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1 Introduction
The oscillation theory for fractional differential and difference equations was studied by
some authors (see [1–8]). The study of oscillation and other qualitative properties of frac-
tional dynamical systems such as stability, existence, and uniqueness of solutions is nec-
essary to analyze the systems under consideration [9–13]. The analysis of the memory of
certain fractional dynamical systems has gained a high impact in the last few years [14, 15].
Several definitions of fractional derivatives and fractional integral operators with different
kernels exist in the literature. The Hadamard definition, which depends on a logarithmic
type kernel, was introduced in [16], and later on some authors contributed to the devel-
opment of its theory (see [17–19]). In this paper, we study the oscillation of Hadamard
fractional differential equation of the form

⎧
⎨

⎩

Dα
a x(t) + f1(t, x) = r(t) + f2(t, x), t > a

limt→a+ Dα–j
a x(t) = bj (j = 1, 2, . . . , n),

(1)

where n = �α�, Dα
a is the left-fractional Hadamard derivative of order α ∈ C, Re(α) ≥ 0 in

the Riemann–Liouville setting.
The objective of this paper is to study the oscillation of Hadamard fractional differential

equations of the form (1) besides their Caputo setting.
This paper is organized as follows. Section 2 introduces some notations and provides

the definitions of Hadamard fractional integral and differential operators together with
some basic properties and lemmas that are needed in the proofs of the main theorems.
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In Sect. 3, the main theorems are presented. Section 4 is devoted to the results obtained
for Hadamard fractional operators in the Caputo setting. Finally, examples are provided
in Sect. 5 to explain the effectiveness of the main results.

2 Notations and preliminary assertions
We start this section by introducing the definition of the Hadamard type fractional inte-
grals and derivatives (see [20]).

Let (a, b) be a finite or infinite interval of R+ starting from a.The left-sided Hadamard
fractional integral of order α ∈C, Re(α) > 0 is defined by

(
Iα

a f
)
(x) :=

1
Γ (α)

∫ x

a

(

ln
x
t

)α–1 f (t)
t

dt (a < x < b). (2)

The right-sided Hadamard fractional integral of order α ∈C, Re(α) > 0 is defined by

(
Iα

b f
)
(x) :=

1
Γ (α)

∫ b

x

(

ln
t
x

)α–1 f (t)
t

dt (a < x < b). (3)

The delta derivative is defined by δ = xD, where D = d
dx . The left-sided Hadamard frac-

tional derivative of order α ∈C, Re(α) > 0, n = �Re(α)� is defined by

(
Dα

a y
)
(x) := δn(In–α

a y
)
(x)

=
(

x
d

dx

)n 1
Γ (n – α)

∫ x

a

(

ln
x
t

)n–α–1 y(t)
t

dt (a < x < b). (4)

The right-sided Hadamard fractional derivative of order α ∈ C, Re(α) > 0, n = �Re(α)� is
defined by

(
Dα

b y
)
(x) := (–δ)n(In–α

b y
)
(x)

=
(

–x
d

dx

)n 1
Γ (n – α)

∫ b

x

(

ln
t
x

)n–α–1 y(t)
t

dt (a < x < b). (5)

Likewise Riemann–Liouville and Caputo fractional operators, left and right Hadamard
type fractional operators are dual to each other via the Q-operator [21, 22] (Qf (t) = f (a +
b – t)).

Now, we recall the definitions of Caputo type Hadamard fractional derivatives (see [17]).

Definition 2.1 ([17]) The left- and right-sided Hadamard fractional derivatives of Caputo
type respectively are defined by

CDα
a y(x) =

1
Γ (n – α)

∫ x

a

(

ln
x
t

)n–α–1
δny(t)

t
dt = In–α

a δny(x) (6)

and

CDα
b y(x) =

(–1)n

Γ (n – α)

∫ b

x

(

ln
t
x

)n–α–1
δny(t)

t
dt = (–1)nIn–α

b δny(x), (7)

where Re(α) > 0, n = �Re(α)�, and y(x) ∈ ACn
δ [a, b].
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The following properties are useful in the sequel.

