ)v(t – ϑ) dϑ dτ

+
(a + δ)

δ
(1 – ρ2)β2

∫ s4

0
h4(τ )e–m4τ

∫ τ

0
x2(t – ϑ)v(t – ϑ) dϑ dτ

+
μ(a + δ)

δG

∫ s5

0
g(τ )e–nτ

∫ τ

0

[
u1(t – ϑ) + u2(t – ϑ)

]
dϑ dτ . (41)

Calculating V̇1 along system (25)–(32), we obtain

V̇1 =
2∑

i=1

[
ξi

(
1 –

x0
i

xi

)
ẋi + ẏi +

a + δ

δ
u̇i

]
+

μ(a + δ)
δGk

v̇ +
p(a + δ)

δc
zż

+ ρ1β1

∫ s1

0
h1(τ )e–m1τ

[
x1(t)v(t) – x1(t – τ )v(t – τ )

]
dτ

+
(a + δ)(1 – ρ1)

δ
β1

∫ s2

0
h2(τ )e–m2τ

[
x1(t)v(t) – x1(t – τ )v(t – τ )

]
dτ

+ ρ2β2

∫ s3

0
h3(τ )e–m3τ

[
x2v – x2(t – τ )v(t – τ )

]
dτ

+
(a + δ)(1 – ρ2)

δ
β2

∫ s4

0
h4(τ )e–m4τ

[
x2v – x2(t – τ )v(t – τ )

]
dτ

+
μ(a + δ)

δG

∫ s5

0
g(τ )e–nτ

[
u1 + u2 – u1(t – τ ) – u2(t – τ )

]
dτ .

Since λi = dix0
i , we get

V̇1 =
2∑

i=1

[
ξi

(
1 –

x0
i

xi

)(
dix0

i – dixi
)

– ξiβixiv
(

1 –
x0

i
xi

)
+ ξiβixiv

]
–

μ(a + δ)
δGk

rv

–
pm(a + δ)

δc
(u1 + u2)z2 –

pb(a + δ)
δc

z2

=
2∑

i=1

–diξi(xi – x0
i )2

xi
+

μr(a + δ)
δGk

(R0 – 1)v –
pm(a + δ)

δ

2∑

i=1

uiz2 –
pb(a + δ)

δc
z2.

Similar to the proof of Theorem 1, E0 is globally asymptotically stable if R0 ≤ 1. �

Theorem 4 If R0 > 1, then E∗ for system (25)–(32) is globally asymptotically stable.
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Proof Define

V2 =
2∑

i=1

[
ξix∗

i f
(

xi

x∗
i

)
+ y∗

i f
(

yi

y∗
i

)
+

(a + δ)
δ

u∗
i f

(
ui

u∗
i

)]
+

(a + δ)(μ + pz∗)
δGk

v∗f
(

v
v∗

)

+
p(a + δ)

2δ(c – mz∗)
(
z – z∗)2

+ ρ1β1x∗
1v∗

∫ s1

0
h1(τ )e–m1τ

∫ τ

0
f
(

x1(t – ϑ)v(t – ϑ)
x∗

1v∗

)
dϑ dτ

+
(a + δ)

δ
(1 – ρ1)β1x∗

1v∗
∫ s2

0
h2(τ )e–m2τ

∫ τ

0
f
(

x1(t – ϑ)v(t – ϑ)
x∗

1v∗

)
dϑ dτ

+ ρ2β2x∗
2v∗

∫ s3

0
h3(τ )e–m3τ

∫ τ

0
f
(

x2(t – ϑ)v(t – ϑ)
x∗

2v∗

)
dϑ dτ

+
(a + δ)

δ
(1 – ρ2)β2x∗

2v∗
∫ s4

0
h4(τ )e–m4τ

∫ τ

0
f
(

x2(t – ϑ)v(t – ϑ)
x∗

2v∗

)
dϑ dτ

+
(a + δ)(μ + pz∗)

δG

∫ s5

0
g(τ )e–nτ

∫ τ

0

[
u∗

1f
(

u1(t – ϑ)
u∗

1

)
+ u∗

2f
(

u2(t – ϑ)
u∗

2

)]
dϑ dτ .