Property 2.1 ([17, 20]) Let n = �α�, Re(α) ≥ 0, and Re(β) > 0. Then
1. Dα

a (ln x
a )β–1 = Γ (β)

Γ (β–α) (ln x
a )β–α–1,

2. Dα
b (ln b

x )β–1 = Γ (β)
Γ (β–α) (ln b

x )β–α–1,
3. Dα

a (ln x
a )α–n = 0 and Dα

b (ln b
x )α–n = 0,

4. CDα
a (ln x

a )β–1 = Γ (β)
Γ (β–α) (ln x

a )β–α–1, Re(β) > n,
5. CDα

b (ln b
x )β–1 = Γ (β)

Γ (β–α) (ln b
x )β–α–1, Re(β) > n,

6. CDα
a (ln x

a )k = 0 and CDα
b (ln b

x )k = 0 for k = 0, 1, . . . , n – 1,
7. Dα

a 1 = 1
Γ (1–α) (ln x

a )–α and CDα
a 1 = 0.

Lemma 2.1 ([23] Young’s inequality)
(i) Let X, Y ≥ 0, u > 1, and 1

u + 1
v = 1, then XY ≤ 1

u Xu + 1
v Y v.

(ii) Let X ≥ 0, Y > 0, 0 < u < 1, and 1
u + 1

v = 1, then XY ≥ 1
u Xu + 1

v Y v, where equalities
hold if and only if Y = Xu–1.

3 Oscillation of Hadamard fractional differential equations in the frame of
Riemann

In this section we study the oscillation theory for equation (1).

Lemma 3.1 ([20]) Let Re(α) > 0, n = –[– Re(α)], y(x) ∈ L(a, b), and (In–α
a y)(x) ∈ ACn

δ [a, b].
Then

(
Iα

a Dα
a y

)
(x) = y(x) –

n∑

j=1

(δn–jIn–α
a y)(a)

Γ (α – j + 1)

(

ln
x
a

)α–j

. (8)

Using Lemma 3.1, the solution representation of (1) can be written as

x(t) =
n∑

j=1

(Dα–j
a x)(a)

Γ (α – j + 1)

(

ln
t
a

)α–j

+ Iα
a F(t, x), (9)

where F(t, x) = r(t) + f2(t, x) – f1(t, x).
A solution of (1) is said to be oscillatory if it has arbitrarily large zeros on (0,∞); other-

wise, it is called nonoscillatory. An equation is said to be oscillatory if all of its solutions
are oscillatory.

We prove our results under the following assumptions:

xfi(t, x) > 0 (i = 1, 2), x 	= 0, t ≥ 0, (10)
∣
∣f1(t, x)

∣
∣ ≥ p1(t)|x|β and

∣
∣f2(t, x)

∣
∣ ≤ p2(t)|x|γ , x 	= 0, t ≥ 0, (11)

∣
∣f1(t, x)

∣
∣ ≤ p1(t)|x|β and

∣
∣f2(t, x)

∣
∣ ≥ p2(t)|x|γ , x 	= 0, t ≥ 0, (12)

where p1, p2 ∈ C([0,∞), (0,∞)), and β ,γ are positive constants.
Define

Φ(t) = Γ (α)
n∑

j=1

(Dα–j
a x)(a)

Γ (α – j + 1)

(

ln
t
a

)α–j

(13)
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and

Ψ (t, T1) =
∫ T1

a

(

ln
t
s

)α–1 F(s, x(s))
s

ds. (14)

Theorem 3.2 Let f2 = 0 in (1) and condition (10) hold. If

lim inf
t→∞ (ln t)1–α

∫ t

T

(

ln
t
s

)α–1 r(s)
s

ds = –∞ (15)

and

lim sup
t→∞

(ln t)1–α

∫ t

T

(

ln
t
s

)α–1 r(s)
s

ds = ∞ (16)

for every sufficiently large T , then every solution of (1) is oscillatory.

Proof Let x(t) be a nonoscillatory solution of equation (1) with f2 = 0. Suppose that T1 > a
is large enough so that x(t) > 0 for t ≥ T1. Hence, (10) implies that f1(t, x) > 0 for t ≥ T1.
Using (2), we get from (9)

Γ (α)x(t) = Γ (α)
n∑

j=1

(Dα–jx)(a)
Γ (α – j + 1)

(

ln
t
a

)α–j

+
∫ T1

a

(

ln
t
s

)α–1 F(s, x(s))
s

ds

+
∫ t

T1

(

ln
t
s

)α–1 [r(s) – f1(s, x(s))]
s

ds

≤ Φ(t) + Ψ (t, T1) +
∫ t

T1

(

ln
t
s

)α–1 r(s)
s

ds, (17)

where Φ and Ψ are defined in (13) and (14), respectively.
Multiplying (17) by (ln t)1–α , we get

0 < (ln t)1–αΓ (α)x(t) ≤ (ln t)1–αΦ(t) + (ln t)1–αΨ (t, T1)

+ (ln t)1–α

∫ t

T1

(

ln
t
s

)α–1 r(s)
s

ds. (18)

Take T2 > T1. We consider two cases as follows.
Case (1): Let 0 < α ≤ 1. Then n = 1 and |(ln t)1–αΦ(t)| = |b1(ln t)1–α(ln t

a )α–1|.
Since h1(t) = ( ln t–ln a

ln t )α–1 is decreasing for a > 1 and t > T2, we get

∣
∣(ln t)1–αΦ(t)

∣
∣ =

∣
∣
∣
∣b1

(
ln t – ln a

ln t

)α–1∣∣
∣
∣ ≤ |b1|

(
ln T2 – ln a

ln T2

)α–1

= c1(T2). (19)

We also have

∣
∣(ln t)1–αΨ (t, T1)

∣
∣
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=
∣
∣
∣
∣(ln t)1–α

∫ T1

a

(

ln
t
s

)α–1 [r(s) + f2(s, x(s)) – f1(s, x(s))]
s

ds
∣
∣
∣
∣

≤
∫ T1

a

(
ln t – ln s

ln t

)α–1 |r(s) + f2(s, x(s)) – f1(s, x(s))|
s

ds

≤
∫ T1

a

(
ln T2 – ln s

ln T2

)α–1 |r(s) + f2(s, x(s)) – f1(s, x(s))|
s

ds

:= c2(T1, T2). (20)

Then from equation (18) we get

(ln t)1–α

∫ t

T1

(

ln
t
s

)α–1 r(s)
s

ds ≥ –
[
c1(T1) + c2(T1, T2)

]
,

hence

lim inf
t→∞ (ln t)1–α

∫ t

T1

(

ln
t
s

)α–1 r(s)
s

ds ≥ –
[
c1(T1) + c2(T1, T2)

]
> –∞,

which contradicts condition (15).
Case (2): Let α > 1. Then n ≥ 2. Since the function h2(t) = (ln t – ln a)1–j is decreasing

and ( ln t–ln a
ln t )α–1 ≤ 1 for α > 1, we get, for t ≥ T2,

∣
∣(ln t)1–αΦ(t)

∣
∣ =

∣
∣
∣
∣
∣
(ln t)1–αΓ (α)

n∑

j=1

bj(ln t
a )α–j

Γ (α – j + 1)

∣
∣
∣
∣
∣

≤ Γ (α)
(

ln t – ln a
ln t

)α–1 n∑

j=1

|bj| (ln t – ln a)1–j

Γ (α – j + 1)

≤ Γ (α)
n∑

j=1

|bj| (ln t – ln a)1–j

Γ (α – j + 1)

≤ Γ (α)
n∑

j=1

|bj| (ln T2 – ln a)1–j

Γ (α – j + 1)
:= c3(T2). (21)

We also have

∣
∣(ln t)1–αΨ (t, T1)

∣
∣ =

∣
∣
∣
∣(ln t)1–α

∫ T1

a

(

ln
t
s

)α–1 [r(s) + f2(s, x(s)) – f1(s, x(s))]
s

ds
∣
∣
∣
∣

≤
∫ T1

a

(
ln t – ln s

ln t

)α–1 |r(s) + f2(s, x(s)) – f1(s, x(s))|
s

ds

≤
∫ T1

a

|r(s) + f2(s, x(s)) – f1(s, x(s))|
s

ds

:= c4(T1). (22)

So, we conclude that

(ln t)1–α

∫ t

T1

(

ln
t
s

)α–1 r(s)
s

ds ≥ –
[
c3(T2) + c4(T1)

]
,
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hence

lim inf
t→∞ (ln t)1–α

∫ t

T1

(

ln
t
s

)α–1 r(s)
s

ds ≥ –
[
c3(T2) + c4(T1)