It is seen that function V2 is positive definite. The time derivative of V2 is given by the
following:

V̇2 =
2∑

i=1

[
ξi

(
1 –

x∗
i

xi

)
ẋi +

(
1 –

y∗
i

yi

)
ẏi +

(a + δ)
δ

(
1 –

u∗
i

ui

)
u̇i

]

+
(a + δ)(μ + pz∗)

δGk

(
1 –

v∗

v

)
v̇

+
p(a + δ)

δ(c – mz∗)
(
z – z∗)ż + ρ1β1x∗

1v∗
∫ s1

0
h1(τ )e–m1τ

[
x1v
x∗

1v∗ –
x1(t – τ )v(t – τ )

x∗
1v∗

+ ln
x1(t – τ )v(t – τ )

x1v

]
dτ

+
(a + δ)

δ
(1 – ρ1)β1x∗

1v∗
∫ s2

0
h2(τ )e–m2τ

[
x1v
x∗

1v∗ –
x1(t – τ )v(t – τ )

x∗
1v∗

+ ln
x1(t – τ )v(t – τ )

x1v

]
dτ

+ ρ2β2x∗
2v∗

∫ s3

0
h3(τ )e–m3τ

[
x2v
x∗

2v∗ –
x2(t – τ )v(t – τ )

x∗
2v∗ + ln

x2(t – τ )v(t – τ )
x2v

]
dτ

+
(a + δ)

δ
(1 – ρ2)β2x∗

2v∗
∫ s4

0
h4(τ )e–m4τ

[
x2v
x∗

2v∗ –
x2(t – τ )v(t – τ )

x∗
2v∗

+ ln
x2(t – τ )v(t – τ )

x2v

]
dτ

+
(a + δ)(μ + pz∗)

δG
u∗

1

∫ s5

0
g(τ )e–nτ

[
u1

u∗
1

–
u1(t – τ )

u∗
1

+ ln
u1(t – τ )

u1

]
dτ

+
(a + δ)(μ + pz∗)

δG
u∗

2

∫ s5

0
g(τ )e–nτ

[
u2

u∗
2

–
u2(t – τ )

u∗
2

+ ln
u2(t – τ )

u2

]
dτ .
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Using chronic steady state conditions

λi = dix∗
i + βix∗

i v∗, (a + δ)y∗
1 = ρ1β1H1x∗

1v∗,

(a + δ)y∗
2 = ρ2β2H3x∗

2v∗, (a + δ)
(
μ + pz∗)u∗

i = ξiβiδx∗
i v∗,

rv∗ = kG
(
u∗

1 + u∗
2
)
, 0 = c

(
u∗

1 + u∗
2
)

– m
(
u∗

1 + u∗
2
)
z∗ – bz∗,

we can simplify:

p
(c – mz∗)

(
z – z∗)ż

=
p(a + δ)(z – z∗)

δ(c – mz∗)
(
c(u1 + u2) – m(u1 + u2)z – bz

)

= p

[ 2∑

i=1

u∗
i z∗ –

2∑

i=1

u∗
i z –

2∑

i=1

uiz∗ +
2∑

i=1

uiz –
[b + m

∑2
i=1 ui]

(c – mz∗)
(
z – z∗)2

]

. (42)

The following relations will be used:

ln

(
x1(t – τ )v(t – τ )

x1v

)
= ln

(
x∗

1v∗y1

x1vy∗
1

)
+ ln

(
y∗

1x1(t – τ )v(t – τ )
y1x∗

1v∗

)
,

ln

(
x1(t – τ )v(t – τ )

x1v

)
= ln

(
x∗

1v∗u1

x1vu∗
1

)
+ ln

u∗
1x1(t – τ )v(t – τ )

u1x∗
1v∗ ,

ln

(
ui(t – τ )

ui

)
= ln

(
vu∗

i
v∗ui

)
+ ln

(
ui(t – τ )v∗

u∗
i v

)
.

Now using the last relations with steady state conditions and Eq. (42), we can rewrite

V̇2(t) =
2∑

i=1

[
–ξi di(xi – x∗

i )2

xi
+ ξiβix∗

i v∗
(

1 –
x∗

i
xi

)

–
ξiβix∗

i v∗

G

∫ s5

0
g(τ )e–nτ f

(
v∗ui(t – τ )

vu∗
i

)
dτ

+
ξiβix∗

i v∗

G

∫ s5

0
g(τ )e–nτ ln

vu∗
i

v∗ui
dτ

]
– ρ1β1H1x∗

1v∗
(

y1u∗
1

y∗
1u1

– 1
)

– ρ2β2H3x∗
2v∗

(
y2u∗

2
y∗

2u2
– 1

)