]
> –∞,

which contradicts condition (15).
Therefore, we conclude that x(t) is oscillatory. In case x(t) is eventually negative, similar

arguments lead to a contradiction with condition (16). �

Theorem 3.3 Let conditions (10) and (11) hold with β > γ . If

lim inf
t→∞ (ln t)1–α

∫ t

T

(

ln
t
s

)α–1 [r(s) + H(s)]
s

ds = –∞ (23)

and

lim sup
t→∞

(ln t)1–α

∫ t

T

(

ln
t
s

)α–1 [r(s) – H(s)]
s

ds = ∞ (24)

for every sufficiently large T , where

H(s) =
β – γ

γ

[
p1(s)

] γ
γ –β

[
γ p2(s)

β

] β
β–γ

, (25)

then every solution of (1) is oscillatory.

Proof Let x(t) be a nonoscillatory solution of equation (1), say, x(t) > 0 for t ≥ T1 > a. Let
s ≥ T1. Using conditions (10) and (11), we get

f2(s, x) – f1(s, x) ≤ p2(s)xγ (s) – p1(s)xβ(s).

Let X = xγ (s), Y = γ p2(s)
βp1(s) , u = β

γ
, and v = β

β–γ
, then from part (i) of Lemma 2.1 we get

p2(s)xγ (s) – p1(s)xβ(s) =
βp1(s)

γ

[

xγ (s)
γ p2(s)
βp1(s)

–
γ

β

(
xγ (s)

) β
γ

]

=
βp1(s)

γ

[

XY –
1
u

Xu
]

≤ βp1(s)
γ

1
v

Y v = H(s), (26)

where H is defined by (25). Then from equation (9) we obtain

Γ (α)x(t) = Φ(t) + Ψ (t, T1) +
∫ t

T1

(

ln
t
s

)α–1 [r(s) + f2(s, x(s)) – f1(s, x(s))]
s

ds

≤ Φ(t) + Ψ (t, T1) +
∫ t

T1

(

ln
t
s

)α–1 [r(s) + p2(s)xγ (s) – p1(s)xβ (s)]
s

ds

≤ Φ(t) + Ψ (t, T1) +
∫ t

T1

(

ln
t
s

)α–1 [r(s) + H(s)]
s

ds. (27)

The rest of the proof is the same as that of Theorem 3.2 and hence is omitted. �
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Theorem 3.4 Let α ≥ 1 and suppose that (10) and (12) hold with β < γ . If

lim sup
t→∞

(ln t)1–α

∫ t

T

(

ln
t
s

)α–1 [r(s) + H(s)]
s

ds = ∞ (28)

and

lim inf
t→∞ (ln t)1–α

∫ t

T

(

ln
t
s

)α–1 [r(s) – H(s)]
s

ds = –∞ (29)

for every sufficiently large T , where H is defined by (25), then every bounded solution of (1)
is oscillatory.

Proof Let x(t) be a bounded nonoscillatory solution of equation (1). Then there exist con-
stants M1 and M2 such that

M1 ≤ x(t) ≤ M2 for t ≥ a. (30)

Assume that x is a bounded eventually positive solution of (1). Then there exists T1 > a
such that x(t) > 0 for t ≥ T1 > a. Using conditions (10) and (12), we get f2(s, x) – f1(s, x) ≥
p2(s)xγ (s) – p1(s)xβ(s). Using (ii) of Lemma 2.1, and similar to the proof of (26), we find

p2(s)xγ (s) – p1(s)xβ(s) ≥ H(s) for s ≥ T1.

From (9) and similar to (27), we obtain

Γ (α)x(t) ≥ Φ(t) + Ψ (t, T1) +
∫ t

T1

(

ln
t
s

)α–1 [r(s) + H(s)]
s

ds.

Multiplying by (ln t)1–α , we get

(ln t)1–αΓ (α)x(t) ≥ (ln t)1–αΦ(t) + (ln t)1–αΨ (t, T1)

+ (ln t)1–α

∫ t

T1

(

ln
t
s

)α–1 [r(s) + H(s)]
s

ds. (31)

Take T2 > T1. We consider two cases as follows.
Case (1): Let α = 1. Then (19) and (20) are still correct. Hence, from (31) and using (30),

we find that

M2Γ (α) ≥ (ln t)1–αΓ (α)x(t) ≥ –c1(T2) – c2(T1, T2)

+ (ln t)1–α

∫ t

T1

(

ln
t
s

)α–1 [r(s) + H(s)]
s

ds

for t ≥ T2. Thus, we get

lim sup
t→∞

(ln t)1–α

∫ t

T1

(

ln
t
s

)α–1 [r(s) + H(s)]
s

ds ≤ c1(T2) + c2(T1, T2) + M2Γ (α) < ∞,

which contradicts condition (28).
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Case (2): Let α > 1. Then (21) and (22) are still true. Hence, from (31) and using (30), we
find that

M2Γ (α)(ln t)1–α ≥ –c3(T2) – c4(T1)

+ (ln t)1–α

∫ t

T1

(

ln
t
s

)α–1 [r(s) + H(s)]
s

ds

for t ≥ T2. Since limt→∞(ln t)1–α = 0 for α > 1, we conclude that

lim sup
t→∞

(ln t)1–α

∫ t

T1

(

ln
t
s

)α–1 [r(s) + H(s)]
s

ds ≤ c3(T2) + c4(T1) < ∞,

which contradicts condition (28). Therefore, we conclude that x(t) is oscillatory. In case
x(t) is eventually bounded negative, similar arguments lead to a contradiction with con-
dition (29). �

4 Oscillation of Hadamard fractional differential equations in the frame of
Caputo

In this section, we study the oscillation of the Hadamard fractional differential equations
in the Caputo setting of the form

⎧
⎨

⎩

CDα
a x(t) + f1(t, x) = r(t) + f2(t, x), t > a

δkx(a) = bk (k = 0, 1, . . . , n – 1),
(32)

where n = �α� and CDα
a is defined by (6).

Lemma 4.1 ([17]) Let y ∈ ACn
δ [a, b] or Cn

δ [a, b] and α ∈C. Then

Iα
a
(CDα

a
)
y(x)) = y(x) –

n–1∑

k=0

δky(a)
k!

(

ln
x
a

)k

. (33)

Using Lemma 4.1, the solution representation of (32) can be written as

x(t) =
n–1∑

k=0

δkx(a)
k!

(

ln
t
a

)k

+ Iα
a F(t, x), (34)

where F(t, x) = r(t) + f2(t, x) – f1(t, x).
Define

χ (t) = Γ (α)
n–1∑

k=0

δkx(a)
k!

(

ln
t
a

)k

. (35)

Theorem 4.2 Let f2 = 0 in (32) and condition (10) hold. If

lim inf
t→∞ (ln t)1–n

∫ t

T

(

ln
t
s

)α–1 r(s)
s

ds = –∞ (36)



Abdalla and Abdeljawad Advances in Difference Equations        (2018) 2018:409 Page 9 of 13

and

lim sup
t→∞

(ln t)1–n
∫ t

T

(

ln
t
s

)α–1 r(s)
s

ds = ∞ (37)

for every sufficiently large T , then every solution of (32) is oscillatory.

Proof Let x(t) be a nonoscillatory solution of equation (32) with f2 = 0. Suppose that T1 > a
is large enough so that x(t) > 0 for t ≥ T1. Hence (10) implies that f1(t, x) > 0 for t ≥ T1.
Using (2), we get from (34)

Γ (α)x(t) = Γ (α)
n–1∑

k=0

δkx(a)
k!

(

ln
t
a

)k

+
∫ T1

a

(

ln
t
s

)α–1 F(s, x(s))
s

ds

+
∫ t

T1

(

ln
t
s

)α–1 [r(s) – f1(s, x(s))]
s

ds

≤ Φ(t) + Ψ (t, T1) +
∫ t

T1

(

ln
t
s

)α–1 r(s)
s

ds, (38)

where χ and Ψ are defined in (35) and (14), respectively.
Multiplying (38) by (ln t)1–n, we get

0 < (ln t)1–nΓ (α)x(t) ≤ (ln t)1–nχ (t) + (ln t)1–nΨ (t, T1)

+ (ln t)1–n
∫ t

T1

(

ln
t
s

)α–1 r(s)
s

ds. (39)

Take T2 > T1. We consider two cases as follows.
Case (1): Let 0 < α ≤ 1. Then n = 1 and (ln t)1–nχ (t) = Γ (α).
Since h3(t) = (ln t

s )α–1 is decreasing for t > s and t > T2, we get

∣
∣(ln t)1–nΨ (t, T1)

∣
∣ =

∣
∣
∣
∣

∫ T1

a

(

ln
t
s

)α–1 [r(s) + f2(s, x(s)) – f1(s, x(s))]
s

ds
∣
∣
∣
∣

≤
∫ T1

a

(

ln
T2

s

)α–1 |r(s) + f2(s, x(s)) – f1(s, x(s))|
s

ds

:= c5(T1, T2).