– ρ1β1x∗
1v∗

∫ s1

0
h1(τ )e–m1τ f

(
y∗

1x1(t – τ )v(t – τ )
y1x∗

1v∗

)
dτ

+ ρ1β1x∗
1v∗

∫ s1

0
h1(τ )e–m1τ ln

y1x∗
1v∗

y∗
1x1v

dτ

– ρ2β2x∗
2v∗

∫ s3

0
h3(τ )e–m3τ f

(
y∗

2x2(t – τ )v(t – τ )
y2x∗

2v∗

)
dτ

+ ρ2β2x∗
2v∗

∫ s3

0
h3(τ )e–m3τ ln

y2x∗
2v∗

y∗
2x2v

dτ

+
a + δ

δ
(1 – ρ1)β1x∗

1v∗
∫ s2

0
h2(τ )e–m2τ ln

u1x∗
1v∗

u∗
1x1v

dτ
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+
a + δ

δ
ρ2β2x∗

2v∗
∫ s4

0
h4(τ )e–m4τ ln

u2x∗
2v∗

u∗
2x2v

dτ

–
a + δ

δ
(1 – ρ1)β1x∗

1v∗
∫ s2

0
h2(τ )e–m2τ f

(
u∗

1x1(t – τ )v(t – τ )
u1x∗

1v∗

)
dτ

–
a + δ

δ
(1 – ρ2)β2x∗

2v∗
∫ s4

0
h4(τ )e–m4τ f

(
u∗

2x2(t – τ )v(t – τ )
u2x∗

2v∗

)
dτ

–
p(a + δ)[b + m(u1 + u2)]

δ(c – mz∗)
(
z – z∗)2.

Finally, we obtain

V̇2(t) = –
2∑

i=1

[
ξidi(xi – x∗

i )2

xi
+ ξiβix∗

i v∗f
(

x∗
i

xi

)

+
ξiβix∗

i v∗

G

∫ s5

0
g(τ )e–nτ f

(
v∗ui(t – τ )

vu∗
i

)
dτ

]

– ρ1β1H1x∗
1v∗f

(
y1u∗

1
y∗

1u1

)
– ρ1β1x∗

1v∗
∫ s1

0
h1(τ )e–m1τ f

(
y∗

1x1(t – τ )v(t – τ )
y1x∗

1v∗

)
dτ

– ρ2β2H3x∗
2v∗f

(
y2u∗

2
y∗

2u2

)
– ρ2β2x∗

2v∗
∫ s3

0
h3(τ )e–m3τ f

(
y∗

2x2(t – τ )v(t – τ )
y2x∗

2v∗

)
dτ

–
a + δ

δ
(1 – ρ1)β1x∗

1v∗
∫ s2

0
h2(τ )e–m2τ f

(
u∗

1x1(t – τ )v(t – τ )
u1x∗

1v∗

)
dτ

–
a + δ

δ
(1 – ρ2)β2x∗

2v∗
∫ s4

0
h4(τ )e–m4τ f

(
u∗

2x2(t – τ )v(t – τ )
u2x∗

2v∗

)
dτ

–
p(a + δ)[b + m(u1 + u2)]

δ(c – mz∗)
(
z – z∗)2.

Applying LaSalle’s invariance principle to the last equation, we get V̇2 ≤ 0, leading to the
global asymptotic stability of the chronic steady state E∗. �

4 Numerical simulations
In this section, we perform numerical simulation for model (6)–(13) with values of the
parameters given in Table 1. Let us consider for simplicity that τ1 = τ2 = τ3 = τ4 = τ5 = τc,
and chose the initial conditions as:

(IC1) ω1(η) = 700,ω2(η) = 20,ω3(η) = 15,ω4(η) = 15,ω5(η) = 0.0005,ω6(η) =
0.0005,ω7(η) = 15 and ω8(η) = 1.5;

(IC2) ω1(η) = 500,ω2(η) = 15,ω3(η) = 10,ω4(η) = 10,ω5(η) = 0.001,ω6(η) =
0.001,ω7(η) = 12 and ω8(η) = 1;

(IC3) ω1(η) = 300,ω2(η) = 5,ω3(η) = 5,ω4(η) = 1,ω5(η) = 0.3,ω6(η) = 0.3,ω7(η) = 8 and
ω8(η) = 0.5, η ∈ [– max{τ1, τ2, τ3, τ4, τ5}, 0].

Case I. Stability of the steady states
Let τc = 0.7 and ρ1 = ρ2 = 0.5. We have two subcases shown in Fig. 1:
(a) if β1 = 2.4 × 10–5 and β2 = 2 × 10–5, then R0 = 0.0264 < 1. It follows that E0 is globally

asymptotically stable. In this case the concentration of the uninfected cells is increasing
and returns to its normal value λi/di, while the concentrations of infected cells, HIV par-
ticles and CTLs are decaying and approach zero.
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Table 1 The parameter values of model (6)–(13)

Parameter Value Parameter Value

λ1 10 λ2 0.03198
d1 0.01 d2 0.01
β1 varied β2 varied
ρ1 varied ρ2 varied
a 0.1 α1 1
p 0.04 α2 1
k 6 α3 1
r 3 α4 1
c 0.025 α5 1
b 0.2 δ 0.05
μ 0.3 m 0.005

(b) if β1 = 0.002 and β2 = 0.001 then R0 = 2.1955 > 1. Therefore, E∗ exists and is globally
asymptotically stable. In this case the concentration of the uninfected cells is decreasing,
while the concentrations of infected cells, HIV particles and CTLs are increasing. In this
situation HIV infection will be chronic.

From the above, one can see that the infection rate parameters β1 and β2 have significant
effects on stabilizing the infection-free steady state. This is because R0 can be decreased
by decreasing the values of β1 and β2. The values of the parameters β1 and β2 can be
reduced when an HIV infected patient is treated by reverse transcriptase inhibitor (RTI)
drugs which prevent HIV from infecting the uninfected target cells. When incorporating
the RTI drugs into the HIV dynamics model, the parameters β1 and β2 will be replaced
by (1 – ε)β1 and (1 – ε)β2, respectively, where ε is the drug efficacy with 0 ≤ ε < 1. In this
case, the basic reproduction number is given by

R0(ε) =
(1 – ε)δk
μr(a + δ)

(
γ1β1x0

1 + γ2β2x0
2
)
.

Therefore, one can find the minimum drug efficacy εm, which makes R0(ε) ≤ 1 and then
stabilizes the system around the infection-free steady state E0, as:

εm = max

{
1 –

μr(a + δ)
δk(γ1β1x0

1 + γ2β2x0
2)

, 0
}

. (43)

Case II. Effect of the time delay on the HIV dynamics
In this case, we fix the parameters β1 = 0.002, β2 = 0.001 and ρ1 = ρ2 = 0.5. We con-

sider initial conditions IC1. Figure 2 shows that the stability of the steady states has been
changed by changing the values of the delay parameter τc. It can be seen that as τc is in-
creased the concentration of the uninfected cells is increased, while the concentrations of
infected cells, free HIV particles and CTLs are decreased. From Fig. 2 we can see that, in
case of smaller values of τc, trajectories of the system will converge to E∗. If the value of τc

is increased, trajectories will converge to E∗ and finally approach E0. Using the values of
the parameters given in Table 1, we have the following:

(i) if 0.0 ≤ τc < 1.0932, then E∗ exists and is globally asymptotically stable;
(ii) if τc ≥ 1.0932, then E0 is globally asymptotically stable.
This result support the results of Theorems 1 and 2.
From a biological point of view, the intracellular delay plays a similar role as an antiviral

treatment in eliminating the virus. We observe that sufficiently large delay suppresses viral
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Figure 1 The evolution of model (6)–(13) with varied infection rates

replication and clears the virus from the body. This gives us some suggestions on new
drugs to prolong the increase of the intracellular delay period.

Case III. Effect of latency on the dynamical behavior of the system
In this case, we show the HIV dynamics for different values of ρi, the fraction of un-

infected cells that become latently infected cells. We take β1 = 0.002, β2 = 0.001, τc = 0.8
and the initial conditions IC1. For simplicity we let ρ1 = ρ2 = ρc. Figure 4 shows the effect
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Figure 2 The evolution of model (6)–(13) with varied τc

of ρc on the the evolution of system states. When ρc increases, we observe an increase
in the concentration of the latently infected CD4+ T cells and macrophages. This means
that the reservoirs of these cells are enlarged, which promotes an increase in the amount
of virus that escapes treatment [18]. Subsequently, after activation of the latently infected
cells, new HIV will be produced and released into the blood stream [55]. From Fig. 4 we
can see that, when ρc is increased, the concentrations of uninfected cells, actively infected
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Figure 3 The evolution of model (6)–(13) with variedm

cells, free HIV particles and CTLs are decreased. Using the values of the parameters given
in Table 1 we have the following:

(i) if 0.0 ≤ ρc < 0.9437, then R0 > 1 and E∗ exists and is globally asymptomatically
stable;