Then, from equation (39) and for t ≥ T2, we get

(ln t)1–n
∫ t

T1

(

ln
t
s

)α–1 r(s)
s

ds ≥ –
[
Γ (α) + c5(T1, T2)

]
,

hence

lim inf
t→∞ (ln t)1–n

∫ t

T1

(

ln
t
s

)α–1 r(s)
s

ds ≥ –
[
Γ (α) + c5(T1, T2)

]
> –∞,

which contradicts condition (36).
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Case (2): Let α > 1. Then n ≥ 2. Also, ( ln t–ln a
ln t )n–1 < 1 for n ≥ 2. The function h4(t) =

(ln t
a )k–n+1 is decreasing for k < n – 1. Thus, for t ≥ T2, we have

∣
∣(ln t)1–nχ (t)

∣
∣ =

∣
∣
∣
∣
∣
(ln t)1–nΓ (α)

n–1∑

k=0

δkx(a)
k!

(

ln
t
a

)k
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(
ln t – ln a

ln t

)n–1

Γ (α)
n–1∑

k=0

δkx(a)
k!

(

ln
t
a

)k–n+1
∣
∣
∣
∣
∣

≤ Γ (α)
n–1∑

k=0

|δkx(a)|
k!

(

ln
t
a

)k–n+1

≤ Γ (α)
n–1∑

k=0

|δkx(a)|
k!

(

ln
T2

a

)k–n+1

:= c6(T2). (40)

Also, since ( ln t–ln s
ln t )n–1 < 1 for n ≥ 2 and similar to (22), we get

∣
∣(ln t)1–αΨ (t, T1)

∣
∣ ≤ c4(T1).

Using the last inequality and (40), from (39) we get a contradiction with condition (36).
Therefore, we conclude that x(t) is oscillatory. In case x(t) is eventually negative, similar
arguments lead to a contradiction with condition (37). �

We state the following two theorems without proof.

Theorem 4.3 Let conditions (10) and (11) hold with β > γ . If

lim inf
t→∞ (ln t)1–n

∫ t

T

(

ln
t
s

)α–1 [r(s) + H(s)]
s

ds = –∞ (41)

and

lim sup
t→∞

(ln t)1–n
∫ t

T

(

ln
t
s

)α–1 [r(s) – H(s)]
s

ds = ∞ (42)

for every sufficiently large T , where H is defined by (25), then every solution of (32) is oscil-
latory.

Theorem 4.4 Let α ≥ 1 and suppose that (10) and (12) hold with β < γ . If

lim sup
t→∞

(ln t)1–n
∫ t

T

(

ln
t
s

)α–1 [r(s) + H(s)]
s

ds = ∞ (43)

and

lim inf
t→∞ (ln t)1–n

∫ t

T

(

ln
t
s

)α–1 [r(s) – H(s)]
s

ds = –∞ (44)

for every sufficiently large T , where H is defined by (25), then every bounded solution of (32)
is oscillatory.
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5 Examples
In this section, we construct examples to illustrate the effectiveness of our theoretical re-
sults.

Example 5.1 Consider the following Hadamard fractional differential equation in the Rie-
mann setting:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
a x(t) + x5(t) ln(t + e)

= 2
Γ (3–α) (ln x

a )2–α + [(ln x
a )10 – (ln x

a ) 2
3 ] ln(t + e) + x 1

3 (t) ln(t + e),

limt→a+ Dα–j
a x(t) = 0 (j = 1, 2), 1 < α < 2,

(45)

where n = 2, f1(t, x) = x5(t) ln(t + e), f2(t, x) = x 1
3 (t) ln(t + e), and r(t) = 2

Γ (3–α) (ln x
a )2–α +

[(ln x
a )10 – (ln x

a ) 2
3 ] ln(t + e). It is easy to verify that conditions (10) and (11) are satisfied

for β = 5, γ = 1
3 , and p1(t) = p2(t) = ln(t + e). However, we show in the following that con-

dition (23) does not hold. For every sufficiently large T ≥ 1 and all t ≥ T , we have r(t) > 0.
Calculating H(s) as defined by (25), we find that H(s) = 14(15)– 15