(ii) if ρc ≥ 0.9437, then R0 ≤ 1 and E0 is globally asymptomatically stable.
Case IV. Effect of the immune impairment parameter m on the HIV dynamics
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Figure 4 The evolution of model (6)–(13) with varied ρc

In this case, we choose β1 = 2.4 × 10–3, β2 = 2 × 10–3, τc = 0.5,ρc = 0.5 and the ini-
tial conditions IC4: ω1(η) = 280,ω2(η) = 15,ω3(η) = 9,ω4(η) = 1,ω5(η) = 0.045,ω6(η) =
0.03,ω7(η) = 11 and ω8(η) = 0.5. Figure 3 shows that, as m is increased, the concentration
of CTL cells is decreased and then the concentrations of latently infected cells, actively
infected cells and free HIV particles are increased, while the concentration of the unin-
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fected cells is decreased. We note that R0 does not depend on the parameter m; therefore,
m does not change the stability properties of steady states.

5 Conclusion and discussion
All of the existing mathematical models of HIV infection with CTL immune impairment
study the HIV infection and production in one class of target cells, CD4+ T cells. How-
ever, it has been reported in several papers that HIV can infect both CD4+ T cells and
macrophages. In this paper, we have studied an HIV dynamics model with CTL immune
impairment and with two classes of target cells, CD4+ T cells and macrophages. We have
considered two types of infected cells, latently infected cells (such cells contain HIV but
are not producing it) and actively infected cells (such cells are producing HIV). The model
considers multiple discrete or distributed time delays to characterize the time between an
HIV contact of an uninfected target cell and the creation of mature HIV particles. We have
shown that the solutions of the model are nonnegative and ultimately bounded which en-
sures the well-posedness of the model. We have derived a biological threshold number R0

(the basic reproduction number) which fully determines the existence and stability of the
two steady states of the model. We have investigated the global stability of the model steady
states by using Lyapunov method and LaSalle’s invariance principle. We have proven that
(i) if R0 ≤ 1, then the infection-free steady state E0 is globally asymptotically stable and
HIV is predicted to be completely cleared from the HIV infected individuals, (ii) if R0 > 1,
then the chronic steady state E∗ is globally asymptotically stable and a chronic HIV infec-
tion is attained. We have conducted numerical simulations and have shown that both the
theoretical and numerical results are consistent.

Our analysis extends the results presented in [49], where the global stability was analyzed
for a model with one target cell population. When we consider the HIV dynamics with only
one class of target cells, CD4+ T cells, then model (6)–(13) under the effect of RTI drug
therapy with drug efficacy ε leads to the following model:

ẋ1(t) = λ1 – d1x1(t) – (1 – ε)β1x1(t)v(t), (44)

ẏ1(t) = (1 – ε)ρ1β1e–α1τ1 x1(t – τ1)v(t – τ1) – ay1(t) – δy1(t), (45)

u̇1(t) = (1 – ε)(1 – ρ1)β1e–α2τ2 x1(t – τ2)v(t – τ2) + δy1(t) – pu1(t)z(t) – μu1(t), (46)

v̇(t) = ke–α5τ5 u1(t – τ5) – rv(t), (47)

ż(t) = cu1(t) – mu1(t)z(t) – bz(t). (48)

The basic reproduction number for system (44)–(48) is given by

RC
0 (ε) =

(1 – ε)δkγ1β1x0
1

μr(a + δ)
.

The basic reproduction number for system (6)–(13) under the effect of RTI drug therapy
can be written as:

R0(ε) = RC
0 (ε) + RM

0 (ε),

RC
0 (ε) =

(1 – ε)δkγ1β1x0
1

μr(a + δ)
,
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RM
0 (ε) =

(1 – ε)δkγ2β2x0
2

μr(a + δ)
,

where RM
0 (ε) is the basic reproduction number of a model that describes the HIV dynam-

ics with only macrophages and neglects the CD4+ T cells. For system (44)–(48) one can
determine the minimum drug efficacy εC

m such that RC
0 (εC

m) < 1, namely

εC
m = max

{
1 –

μr(a + δ)
δkγ1β1x0

1
, 0

}
. (49)

Comparing Eqs. (43) and (49), we get that εC
m ≤ εm. Therefore, if we apply drugs with ε such

that εC
m ≤ ε < εm, this guarantees that RC

0 (ε) ≤ 1, and then E0 of system (44)–(48) is globally
asymptotically stable; however, R0(ε) > 1 and so E0 of (6)–(13) is unstable. Therefore, more
accurate drug efficacy ε is determined when using the model with two classes of target
cells. This shows the importance of considering the effect of the macrophages in the HIV
dynamics.

In the literature, fractional-order differential equations have been applied with the pur-
pose of obtaining a deeper understanding of the complex behavioral patterns of HIV dy-
namical systems [53, 55–57]. The memory property of the fractional models allows the
integration of more information from the past, which translates into more accurate pre-
dictions for the model. Clinicians can thus use the information (in terms of behavior pre-
dictions) of fractional-order systems to fit patients’ data with the most appropriate non-
integer-order index [53]. As a future work it is reasonable to use a corresponding fractional
modification of our models, as fractional differential equations inherently include mem-
ory.

Funding
This article was funded by King Abdulaziz City for Science and Technology (KACST), Saudi Arabia, under grant No.
(1-17-01-009-0103). The authors, therefore, acknowledge with thanks KACST for technical and financial support.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia. 2Department of
Mathematics, Faculty of Science, King Khalid University, Abha, Saudi Arabia. 3Department of Mathematics, Faculty of
Science, Assiut University, Assiut, Egypt.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 6 July 2018 Accepted: 31 October 2018

References
1. Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune responses to persistent viruses. Science 272, 74–79

(1996)
2. Culshaw, R.V., Ruan, S.: A delay-differential equation model of HIV infection of CD4+T-cells. Math. Biosci. 165, 27–39

(2000)
3. Nelson, P.W., Murray, J.D., Perelson, A.S.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math.

Biosci. 163, 201–215 (2000)
4. Culshaw, R.V., Ruan, S., Webb, G.: A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay.

J. Math. Biol. 46, 425–444 (2003)



Elaiw et al. Advances in Difference Equations        (2018) 2018:414 Page 24 of 25

5. Wang, L., Li, M.Y.: Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math.
Biosci. 200, 44–57 (2006)

6. Zhao, Y., Dimitrov, D.T., Liu, H., Kuang, Y.: Mathematical insights in evaluating state dependent effectiveness of HIV
prevention interventions. Bull. Math. Biol. 75(4), 649–675 (2013)

7. Nelson, P.W., Murray, J.D., Perelson, A.S.: A model of HIV-1 pathogenesis that includes an intracellular delay. Math.
Biosci. 163(2), 201–215 (2000)

8. Huang, G., Takeuchi, Y., Ma, W.: Lyapunov functionals for delay differential equations model of viral infections. SIAM J.
Appl. Math. 70(7), 2693–2708 (2010)

9. Elaiw, A.M., AlShamrani, N.H.: Global properties of nonlinear humoral immunity viral infection models. Int. J. Biomath.
8(5), Article ID 1550058 (2015)

10. Elaiw, A.M., AlShamrani, N.H., Hattaf, K.: Dynamical behaviors of a general humoral immunity viral infection model
with distributed invasion and production. Int. J. Biomath. 10(3), Article ID 1750035 (2017)

11. Elaiw, A.M., AlShamrani, N.H.: Stability of a general delay-distributed virus dynamics model with multi-staged infected
progression and immune response. Math. Methods Appl. Sci. 40(3), 699–719 (2017)

12. Elaiw, A.M., Elnahary, E.Kh., Raezah, A.A.: Effect of cellular reservoirs and delays on the global dynamics of HIV. Adv.
Differ. Equ. 2018, 85 (2018)

13. Hattaf, K., Yousfi, N.: A generalized virus dynamics model with cell-to-cell transmission and cure rate. Adv. Differ. Equ.
2016, 174 (2016)

14. Elaiw, A.M., Raezah, A.A., Hattaf, K.: Stability of HIV-1 infection with saturated virus-target and infected-target
incidences and CTL immune response. Int. J. Biomath. 10(5), Article ID 1750070 (2017)

15. Elaiw, A.M., AlShamrani, N.H., Alofi, A.S.: Stability of CTL immunity pathogen dynamics model with capsids and
distributed delay. AIP Adv. 7, Article ID 125111 (2017)

16. Gibelli, L., Elaiw, A., Alghamdi, M.A., Althiabi, A.M.: Heterogeneous population dynamics of active particles:
progression, mutations, and selection dynamics. Math. Models Methods Appl. Sci. 27, 617–640 (2017)

17. Wang, J., Teng, Z., Miao, H.: Global dynamics for discrete-time analog of viral infection model with nonlinear
incidence and CTL immune response. Adv. Differ. Equ. 2016, 143 (2016)