14 ln(s + e) ≥ 0.77. Then,
using (property 2.1) for β = 1 and the fact that Dα = I–α , we get

lim inf
t→∞ (ln t)1–α

∫ t

T

(

ln
t
s

)α–1 [r(s) + H(s)]
s

ds

≥ lim inf
t→∞ (ln t)1–α

∫ t

T

(

ln
t
s

)α–1 H(s)
s

ds

≥ lim inf
t→∞ 0.77(ln t)1–α

∫ t

T

(

ln
t
s

)α–1(

ln
s
a

)0 ds
s

= lim inf
t→∞ 0.77(ln t)1–αΓ (α)

(

Iα
a

(

ln
s
a

)0)

(t)

= lim inf
t→∞ 0.77

ln t
α

(

1 –
ln a
ln t

)α

= ∞.

However, one can easily verify that x(t) = (ln t
a )2 is a nonoscillatory solution of (45). The

initial condition is also satisfied because

Dα–j
a

(

ln
t
a

)2

= I j–α
a

(

ln
t
a

)2

=
2

Γ (3 + j – α)

(

ln
t
a

)2+j–α

, j = 1, 2.

Example 5.2 Consider the Hadamard fractional differential equation

⎧
⎨

⎩

Dα
a x(t) + x3(t) = sin t,

limt→a+ Dα–1
a x(t) = 0, 0 < α < 1,

(46)

where f1(t, x) = x3(t), r(t) = sin t, and f2(t, x) = 0. Then condition (10) holds. Furthermore,
one can easily check that

lim inf
t→∞ (ln t)1–α

∫ t

T

(

ln
t
s

)α–1 sin s
s

ds = –∞
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and

lim sup
t→∞

(ln t)1–α

∫ t

T

(

ln
t
s

)α–1 sin s
s

ds = ∞.

This shows that conditions (15) and (16) of Theorem 3.2 hold. Hence, every solution of
(46) is oscillatory.

Example 5.3 Consider the following Hadamard fractional differential equation of Caputo
type:

⎧
⎨

⎩

CDα
a x(t) + etx3(t) = 1

Γ (2–α) (ln t
a )1–α + (ln t

a )3et ,

x(a) = 0, δx(a) = 1, 1 < α < 2,
(47)

where n = 2, f1(t, x) = etx3(t), r(t) = 1
Γ (2–α) (ln t

a )1–α + (ln t
a )3et , and f2(t, x) = 0. Then condi-

tion (10) is satisfied. Since r(s) > 0 and using (2), we get

lim inf
t→∞ (ln t)1–n

∫ t

T

(

ln
t
s

)α–1 r(s)
s

ds

≥ lim inf
t→∞ (ln t)1–n

∫ t

T

(

ln
t
s

)α–1(

ln
s
a

)0 ds
s

= lim inf
t→∞ (ln t)1–mΓ (α)

(

Iα
a

(

ln
s
a

)0)

(t)

= lim inf
t→∞ (ln t)1–n Γ (α)

Γ (1 + α)

(

ln
t
a

)α

= lim inf
t→∞

Γ (α)
Γ (1 + α)

(

ln
t
a

)α–n+1(

1 –
ln a
ln t

)n–1

= ∞,

which means that condition (36) does not hold. However, it is forward to check that x(t) =
ln t

a is a nonoscillatory solution of (47).

6 Conclusion
In this article, the oscillation theory for Hadamard fractional differential equations was
studied. Sufficient conditions for the oscillation of solutions of Hadamard fractional dif-
ferential equations in the Riemann setting (1) were given in three theorems in Sect. 3. The
main approach is based on applying Young’s inequality which will help us in obtaining
sharper conditions. The oscillation for the Hadamard fractional differential equations in
the Caputo setting has been investigated as well. Numerical examples are presented to
demonstrate the effectiveness of the obtained results. We finally remark that dual oscilla-
tion properties for fractional systems in the frame of right Hadamard fractional derivatives
given in (5) can be concluded from the left cases through applying the Q-operator. It would
be of interest, in future works, to study the oscillation of other types of fractional systems
in the frame of fractional derivatives with more generalized kernels or nonsingular ker-
nels [24].
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