18. Blankson, J.N., Persaud, D., Siliciano, R.F.: The challenge of viral reservoirs in HIV-1 infection. Annu. Rev. Med. 53,
557–593 (2002)

19. Elaiw, A.M., Raezah, A.A.: Stability of general virus dynamics models with both cellular and viral infections and delays.
Math. Methods Appl. Sci. 40(16), 5863–5880 (2017)

20. Elaiw, A.M., Raezah, A., Alofi, A.S.: Effect of humoral immunity on HIV-1 dynamics with virus-to-target and
infected-to-target infections. AIP Adv. 6(8), Article ID 085204 (2016)

21. Elaiw, A.M., Raezah, A., Alofi, A.: Stability of a general delayed virus dynamics model with humoral immunity and
cellular infection. AIP Adv. 7(6), Article ID 065210 (2017)

22. Dutta, A., Gupta, P.K.: A mathematical model for transmission dynamics of HIV/AIDS with effect of weak CD4+ T cells.
Chin. J. Phys. (Accepted)

23. Buonomo, B., Vargas-De-León, C.: Global stability for an HIV-1 infection model including an eclipse stage of infected
cells. J. Math. Anal. Appl. 385, 709–720 (2012)

24. Perelson, A.S., Kirschner, D.E., Boer, R.D.: Dynamics of HIV infection of CD4+ T cells. Math. Biosci. 114(1), 81–125 (1993)
25. Korobeinikov, A.: Global properties of basic virus dynamics models. Bull. Math. Biol. 66(4), 879–883 (2004)
26. Elaiw, A.M., AlShamrani, N.H.: Global stability of humoral immunity virus dynamics models with nonlinear infection

rate and removal. Nonlinear Anal., Real World Appl. 26, 161–190 (2015)
27. Monica, C., Pitchaimani, M.: Analysis of stability and Hopf bifurcation for HIV-1 dynamics with PI and three intracellular

delays. Nonlinear Anal., Real World Appl. 27, 55–69 (2016)
28. Li, M.Y., Wang, L.: Backward bifurcation in a mathematical model for HIV infection in vivo with anti-retroviral

treatment. Nonlinear Anal., Real World Appl. 17, 147–160 (2014)
29. Li, B., Chen, Y., Lu, X., Liu, S.: A delayed HIV-1 model with virus waning term. Math. Biosci. Eng. 13, 135–157 (2016)
30. Perelson, A.S., Nelson, P.W.: Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 41(1), 3–44 (1999)
31. Perelson, A.S., Essunger, P., Cao, Y., Vesanen, M., Hurley, A., Saksela, K., Markowitz, M., Ho, D.D.: Decay characteristics of

HIV-1-infected compartments during combination therapy. Nature 387, 188–191 (1997)
32. Callaway, D.S., Perelson, A.S.: HIV-1 infection and low steady state viral loads. Bull. Math. Biol. 64, 29–64 (2002)
33. Adams, B.M., Banks, H.T., Davidian, M., Kwon, H.-D., Tran, H.T., Wynne, S.N., Rosenberg, E.S.: HIV dynamics: modeling,

data analysis, and optimal treatment protocols. J. Comput. Appl. Math. 184, 10–49 (2005)
34. Elaiw, A.M.: Global properties of a class of HIV models. Nonlinear Anal., Real World Appl. 11, 2253–2263 (2010)
35. Elaiw, A.M.: Global properties of a class of virus infection models with multitarget cells. Nonlinear Dyn. 69(1–2),

423–435 (2012)
36. Elaiw, A.M., Almuallem, N.A.: Global dynamics of delay-distributed HIV infection models with differential drug efficacy

in cocirculating target cells. Math. Methods Appl. Sci. 39, 4–31 (2016)
37. Elaiw, A.M., Hassanien, I.A., Azoz, S.A.: Global stability of HIV infection models with intracellular delays. J. Korean Math.

Soc. 49(4), 779–794 (2012)
38. Elaiw, A.M., Azoz, S.A.: Global properties of a class of HIV infection models with Beddington–DeAngelis functional

response. Math. Methods Appl. Sci. 36, 383–394 (2013)
39. Elaiw, A.M., Almuallem, N.A.: Global properties of delayed-HIV dynamics models with differential drug efficacy in

cocirculating target cells. Appl. Math. Comput. 265, 1067–1089 (2015)
40. Pinto, C.M.A., Carvalho, A.R.M.: A latency fractional order model for HIV dynamics. J. Comput. Appl. Math. 312,

240–256 (2017)
41. Shu, H., Wang, L., Watmough, J.: Global stability of a nonlinear viral infection model with infinitely distributed

intracellular delays and CTL immune responses. SIAM J. Appl. Math. 73(3), 1280–1302 (2013)
42. Wang, X., Elaiw, A.M., Song, X.: Global properties of a delayed HIV infection model with CTL immune response. Appl.

Math. Comput. 218(18), 9405–9414 (2012)
43. Huang, D., Zhang, X., Guo, Y., Wang, H.: Analysis of an HIV infection model with treatments and delayed immune

response. Appl. Math. Model. 40(4), 3081–3089 (2016)



Elaiw et al. Advances in Difference Equations        (2018) 2018:414 Page 25 of 25

44. Ali, N., Zaman, G., Algahtani, O.: Stability analysis of HIV-1 model with multiple delays. Adv. Differ. Equ. 2016, 88 (2016).
https://doi.org/10.1186/s13662-016-0808-4

45. Iwami, S., Nakaoka, S., Takeuchi, Y., Miura, Y., Miura, T.: Immune impairment thresholds in HIV infection. Immunol. Lett.
123(2), 149–154 (2009)

46. Hu, Z., Zhang, J., Wang, H., Ma, W., Liao, F.: Dynamics analysis of a delayed viral infection model with logistic growth
and immune impairment. Appl. Math. Model. 38, 524–534 (2014)

47. Regoes, R., Wodarz, D., Nowak, M.A.: Virus dynamics: the effect to target cell limitation and immune responses on
virus evolution. J. Theor. Biol. 191, 451–462 (1998)

48. Krishnapriya, P., Pitchaimani, M.: Modeling and bifurcation analysis of a viral infection with time delay and immune
impairment. Jpn. J. Ind. Appl. Math. 34, 99–139 (2017)

49. Elaiw, A.M., Raezah, A.A., Alofi, B.S.: Dynamics of delayed pathogen infection models with pathogenic and cellular
infections and immune impairment. AIP Adv. 8, Article ID 025323 (2018)

50. Avila-Vales, E., Chan-Chí, N., García-Almeida, G.: Analysis of a viral infection model with immune impairment,
intracellular delay and general non-linear incidence rate. Chaos Solitons Fractals 69, 1–9 (2014)

51. Wang, S., Song, X., Ge, Z.: Dynamics analysis of a delayed viral infection model with immune impairment. Appl. Math.
Model. 35(10), 4877–4885 (2011)

52. Krishnapriya, P., Pitchaimani, M.: Analysis of time delay in viral infection model with immune impairment. J. Appl.
Math. Comput. 55, 421–453 (2017)

53. Carvalho, A.R.M., Pinto, C.M.A., Baleanu, D.: HIV/HCV coinfection model: a fractional-order perspective for the effect of
the HIV viral load. Adv. Differ. Equ. 2018, 2 (2018)

54. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993)
55. Carvalho, A.R.M., Pinto, C.M.A.: Contributions of the latent reservoir and of the pool of long-lived chronically infected

CD4+ T cells in HIV dynamics: a fractional approach. Proceedings of the ENOC2017, June 25–30, 2017, Budapest,
Hungary

56. Yan, Y., Kou, C.: Stability analysis for a fractional differential model of HIV infection of CD4+ T-cells with time delay.
Math. Comput. Simul. 82, 1572–1585 (2012)

57. Jajarmi, A., Baleanu, D.: A new fractional analysis on the interaction of HIV with CD4+ T-cells. Chaos Solitons Fractals
113, 221–229 (2018)

58. Lv, C., Huang, L., Yuan, Z.: Global stability for an HIV-1 infection model with Beddington–DeAngelis incidence rate and
CTL immune response. Commun. Nonlinear Sci. Numer. Simul. 19, 121–127 (2014)

59. Shi, X., Zhou, X., Son, X.: Dynamical behavior of a delay virus dynamics model with CTL immune response. Nonlinear
Anal., Real World Appl. 11, 1795–1809 (2010)

https://doi.org/10.1186/s13662-016-0808-4

	Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment
	Abstract
	Keywords

	Introduction
	HIV model with discrete delays
	Nonnegativity and boundedness
	Steady states
	Global stability

	HIV model with distributed delays
	Nonnegativity and boundedness
	Steady states
	Global stability

	Numerical simulations
	Conclusion and discussion
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


